{"user_id":"33980","page":"167-177","intvolume":"       452","publication_identifier":{"issn":["0378-4371 "],"eissn":["1873-2119"]},"date_created":"2019-05-28T06:59:57Z","date_updated":"2024-12-11T09:21:49Z","publication":"Physica A: Statistical Mechanics and its Applications","doi":"10.1016/j.physa.2016.02.013","author":[{"first_name":"T.","last_name":"Blachowicz","full_name":"Blachowicz, T."},{"orcid_put_code_url":"https://api.orcid.org/v2.0/0000-0003-0695-3905/work/173537433","orcid":"0000-0003-0695-3905","last_name":"Ehrmann","full_name":"Ehrmann, Andrea","id":"223776","first_name":"Andrea"},{"first_name":"K.","last_name":"Domino","full_name":"Domino, K."}],"type":"journal_article","year":"2016","title":"Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions","citation":{"short":"T. Blachowicz, A. Ehrmann, K. Domino, Physica A: Statistical Mechanics and Its Applications 452 (2016) 167–177.","mla":"Blachowicz, T., et al. “Statistical Analysis of Digital Images of Periodic Fibrous Structures Using Generalized Hurst Exponent Distributions.” <i>Physica A: Statistical Mechanics and Its Applications</i>, vol. 452, 2016, pp. 167–77, doi:<a href=\"https://doi.org/10.1016/j.physa.2016.02.013\">10.1016/j.physa.2016.02.013</a>.","bibtex":"@article{Blachowicz_Ehrmann_Domino_2016, title={Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions}, volume={452}, DOI={<a href=\"https://doi.org/10.1016/j.physa.2016.02.013\">10.1016/j.physa.2016.02.013</a>}, journal={Physica A: Statistical Mechanics and its Applications}, author={Blachowicz, T. and Ehrmann, Andrea and Domino, K.}, year={2016}, pages={167–177} }","chicago":"Blachowicz, T., Andrea Ehrmann, and K. Domino. “Statistical Analysis of Digital Images of Periodic Fibrous Structures Using Generalized Hurst Exponent Distributions.” <i>Physica A: Statistical Mechanics and Its Applications</i> 452 (2016): 167–77. <a href=\"https://doi.org/10.1016/j.physa.2016.02.013\">https://doi.org/10.1016/j.physa.2016.02.013</a>.","alphadin":"<span style=\"font-variant:small-caps;\">Blachowicz, T.</span> ; <span style=\"font-variant:small-caps;\">Ehrmann, Andrea</span> ; <span style=\"font-variant:small-caps;\">Domino, K.</span>: Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions. In: <i>Physica A: Statistical Mechanics and its Applications</i> Bd. 452 (2016), S. 167–177","ieee":"T. Blachowicz, A. Ehrmann, and K. Domino, “Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions,” <i>Physica A: Statistical Mechanics and its Applications</i>, vol. 452, pp. 167–177, 2016.","ama":"Blachowicz T, Ehrmann A, Domino K. Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions. <i>Physica A: Statistical Mechanics and its Applications</i>. 2016;452:167-177. doi:<a href=\"https://doi.org/10.1016/j.physa.2016.02.013\">10.1016/j.physa.2016.02.013</a>","apa":"Blachowicz, T., Ehrmann, A., &#38; Domino, K. (2016). Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions. <i>Physica A: Statistical Mechanics and Its Applications</i>, <i>452</i>, 167–177. <a href=\"https://doi.org/10.1016/j.physa.2016.02.013\">https://doi.org/10.1016/j.physa.2016.02.013</a>"},"status":"public","_id":"360","abstract":[{"text":"Distinction of diverse two-dimensional periodic structures can be based on a large number of methods and parameters, while the quantitative description of differences between similar samples is usually difficult. This article aims, by the use of statistical random walk in a generalized q-order dimensional space, at introducing a methodology to qualify the networked structures on the basis of exemplary textile samples. The presented results were obtained at 1-bit monochromatic maps obtained from optical microscopic pictures. Significant features of samples were represented by the obtained distributions of Hurst exponents and Shannon entropy calculations.","lang":"eng"}],"language":[{"iso":"eng"}],"volume":452,"main_file_link":[{"url":"https://www.sciencedirect.com/science/article/abs/pii/S0378437116001795"}]}