PUBLIKATIONSSERVER

Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories

J. Weller, N. Migenda, R. Liu, A. Wegel, S. von Enzberg, M. Kohlhase, W. Schenck, R. Dumitrescu, in: O. Niggemann, J. Beyerer, M. Krantz, C. Kühnert (Eds.), Machine Learning for Cyber-Physical Systems. Selected Papers from the International Conference ML4CPS 2023, Springer Nature Switzerland, Cham, 2024, pp. 89–100.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Buchbeitrag | Veröffentlicht | Englisch
Autor*in
Weller, Julian; Migenda, NicoFH Bielefeld ; Liu, Rui; Wegel, Arthur; von Enzberg, Sebastian; Kohlhase, MartinFH Bielefeld ; Schenck, WolframFH Bielefeld ; Dumitrescu, Roman
Herausgeber*in
Niggemann, Oliver; Beyerer, Jürgen; Krantz, Maria; Kühnert, Christian
Abstract
Manufacturing systems are dynamic and exhibit increasing complexity and uncertainty. Smart manufacturing uses Data Analytics methods to optimize manufacturing processes, systems and products. One approach to structure use cases in production management in smart manufacturing is the Product-Process-Resource (PPR) model, where the resource executes a process on a given product. The PPR model needs to be extended for smart manufacturing, to meet the requirements of prescriptive analytics (but not exclusively). Our contributions are an extended PPR model for prescriptive analytics (P2PR) that involves environmental effects, expert knowledge and adds a process sub-model distinguishing between manufacturing and supervisory processes. We develop prescriptive analytics decision-making categories based on the area of validity and the degree of interconnectivity. The combination results in a systematization scheme for prescriptive analytics use cases in a smart factory environment. It assists entities to find shared characteristics in different prescriptive smart factory use cases within one production ecosystem. A mapping of prescriptive algorithms (as part of a use case) to a category and domain is enabled for future case studies.
Erscheinungsjahr
Buchtitel
Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023
Band
18
Seite
89-100
ISSN
eISSN
FH-PUB-ID

Zitieren

Weller, Julian ; Migenda, Nico ; Liu, Rui ; Wegel, Arthur ; von Enzberg, Sebastian ; Kohlhase, Martin ; Schenck, Wolfram ; Dumitrescu, Roman: Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories. In: Niggemann, O. ; Beyerer, J. ; Krantz, M. ; Kühnert, C. (Hrsg.): Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, Technologien für die intelligente Automation. Bd. 18. Cham : Springer Nature Switzerland, 2024, S. 89–100
Weller J, Migenda N, Liu R, et al. Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories. In: Niggemann O, Beyerer J, Krantz M, Kühnert C, eds. Machine Learning for Cyber-Physical Systems. Selected Papers from the International Conference ML4CPS 2023. Vol 18. Technologien für die intelligente Automation. Cham: Springer Nature Switzerland; 2024:89-100. doi:10.1007/978-3-031-47062-2_9
Weller, J., Migenda, N., Liu, R., Wegel, A., von Enzberg, S., Kohlhase, M., … Dumitrescu, R. (2024). Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories. In O. Niggemann, J. Beyerer, M. Krantz, & C. Kühnert (Eds.), Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023 (Vol. 18, pp. 89–100). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-47062-2_9
@inbook{Weller_Migenda_Liu_Wegel_von Enzberg_Kohlhase_Schenck_Dumitrescu_2024, place={Cham}, series={Technologien für die intelligente Automation}, title={Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories}, volume={18}, DOI={10.1007/978-3-031-47062-2_9}, booktitle={Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023}, publisher={Springer Nature Switzerland}, author={Weller, Julian and Migenda, Nico and Liu, Rui and Wegel, Arthur and von Enzberg, Sebastian and Kohlhase, Martin and Schenck, Wolfram and Dumitrescu, Roman}, editor={Niggemann, Oliver and Beyerer, Jürgen and Krantz, Maria and Kühnert, ChristianEditors}, year={2024}, pages={89–100}, collection={Technologien für die intelligente Automation} }
Weller, Julian, Nico Migenda, Rui Liu, Arthur Wegel, Sebastian von Enzberg, Martin Kohlhase, Wolfram Schenck, and Roman Dumitrescu. “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories.” In Machine Learning for Cyber-Physical Systems. Selected Papers from the International Conference ML4CPS 2023, edited by Oliver Niggemann, Jürgen Beyerer, Maria Krantz, and Christian Kühnert, 18:89–100. Technologien Für Die Intelligente Automation. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-47062-2_9.
J. Weller et al., “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories,” in Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, vol. 18, O. Niggemann, J. Beyerer, M. Krantz, and C. Kühnert, Eds. Cham: Springer Nature Switzerland, 2024, pp. 89–100.
Weller, Julian, et al. “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories.” Machine Learning for Cyber-Physical Systems. Selected Papers from the International Conference ML4CPS 2023, edited by Oliver Niggemann et al., vol. 18, Springer Nature Switzerland, 2024, pp. 89–100, doi:10.1007/978-3-031-47062-2_9.

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar
ISBN Suche