{"type":"conference","conference":{"start_date":"2024-02-27","end_date":"2024-02-29","name":"39. PV-Symposium 2024","location":"Bad Staffelstein "},"publication_identifier":{"eissn":["2942-8246"]},"abstract":[{"lang":"eng","text":"In this paper, we focus on the segmentation of clouds in All Sky Images using a U-Net-based Deep Learning model and the subsequent recognition of the same cloud in different images. This research lays the foundation for the development of solar radiation forecasts with All-Sky Imagers. The implemented model initially extracts relevant features from the input im-age using convolutions, thereby reducing the resolution. In the subsequent step, the resolution is restored to its original level using transposed convolutions. Contours are then created from all segmented clouds. Using these contours as references, the same cloud is identified in im-ages from different All-Sky Imagers through template and contour matching. We demonstratethat this segmentation approach yields good results on a small test dataset. Additionally, t he recognition of clouds in images from different cameras show promising results, with 75 % ofclouds being correctly matched."}],"date_updated":"2024-10-25T11:40:21Z","language":[{"iso":"eng"}],"intvolume":" 1","publisher":"TIB Open Publishing","editor":[{"full_name":"Rennhofer, Marcus ","last_name":"Rennhofer","first_name":"Marcus "}],"author":[{"id":"207629","orcid":"0009-0009-0247-8204","first_name":"Grit","last_name":"Behrens","full_name":"Behrens, Grit"},{"first_name":"Andreas ","last_name":"Boschert","full_name":"Boschert, Andreas "},{"last_name":"Zehner","full_name":"Zehner, Mike ","first_name":"Mike "},{"first_name":"Niklas","last_name":"Theiß","full_name":"Theiß, Niklas"}],"extern":"1","volume":1,"doi":"10.52825/pv-symposium.v1i","quality_controlled":"1","publication":"PV-Symposium Proceedings","date_created":"2024-10-24T14:37:36Z","title":"Cloud Segmetation and Matching using Deep Learning in All-Sky Images","citation":{"ama":"Behrens G, Boschert A, Zehner M, Theiß N. Cloud Segmetation and Matching using Deep Learning in All-Sky Images. In: Rennhofer M, TIP Hannover , eds. PV-Symposium Proceedings. Vol 1. TIB Open Publishing; 2024. doi:10.52825/pv-symposium.v1i","mla":"Behrens, Grit, et al. “Cloud Segmetation and Matching Using Deep Learning in All-Sky Images.” PV-Symposium Proceedings, edited by Marcus Rennhofer and TIP Hannover , vol. 1, TIB Open Publishing, 2024, doi:10.52825/pv-symposium.v1i.","bibtex":"@inproceedings{Behrens_Boschert_Zehner_Theiß_2024, title={Cloud Segmetation and Matching using Deep Learning in All-Sky Images}, volume={1}, DOI={10.52825/pv-symposium.v1i}, booktitle={PV-Symposium Proceedings}, publisher={TIB Open Publishing}, author={Behrens, Grit and Boschert, Andreas and Zehner, Mike and Theiß, Niklas}, editor={Rennhofer, Marcus and TIP Hannover Editors}, year={2024} }","alphadin":"Behrens, Grit ; Boschert, Andreas ; Zehner, Mike ; Theiß, Niklas: Cloud Segmetation and Matching using Deep Learning in All-Sky Images. In: Rennhofer, M. ; TIP Hannover (Hrsg.): PV-Symposium Proceedings. Bd. 1 : TIB Open Publishing, 2024","short":"G. Behrens, A. Boschert, M. Zehner, N. Theiß, in: M. Rennhofer, TIP Hannover (Eds.), PV-Symposium Proceedings, TIB Open Publishing, 2024.","ieee":"G. Behrens, A. Boschert, M. Zehner, and N. Theiß, “Cloud Segmetation and Matching using Deep Learning in All-Sky Images,” in PV-Symposium Proceedings, Bad Staffelstein , 2024, vol. 1.","apa":"Behrens, G., Boschert, A., Zehner, M., & Theiß, N. (2024). Cloud Segmetation and Matching using Deep Learning in All-Sky Images. In M. Rennhofer & TIP Hannover (Eds.), PV-Symposium Proceedings (Vol. 1). Bad Staffelstein : TIB Open Publishing. https://doi.org/10.52825/pv-symposium.v1i","chicago":"Behrens, Grit, Andreas Boschert, Mike Zehner, and Niklas Theiß. “Cloud Segmetation and Matching Using Deep Learning in All-Sky Images.” In PV-Symposium Proceedings, edited by Marcus Rennhofer and TIP Hannover , Vol. 1. TIB Open Publishing, 2024. https://doi.org/10.52825/pv-symposium.v1i."},"user_id":"220548","_id":"5067","status":"public","publication_status":"published","year":"2024","corporate_editor":["TIP Hannover "]}