PUBLIKATIONSSERVER

NGPCA: Clustering of high-dimensional and non-stationary data streams

N. Migenda, R. Möller, W. Schenck, Software Impacts 20 (2024).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Artikel | Veröffentlicht | Englisch
Autor*in
Migenda, NicoFH Bielefeld ; Möller, Ralf; Schenck, WolframFH Bielefeld
Abstract
Neural Gas Principal Component Analysis (NGPCA) is an online clustering algorithm. An NGPCA model is a mixture of local PCA units and combines dimensionality reduction with vector quantization. Recently, NGPCA has been extended with an adaptive learning rate and an adaptive potential function for accurate and efficient clustering of high-dimensional and non-stationary data streams. The algorithm achieved highly competitive results on clustering benchmark datasets compared to the state of the art. Our implementation of the algorithm was developed in MATLAB and is available as open source. This code can be easily applied to the clustering of stationary and non-stationary data.
Erscheinungsjahr
Zeitschriftentitel
Software Impacts
Band
20
Artikelnummer
100635
ISSN
FH-PUB-ID

Zitieren

Migenda, Nico ; Möller, Ralf ; Schenck, Wolfram: NGPCA: Clustering of high-dimensional and non-stationary data streams. In: Software Impacts Bd. 20, Elsevier BV (2024)
Migenda N, Möller R, Schenck W. NGPCA: Clustering of high-dimensional and non-stationary data streams. Software Impacts. 2024;20. doi:10.1016/j.simpa.2024.100635
Migenda, N., Möller, R., & Schenck, W. (2024). NGPCA: Clustering of high-dimensional and non-stationary data streams. Software Impacts, 20. https://doi.org/10.1016/j.simpa.2024.100635
@article{Migenda_Möller_Schenck_2024, title={NGPCA: Clustering of high-dimensional and non-stationary data streams}, volume={20}, DOI={10.1016/j.simpa.2024.100635}, number={100635}, journal={Software Impacts}, publisher={Elsevier BV}, author={Migenda, Nico and Möller, Ralf and Schenck, Wolfram}, year={2024} }
Migenda, Nico, Ralf Möller, and Wolfram Schenck. “NGPCA: Clustering of High-Dimensional and Non-Stationary Data Streams.” Software Impacts 20 (2024). https://doi.org/10.1016/j.simpa.2024.100635.
N. Migenda, R. Möller, and W. Schenck, “NGPCA: Clustering of high-dimensional and non-stationary data streams,” Software Impacts, vol. 20, 2024.
Migenda, Nico, et al. “NGPCA: Clustering of High-Dimensional and Non-Stationary Data Streams.” Software Impacts, vol. 20, 100635, Elsevier BV, 2024, doi:10.1016/j.simpa.2024.100635.

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar