Advancements in Neural Network Generations
S. Sanaullah, S. Koravuna, U. Rückert, T. Jungeblut, in: U. Kuhl, DataNinja.nrw (Eds.), Proceedings of the SAIOnARA Conference, DataNinja sAIOnARA Conference, 2024.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag
| Veröffentlicht
| Englisch
Autor*in
Herausgeber*in
Kuhl, Ulrike
herausgebende Körperschaft
DataNinja.nrw
Abstract
Innovations in Neural Network Generation demonstrate the continual evolution, optimization, and development of artificial neural networks (ANNs) over periods. These improvements include a combination of methodologies, approaches, and technical breakthroughs aimed at increasing the efficiency and abilities of neural network models. Researchers and engineers have repeatedly attempted to push the boundaries of neural network performance, scalability, and applicability across multiple fields. These improvements usually involve changes to network designs, training algorithms, optimization methodologies, and hardware acceleration methods. Moreover, the neural network generations are closely related to key achievements in the machine learning (ML) research domain, such as the development of deep learning (DL) designs like convolutional neural network (CNN) or spiking neural network (SNN) and using both neural generations to introduce natural language processing and advances in computer vision applications. Thus, in the field of neural network study, researchers have categorized ANN models into generations based on their computational design and capabilities. Therefore, this research study explores the continual evolution and optimization of ANNs, highlighting advancements in methodologies and technical innovation. We discuss the different generations of ANN, based on computational design and capabilities, emphasizing their role in shaping achievements in ML research. The study underscores the significance of these generational milestones in enhancing the adaptability and efficacy of neural network models for computational tasks, such as image classification.
Erscheinungsjahr
Titel des Konferenzbandes
Proceedings of the sAIOnARA Conference
Konferenz
DataNinja sAIOnARA 2024 Conference
Konferenzort
Bielefeld
Konferenzdatum
2024-06-25 – 2024-06-27
FH-PUB-ID
Zitieren
Sanaullah, Sanaullah ; Koravuna, Shamini ; Rückert, Ulrich ; Jungeblut, Thorsten: Advancements in Neural Network Generations. In: Kuhl, U. ; DataNinja.nrw (Hrsg.): Proceedings of the sAIOnARA Conference : DataNinja sAIOnARA Conference, 2024
Sanaullah S, Koravuna S, Rückert U, Jungeblut T. Advancements in Neural Network Generations. In: Kuhl U, DataNinja.nrw, eds. Proceedings of the SAIOnARA Conference. DataNinja sAIOnARA Conference; 2024. doi:10.11576/DATANINJA-1167
Sanaullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2024). Advancements in Neural Network Generations. In U. Kuhl & DataNinja.nrw (Eds.), Proceedings of the sAIOnARA Conference. Bielefeld: DataNinja sAIOnARA Conference. https://doi.org/10.11576/DATANINJA-1167
@inproceedings{Sanaullah_Koravuna_Rückert_Jungeblut_2024, title={Advancements in Neural Network Generations}, DOI={10.11576/DATANINJA-1167}, booktitle={Proceedings of the sAIOnARA Conference}, publisher={DataNinja sAIOnARA Conference}, author={Sanaullah, Sanaullah and Koravuna, Shamini and Rückert, Ulrich and Jungeblut, Thorsten}, editor={Kuhl, Ulrike and DataNinja.nrwEditors}, year={2024} }
Sanaullah, Sanaullah, Shamini Koravuna, Ulrich Rückert, and Thorsten Jungeblut. “Advancements in Neural Network Generations.” In Proceedings of the SAIOnARA Conference, edited by Ulrike Kuhl and DataNinja.nrw. DataNinja sAIOnARA Conference, 2024. https://doi.org/10.11576/DATANINJA-1167.
S. Sanaullah, S. Koravuna, U. Rückert, and T. Jungeblut, “Advancements in Neural Network Generations,” in Proceedings of the sAIOnARA Conference, Bielefeld, 2024.
Sanaullah, Sanaullah, et al. “Advancements in Neural Network Generations.” Proceedings of the SAIOnARA Conference, edited by Ulrike Kuhl and DataNinja.nrw, DataNinja sAIOnARA Conference, 2024, doi:10.11576/DATANINJA-1167.