PUBLIKATIONSSERVER

LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data

L. Quakernack, T. Engelmann, J. Haubrock, V. Vaquet, in: IEEE (Ed.), 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), IEEE, 2024, pp. 1–5.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
herausgebende Körperschaft
IEEE
Abstract
Uncertainty in controllable devices and their power in distribution grids is a considerable problem for grid operators. The corresponding "blind" control of electric vehicles (EV), heat pumps, heating, ventilation, and air conditioning systems can harm the grid. On the one hand, if not enough controllable devices are available to balance the load, congestion, potentially damaging the operating equipment, can occur. On the other hand, the incentive of prosumer involvement to provide flexibility can decrease due to overcontrol of their devices. To analyze how many devices and their respective power are currently in use, the measurement data, for instance, smart meters data, need to be disentangled and split into the household load, the load caused by EVs, etc. In this contribution, we develop an LSTM-based auto-encoder model to detect electric vehicles charging in household profiles. We test the model by increasing the number of households with respect to the EV. Furthermore, we use the minimum controllable power defined in the German Energy Industry Act to increase the classification of EVs. The LSTM autoencoder can reliably identify electric vehicles in grouped smart meter data. It provides near-optimal results for three households with a precision of 97% for four households.
Erscheinungsjahr
Titel des Konferenzbandes
2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE)
Seite
1-5
Konferenz
2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE)
Konferenzort
Dubrovnik, Croatia
Konferenzdatum
2024-10-14 – 2024-10-17
FH-PUB-ID

Zitieren

Quakernack, Lars ; Engelmann, Thomas ; Haubrock, Jens ; Vaquet, Valerie: LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data. In: IEEE (Hrsg.): 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE) : IEEE, 2024, S. 1–5
Quakernack L, Engelmann T, Haubrock J, Vaquet V. LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data. In: IEEE, ed. 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE). IEEE; 2024:1-5. doi:10.1109/ISGTEUROPE62998.2024.10863725
Quakernack, L., Engelmann, T., Haubrock, J., & Vaquet, V. (2024). LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data. In IEEE (Ed.), 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE) (pp. 1–5). Dubrovnik, Croatia: IEEE. https://doi.org/10.1109/ISGTEUROPE62998.2024.10863725
@inproceedings{Quakernack_Engelmann_Haubrock_Vaquet_2024, title={LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data}, DOI={10.1109/ISGTEUROPE62998.2024.10863725}, booktitle={2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE)}, publisher={IEEE}, author={Quakernack, Lars and Engelmann, Thomas and Haubrock, Jens and Vaquet, Valerie}, editor={IEEEEditor}, year={2024}, pages={1–5} }
Quakernack, Lars, Thomas Engelmann, Jens Haubrock, and Valerie Vaquet. “LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data.” In 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), edited by IEEE, 1–5. IEEE, 2024. https://doi.org/10.1109/ISGTEUROPE62998.2024.10863725.
L. Quakernack, T. Engelmann, J. Haubrock, and V. Vaquet, “LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data,” in 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), Dubrovnik, Croatia, 2024, pp. 1–5.
Quakernack, Lars, et al. “LSTM Autoencoder Model to Identify Electric Vehicles in Grouped Smart Meter Data.” 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), edited by IEEE, IEEE, 2024, pp. 1–5, doi:10.1109/ISGTEUROPE62998.2024.10863725.

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar