sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters
N. Grimmelsmann, M. Mechtenberg, W. Schenck, H.G. Meyer, A. Schneider, PLOS ONE 18 (2023).
Artikel
| Veröffentlicht
| Englisch
Autor*in
Projekt
Abstract
For assistive devices such as active orthoses, exoskeletons or other close-to-body robotic-systems, the immediate prediction of biological limb movements based on biosignals in the respective control system can be used to enable intuitive operation also by untrained users e.g. in healthcare, rehabilitation or industrial scenarios. Surface electromyography (sEMG) signals from the muscles that drive the limbs can be measured before the actual movement occurs and, hence, can be used as source for predicting limb movements. The aim of this work was to create a model that can be adapted to a new user or movement scenario with little measurement and computing effort. Therefore, a biomechanical model is presented that predicts limb movements of the human forearm based on easy to measure sEMG signals of the main muscles involved in forearm actuation (
lateral
and
long head
of
triceps
and
short
and
long head
of
biceps
). The model has 42 internal parameters of which 37 were attributed to 8 individually measured physiological measures (location of
acromion
at the shoulder,
medial/lateral epicondyles
as well as
olecranon
at the elbow, and
styloid processes
of
radius/ulna
at the wrist; maximum muscle forces of
biceps
and
triceps
). The remaining 5 parameters are adapted to specific movement conditions in an optimization process. The model was tested in an experimental study with 31 subjects in which the prediction quality of the model was assessed. The quality of the movement prediction was evaluated by using the normalized mean absolute error (nMAE) for two arm postures (lower, upper), two load conditions (2 kg, 4 kg) and two movement velocities (slow, fast). For the resulting 8 experimental combinations the nMAE varied between nMAE = 0.16 and nMAE = 0.21 (lower numbers better). An additional quality score (QS) was introduced that allows direct comparison between different movements. This score ranged from QS = 0.25 to QS = 0.40 (higher numbers better) for the experimental combinations. The above formulated aim was achieved with good prediction quality by using only 8 individual measurements (easy to collect body dimensions) and the subsequent optimization of only 5 parameters. At the same time, just easily accessible sEMG measurement locations are used to enable simple integration, e.g. in exoskeletons. This biomechanical model does not compete with models that measure all sEMG signals of the muscle heads involved in order to achieve the highest possible prediction quality.
Erscheinungsjahr
Zeitschriftentitel
PLOS ONE
Band
18
Zeitschriftennummer
8
Artikelnummer
e0289549
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of LibreCat University.
FH-PUB-ID
Zitieren
Grimmelsmann, Nils ; Mechtenberg, Malte ; Schenck, Wolfram ; Meyer, Hanno Gerd ; Schneider, Axel: sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters. In: PLOS ONE Bd. 18, Public Library of Science (PLoS) (2023), Nr. 8
Grimmelsmann N, Mechtenberg M, Schenck W, Meyer HG, Schneider A. sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters. PLOS ONE. 2023;18(8). doi:10.1371/journal.pone.0289549
Grimmelsmann, N., Mechtenberg, M., Schenck, W., Meyer, H. G., & Schneider, A. (2023). sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters. PLOS ONE, 18(8). https://doi.org/10.1371/journal.pone.0289549
@article{Grimmelsmann_Mechtenberg_Schenck_Meyer_Schneider_2023, title={sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters}, volume={18}, DOI={10.1371/journal.pone.0289549}, number={8e0289549}, journal={PLOS ONE}, publisher={Public Library of Science (PLoS)}, author={Grimmelsmann, Nils and Mechtenberg, Malte and Schenck, Wolfram and Meyer, Hanno Gerd and Schneider, Axel}, year={2023} }
Grimmelsmann, Nils, Malte Mechtenberg, Wolfram Schenck, Hanno Gerd Meyer, and Axel Schneider. “SEMG-Based Prediction of Human Forearm Movements Utilizing a Biomechanical Model Based on Individual Anatomical/ Physiological Measures and a Reduced Set of Optimization Parameters.” PLOS ONE 18, no. 8 (2023). https://doi.org/10.1371/journal.pone.0289549.
N. Grimmelsmann, M. Mechtenberg, W. Schenck, H. G. Meyer, and A. Schneider, “sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters,” PLOS ONE, vol. 18, no. 8, 2023.
Grimmelsmann, Nils, et al. “SEMG-Based Prediction of Human Forearm Movements Utilizing a Biomechanical Model Based on Individual Anatomical/ Physiological Measures and a Reduced Set of Optimization Parameters.” PLOS ONE, vol. 18, no. 8, e0289549, Public Library of Science (PLoS), 2023, doi:10.1371/journal.pone.0289549.