PUBLIKATIONSSERVER

Multi-scale Method for the Crack Problem in Microstructural Materials

R.H.W. Hoppe, S. Petrova, Computational Methods in Applied Mathematics 10 (2010) 69–86.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Artikel | Veröffentlicht | Englisch
Autor*in
Hoppe, R. H. W.; Petrova, SvetozaraFH Bielefeld
Abstract
The paper deals with the numerical computation of a crack problem posed on microstructural heterogeneous materials containing multiple phases in the microstructure. The failure of such materials is a natural multi-scale effect since cracks typically nucleate in regions of defects on the microscopic scale. The modeling strategy for solving the crack problem concerns simultaneously the macroscopic and microscopic models. Our approach is based on an efficient combination of the homogenization technique and the mesh superposition method (s-version of the finite element method). The homogenized model relies on a double-scale asymptotic expansion of the displacement field. The mesh superposition method uses two independent (global and local) finite element meshes and the concept of superposing the local mesh arbitrarily on the global continuous mesh. The crack is treated by the local mesh and the homogenized material model is considered on the global mesh. Numerical experiments for problems on biomorphic microcellular ceramic templates with porous microstructures of differentmaterials constituents are presented.
Erscheinungsjahr
Zeitschriftentitel
Computational Methods in Applied Mathematics
Band
10
Zeitschriftennummer
1
Seite
69-86
ISSN
eISSN
FH-PUB-ID

Zitieren

Hoppe, R. H. W. ; Petrova, Svetozara: Multi-scale Method for the Crack Problem in Microstructural Materials. In: Computational Methods in Applied Mathematics Bd. 10, Walter de Gruyter GmbH (2010), Nr. 1, S. 69–86
Hoppe RHW, Petrova S. Multi-scale Method for the Crack Problem in Microstructural Materials. Computational Methods in Applied Mathematics. 2010;10(1):69-86. doi:10.2478/cmam-2010-0003
Hoppe, R. H. W., & Petrova, S. (2010). Multi-scale Method for the Crack Problem in Microstructural Materials. Computational Methods in Applied Mathematics, 10(1), 69–86. https://doi.org/10.2478/cmam-2010-0003
@article{Hoppe_Petrova_2010, title={Multi-scale Method for the Crack Problem in Microstructural Materials}, volume={10}, DOI={10.2478/cmam-2010-0003}, number={1}, journal={Computational Methods in Applied Mathematics}, publisher={Walter de Gruyter GmbH}, author={Hoppe, R. H. W. and Petrova, Svetozara}, year={2010}, pages={69–86} }
Hoppe, R. H. W., and Svetozara Petrova. “Multi-Scale Method for the Crack Problem in Microstructural Materials.” Computational Methods in Applied Mathematics 10, no. 1 (2010): 69–86. https://doi.org/10.2478/cmam-2010-0003.
R. H. W. Hoppe and S. Petrova, “Multi-scale Method for the Crack Problem in Microstructural Materials,” Computational Methods in Applied Mathematics, vol. 10, no. 1, pp. 69–86, 2010.
Hoppe, R. H. W., and Svetozara Petrova. “Multi-Scale Method for the Crack Problem in Microstructural Materials.” Computational Methods in Applied Mathematics, vol. 10, no. 1, Walter de Gruyter GmbH, 2010, pp. 69–86, doi:10.2478/cmam-2010-0003.

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar