WisPerMed at “Discharge Me!”: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV
H. Damm, T.M.G. Pakull, B. Eryılmaz, H. Becker, A. Idrissi-Yaghir, H. Schäfer, S. Schultenkämper, C.M. Friedrich, in: D. Demner-Fushman, S. Ananiadou, M. Miwa, K. Roberts, J. Tsujii (Eds.), Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, USA, 2024, pp. 105–121.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag
| Veröffentlicht
| Englisch
Autor*in
Damm, Hendrik;
Pakull, Tabea Margareta Grace;
Eryılmaz, Bahadır;
Becker, Helmut;
Idrissi-Yaghir, Ahmad;
Schäfer, Henning;
Schultenkämper, Sergej ;
Friedrich, Christoph M.
Herausgeber*in
Demner-Fushman, Dina ;
Ananiadou, Sophia ;
Miwa, Makoto ;
Roberts, Kirk ;
Tsujii, Junichi
Einrichtung
Abstract
This study aims to leverage state of the art language models to automate generating the “Brief Hospital Course” and “Discharge Instructions” sections of Discharge Summaries from the MIMIC-IV dataset, reducing clinicians’ administrative workload. We investigate how automation can improve documentation accuracy, alleviate clinician burnout, and enhance operational efficacy in healthcare facilities. This research was conducted within our participation in the Shared Task Discharge Me! at BioNLP @ ACL 2024. Various strategies were employed, including Few-Shot learning, instruction tuning, and Dynamic Expert Selection (DES), to develop models capable of generating the required text sections. Utilizing an additional clinical domain-specific dataset demonstrated substantial potential to enhance clinical language processing. The DES method, which optimizes the selection of text outputs from multiple predictions, proved to be especially effective. It achieved the highest overall score of 0.332 in the competition, surpassing single-model outputs. This finding suggests that advanced deep learning methods in combination with DES can effectively automate parts of electronic health record documentation. These advancements could enhance patient care by freeing clinician time for patient interactions. The integration of text selection strategies represents a promising avenue for further research.
Erscheinungsjahr
Titel des Konferenzbandes
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
Seite
105-121
Konferenz
23rd Workshop on Biomedical Natural Language Processing
Konferenzort
Bangkok, Thailand
Konferenzdatum
2024-08-16 – 2024-08-16
FH-PUB-ID
Zitieren
Damm, Hendrik ; Pakull, Tabea Margareta Grace ; Eryılmaz, Bahadır ; Becker, Helmut ; Idrissi-Yaghir, Ahmad ; Schäfer, Henning ; Schultenkämper, Sergej ; Friedrich, Christoph M.: WisPerMed at “Discharge Me!”: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV. In: Demner-Fushman, D. ; Ananiadou, S. ; Miwa, M. ; Roberts, K. ; Tsujii, J. (Hrsg.): Proceedings of the 23rd Workshop on Biomedical Natural Language Processing. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024, S. 105–121
Damm H, Pakull TMG, Eryılmaz B, et al. WisPerMed at “Discharge Me!”: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV. In: Demner-Fushman D, Ananiadou S, Miwa M, Roberts K, Tsujii J, eds. Proceedings of the 23rd Workshop on Biomedical Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics; 2024:105-121. doi:10.18653/v1/2024.bionlp-1.9
Damm, H., Pakull, T. M. G., Eryılmaz, B., Becker, H., Idrissi-Yaghir, A., Schäfer, H., … Friedrich, C. M. (2024). WisPerMed at “Discharge Me!”: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV. In D. Demner-Fushman, S. Ananiadou, M. Miwa, K. Roberts, & J. Tsujii (Eds.), Proceedings of the 23rd Workshop on Biomedical Natural Language Processing (pp. 105–121). Stroudsburg, PA, USA: Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.bionlp-1.9
@inproceedings{Damm_Pakull_Eryılmaz_Becker_Idrissi-Yaghir_Schäfer_Schultenkämper_Friedrich_2024, place={Stroudsburg, PA, USA}, title={WisPerMed at “Discharge Me!”: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV}, DOI={10.18653/v1/2024.bionlp-1.9}, booktitle={Proceedings of the 23rd Workshop on Biomedical Natural Language Processing}, publisher={Association for Computational Linguistics}, author={Damm, Hendrik and Pakull, Tabea Margareta Grace and Eryılmaz, Bahadır and Becker, Helmut and Idrissi-Yaghir, Ahmad and Schäfer, Henning and Schultenkämper, Sergej and Friedrich, Christoph M.}, editor={Demner-Fushman, Dina and Ananiadou, Sophia and Miwa, Makoto and Roberts, Kirk and Tsujii, Junichi Editors}, year={2024}, pages={105–121} }
Damm, Hendrik, Tabea Margareta Grace Pakull, Bahadır Eryılmaz, Helmut Becker, Ahmad Idrissi-Yaghir, Henning Schäfer, Sergej Schultenkämper, and Christoph M. Friedrich. “WisPerMed at ‘Discharge Me!’: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV.” In Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, edited by Dina Demner-Fushman, Sophia Ananiadou, Makoto Miwa, Kirk Roberts, and Junichi Tsujii, 105–21. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. https://doi.org/10.18653/v1/2024.bionlp-1.9.
H. Damm et al., “WisPerMed at ‘Discharge Me!’: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV,” in Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, Bangkok, Thailand, 2024, pp. 105–121.
Damm, Hendrik, et al. “WisPerMed at ‘Discharge Me!’: Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV.” Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, edited by Dina Demner-Fushman et al., Association for Computational Linguistics, 2024, pp. 105–21, doi:10.18653/v1/2024.bionlp-1.9.