Explosion and non-explosion for the continuous-time frog model
V. Bezborodov, L. Di Persio, P. Kuchling, ArXiv (2022).
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Artikel
| Veröffentlicht
| Englisch
Autor*in
Bezborodov, Viktor;
Di Persio, Luca;
Kuchling, Peter
Abstract
We consider the continuous-time frog model on $\mathbb{Z}$. At time $t = 0$, there are $η(x)$ particles at $x\in \mathbb{Z}$, each of which is represented by a random variable. In particular, $(η(x))_{x \in \mathbb{Z} }$ is a collection of independent random variables with a common distribution $μ$, $μ(\mathbb{Z}_+) = 1$. The particles at the origin are active, all other ones being assumed as dormant, or sleeping. Active particles perform a simple symmetric continuous-time random walk in $\mathbb{Z} $ (that is, a random walk with $\exp(1)$-distributed jump times and jumps $-1$ and $1$, each with probability $1/2$), independently of all other particles. Sleeping particles stay still until the first arrival of an active particle to their location; upon arrival they become active and start their own simple random walks. Different sets of conditions are given ensuring explosion, respectively non-explosion, of the continuous-time frog model. Our results show in particular that if $μ$ is the distribution of $e^{Y \ln Y}$ with a non-negative random variable $Y$ satisfying $\mathbb{E} Y < \infty$, then a.s. no explosion occurs. On the other hand, if $a \in (0,1)$ and $μ$ is the distribution of $e^X$, where $\mathbb{P} \{X \geq t \} = t^{-a}$, $t \geq 1$, then explosion occurs a.s. The proof relies on a certain type of comparison to a percolation model which we call totally asymmetric discrete inhomogeneous Boolean percolation.
Erscheinungsjahr
Zeitschriftentitel
arXiv
FH-PUB-ID
Zitieren
Bezborodov, Viktor ; Di Persio, Luca ; Kuchling, Peter: Explosion and non-explosion for the continuous-time frog model. In: arXiv, arXiv (2022)
Bezborodov V, Di Persio L, Kuchling P. Explosion and non-explosion for the continuous-time frog model. arXiv. 2022. doi:10.48550/ARXIV.2203.01592
Bezborodov, V., Di Persio, L., & Kuchling, P. (2022). Explosion and non-explosion for the continuous-time frog model. ArXiv. https://doi.org/10.48550/ARXIV.2203.01592
@article{Bezborodov_Di Persio_Kuchling_2022, title={Explosion and non-explosion for the continuous-time frog model}, DOI={10.48550/ARXIV.2203.01592}, journal={arXiv}, publisher={arXiv}, author={Bezborodov, Viktor and Di Persio, Luca and Kuchling, Peter}, year={2022} }
Bezborodov, Viktor, Luca Di Persio, and Peter Kuchling. “Explosion and Non-Explosion for the Continuous-Time Frog Model.” ArXiv, 2022. https://doi.org/10.48550/ARXIV.2203.01592.
V. Bezborodov, L. Di Persio, and P. Kuchling, “Explosion and non-explosion for the continuous-time frog model,” arXiv, 2022.
Bezborodov, Viktor, et al. “Explosion and Non-Explosion for the Continuous-Time Frog Model.” ArXiv, arXiv, 2022, doi:10.48550/ARXIV.2203.01592.