{"_id":"4545","status":"public","issue":"3","citation":{"bibtex":"@article{Hoppe_Petrova_Schulz_2002, title={Primal-Dual Newton-Type Interior-Point Method for Topology Optimization}, volume={114}, DOI={<a href=\"https://doi.org/10.1023/A:1016070928600\">10.1023/A:1016070928600</a>}, number={3}, journal={Journal of Optimization Theory and Applications}, publisher={Springer Science and Business Media LLC}, author={Hoppe, R.H.W. and Petrova, Svetozara and Schulz, V.}, year={2002}, pages={545–571} }","mla":"Hoppe, R. H. W., et al. “Primal-Dual Newton-Type Interior-Point Method for Topology Optimization.” <i>Journal of Optimization Theory and Applications</i>, vol. 114, no. 3, Springer Science and Business Media LLC, 2002, pp. 545–71, doi:<a href=\"https://doi.org/10.1023/A:1016070928600\">10.1023/A:1016070928600</a>.","short":"R.H.W. Hoppe, S. Petrova, V. Schulz, Journal of Optimization Theory and Applications 114 (2002) 545–571.","alphadin":"<span style=\"font-variant:small-caps;\">Hoppe, R.H.W.</span> ; <span style=\"font-variant:small-caps;\">Petrova, Svetozara</span> ; <span style=\"font-variant:small-caps;\">Schulz, V.</span>: Primal-Dual Newton-Type Interior-Point Method for Topology Optimization. In: <i>Journal of Optimization Theory and Applications</i> Bd. 114, Springer Science and Business Media LLC (2002), Nr. 3, S. 545–571","chicago":"Hoppe, R.H.W., Svetozara Petrova, and V. Schulz. “Primal-Dual Newton-Type Interior-Point Method for Topology Optimization.” <i>Journal of Optimization Theory and Applications</i> 114, no. 3 (2002): 545–71. <a href=\"https://doi.org/10.1023/A:1016070928600\">https://doi.org/10.1023/A:1016070928600</a>.","ama":"Hoppe RHW, Petrova S, Schulz V. Primal-Dual Newton-Type Interior-Point Method for Topology Optimization. <i>Journal of Optimization Theory and Applications</i>. 2002;114(3):545-571. doi:<a href=\"https://doi.org/10.1023/A:1016070928600\">10.1023/A:1016070928600</a>","apa":"Hoppe, R. H. W., Petrova, S., &#38; Schulz, V. (2002). Primal-Dual Newton-Type Interior-Point Method for Topology Optimization. <i>Journal of Optimization Theory and Applications</i>, <i>114</i>(3), 545–571. <a href=\"https://doi.org/10.1023/A:1016070928600\">https://doi.org/10.1023/A:1016070928600</a>","ieee":"R. H. W. Hoppe, S. Petrova, and V. Schulz, “Primal-Dual Newton-Type Interior-Point Method for Topology Optimization,” <i>Journal of Optimization Theory and Applications</i>, vol. 114, no. 3, pp. 545–571, 2002."},"title":"Primal-Dual Newton-Type Interior-Point Method for Topology Optimization","year":"2002","publication_status":"published","type":"journal_article","volume":114,"language":[{"iso":"eng"}],"abstract":[{"lang":"eng","text":"We consider the problem of minimization of energy dissipation in a conductive electromagnetic medium with a fixed geometry and a priori given lower and upper bounds for the conductivity. The nonlinear optimization problem is analyzed by using the primal-dual Newton interior-point method. The elliptic differential equation for the electric potential is considered as an equality constraint. Transforming iterations for the null space decomposition of the condensed primal-\r\ndual system are applied to find the search direction. The numerical experiments treat two-dimensional isotropic systems."}],"publication":"Journal of Optimization Theory and Applications","date_created":"2024-04-25T12:53:40Z","date_updated":"2024-04-29T12:19:02Z","publication_identifier":{"eissn":["1573-2878"],"issn":["0022-3239"]},"intvolume":"       114","page":"545-571","user_id":"220548","author":[{"first_name":"R.H.W.","last_name":"Hoppe","full_name":"Hoppe, R.H.W."},{"first_name":"Svetozara","id":"201871","last_name":"Petrova","full_name":"Petrova, Svetozara"},{"first_name":"V.","last_name":"Schulz","full_name":"Schulz, V."}],"doi":"10.1023/A:1016070928600","publisher":"Springer Science and Business Media LLC","keyword":["Eddy current equations","topology optimization","nonlinear programming","primal-dual interior-point methods","watchdog strategy"],"project":[{"_id":"f432a2ee-bceb-11ed-a251-a83585c5074d","name":"Institute for Data Science Solutions"}]}