Please note that HSBI-PUB no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
8 Publikationen
2024 | Dissertation | FH-PUB-ID: 4392 |

Grumbach, F. (2024). Feldsynchrone Ablaufplanung dynamischer Fertigungsprozesse mit Techniken des maschinellen Lernens [kumulative Dissertation]. Bernburg: Universitäts- und Landesbibliothek Sachsen-Anhalt. https://doi.org/10.25673/115290
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2024 | Artikel | FH-PUB-ID: 4881
Wiegraebe, F., Schönbeck, M., Wunderlich, P., Nauerth, A., & Dörksen, H. (2024). KI-basiertes Unterstützungstool für pflegende Erwerbstätige. Pflege und Gesellschaft, 3, 271–285. https://doi.org/10.3262/P&G2403271
HSBI-PUB
| DOI
2023 | Konferenzbeitrag | FH-PUB-ID: 4207 |

Sanaullah, S., & Jungeblut, T. (2023). Analysis of MR Images for Early and Accurate Detection of Brain Tumor using Resource Efficient Simulator Brain Analysis. Presented at the 19th International Conference on Machine Learning and Data Mining MLDM, New York USA. https://doi.org/10.5281/zenodo.10457930
HSBI-PUB
| DOI
| Download (ext.)
2023 | Kurzbeitrag Konferenz | FH-PUB-ID: 4206 |

Sanaullah, S., Amanullah, A., Roy, K., Lee, J.-A., Chul-Jun, S., & Jungeblut, T. (2023). A Hybrid Spiking-Convolutional Neural Network Approach for Advancing High-Quality Image Inpainting. Presented at the International Conference on Computer Vision (ICCV) 2023, Paris France. https://doi.org/10.5281/zenodo.10458019
HSBI-PUB
| DOI
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 4394 |

Müller, A., & Grumbach, F. (2023). Predicting processing times in high mix low volume job shops. In E. Glistau & S. Trojahn (Eds.), 16th International Doctoral Students Workshop on Logistics, Supply Chain and Production Management. Magdeburg: Otto von Guericke University Library, Magdeburg, Germany. https://doi.org/10.25673/103491
HSBI-PUB
| DOI
| Download (ext.)
2023 | Diskussionspapier | FH-PUB-ID: 3729 |

Kösters, J., Schöne, M., & Kohlhase, M. (n.d.). Benchmarking of Machine Learning Models for Tabular Scarce Data.
HSBI-PUB
| Dateien verfügbar
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2953 |

Behrens, G., Hepp, D., Hempelmann, S., & Friedrich, W. (2022). Detection of snow-coverage on PV-modules with images based on CNN-techniques. In V. Wohlgemuth, S. Naumann, H.-K. Arnd, G. Behrens, M. Höb, & Gesellschaft für Informatik e.V. (Eds.), ENVIROINFO 2022 (Vol. P328). Bonn.
HSBI-PUB
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 1799 |

Vandevoorde, K., Vollenkemper, L., Schwan, C., Kohlhase, M., & Schenck, W. (2022). Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks. Sensors, 22(7). https://doi.org/10.3390/s22072481
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)