PUBLIKATIONSSERVER

Topology Optimization of Conductive Media Described by Maxwell’s Equations

R.H.W. Hoppe, S. Petrova, V.H. Schulz, in: L. Vulkov, P. Yalamov, J. Waśniewski (Eds.), Numerical Analysis and Its Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 414–422.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Autor*in
Hoppe, Ronald H. W.; Petrova, SvetozaraFH Bielefeld; Schulz, Volker H.
Herausgeber*in
Vulkov, Lubin; Yalamov, Plamen; Waśniewski, Jerzy
Abstract
The problem of an energy dissipation optimization in a conductive electromagnetic media is considered. The domain is known a priori and is fixed throughout the optimization process. We apply a perturbed and damped interior-point Newton method for the primaldual formulation of the nonlinear programming problem. Nonnegative slack variables are added to the inequality constraints in the optimization problem. Computational results concerning a two-dimensional isotropic system are included.
Erscheinungsjahr
Titel des Konferenzbandes
Numerical Analysis and Its Applications
Seite
414-422
Konferenz
Second International Conference, NAA 2000
Konferenzort
Rousse, Bulgaria
Konferenzdatum
2000-06-11 – 2000-06-15
ISSN
FH-PUB-ID

Zitieren

Hoppe, Ronald H. W. ; Petrova, Svetozara ; Schulz, Volker H.: Topology Optimization of Conductive Media Described by Maxwell’s Equations. In: Vulkov, L. ; Yalamov, P. ; Waśniewski, J. (Hrsg.): Numerical Analysis and Its Applications, Lecture Notes in Computer Science. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001, S. 414–422
Hoppe RHW, Petrova S, Schulz VH. Topology Optimization of Conductive Media Described by Maxwell’s Equations. In: Vulkov L, Yalamov P, Waśniewski J, eds. Numerical Analysis and Its Applications. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001:414-422. doi:10.1007/3-540-45262-1_48
Hoppe, R. H. W., Petrova, S., & Schulz, V. H. (2001). Topology Optimization of Conductive Media Described by Maxwell’s Equations. In L. Vulkov, P. Yalamov, & J. Waśniewski (Eds.), Numerical Analysis and Its Applications (pp. 414–422). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45262-1_48
@inproceedings{Hoppe_Petrova_Schulz_2001, place={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, title={Topology Optimization of Conductive Media Described by Maxwell’s Equations}, DOI={10.1007/3-540-45262-1_48}, booktitle={Numerical Analysis and Its Applications}, publisher={Springer Berlin Heidelberg}, author={Hoppe, Ronald H. W. and Petrova, Svetozara and Schulz, Volker H.}, editor={Vulkov, Lubin and Yalamov, Plamen and Waśniewski, JerzyEditors}, year={2001}, pages={414–422}, collection={Lecture Notes in Computer Science} }
Hoppe, Ronald H. W., Svetozara Petrova, and Volker H. Schulz. “Topology Optimization of Conductive Media Described by Maxwell’s Equations.” In Numerical Analysis and Its Applications, edited by Lubin Vulkov, Plamen Yalamov, and Jerzy Waśniewski, 414–22. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. https://doi.org/10.1007/3-540-45262-1_48.
R. H. W. Hoppe, S. Petrova, and V. H. Schulz, “Topology Optimization of Conductive Media Described by Maxwell’s Equations,” in Numerical Analysis and Its Applications, Rousse, Bulgaria, 2001, pp. 414–422.
Hoppe, Ronald H. W., et al. “Topology Optimization of Conductive Media Described by Maxwell’s Equations.” Numerical Analysis and Its Applications, edited by Lubin Vulkov et al., Springer Berlin Heidelberg, 2001, pp. 414–22, doi:10.1007/3-540-45262-1_48.

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar
ISBN Suche