Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review
C. Schwede, D. Fischer, in: IEEE (Ed.), 2024 Winter Simulation Conference (WSC), IEEE, 2024, pp. 3070–3081.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag
| Veröffentlicht
| Englisch
Autor*in
Schwede, Christian
;
Fischer, Daniel


herausgebende Körperschaft
IEEE
Abstract
Digital Twins play a crucial role in the fourth industrial revolution. In the context of discrete material flow systems, companies under constant competitive pressure seek for solutions to minimize cost and maximize performance. Simulation-based digital twins can help taking optimal decisions in the design, planning and control of these systems. Such twins are until now developed and updated by domain experts producing costs and are often not considering the advances made in machine learning to improve prediction quality. Learning digital twins out of data could be the solution for a broader application. A lot of works has already been done that contributes to this endeavor, yet relevant building blocks originate from different scientific areas resulting in use of different terminology. Thus we present a holistic review of relevant work and analyze the state of the art based on a new classification scheme deriving relevant building blocks and gaps for future research.
Erscheinungsjahr
Titel des Konferenzbandes
2024 Winter Simulation Conference (WSC)
Seite
3070-3081
Konferenz
2024 Winter Simulation Conference (WSC)
Konferenzort
Orlando, FL, USA
Konferenzdatum
2024-12-15 – 2024-12-18
FH-PUB-ID
Zitieren
Schwede, Christian ; Fischer, Daniel: Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review. In: IEEE (Hrsg.): 2024 Winter Simulation Conference (WSC) : IEEE, 2024, S. 3070–3081
Schwede C, Fischer D. Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review. In: IEEE, ed. 2024 Winter Simulation Conference (WSC). IEEE; 2024:3070-3081. doi:10.1109/WSC63780.2024.10838729
Schwede, C., & Fischer, D. (2024). Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review. In IEEE (Ed.), 2024 Winter Simulation Conference (WSC) (pp. 3070–3081). Orlando, FL, USA: IEEE. https://doi.org/10.1109/WSC63780.2024.10838729
@inproceedings{Schwede_Fischer_2024, title={Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review}, DOI={10.1109/WSC63780.2024.10838729}, booktitle={2024 Winter Simulation Conference (WSC)}, publisher={IEEE}, author={Schwede, Christian and Fischer, Daniel}, editor={IEEEEditor}, year={2024}, pages={3070–3081} }
Schwede, Christian, and Daniel Fischer. “Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review.” In 2024 Winter Simulation Conference (WSC), edited by IEEE, 3070–81. IEEE, 2024. https://doi.org/10.1109/WSC63780.2024.10838729.
C. Schwede and D. Fischer, “Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review,” in 2024 Winter Simulation Conference (WSC), Orlando, FL, USA, 2024, pp. 3070–3081.
Schwede, Christian, and Daniel Fischer. “Learning Simulation-Based Digital Twins for Discrete Material Flow Systems: A Review.” 2024 Winter Simulation Conference (WSC), edited by IEEE, IEEE, 2024, pp. 3070–81, doi:10.1109/WSC63780.2024.10838729.