PUBLIKATIONSSERVER

Adaptive search query generation and refinement in systematic literature review

M. Badami, B. Benatallah, M. Baez Gonzalez, Information Systems 117 (2023).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Artikel | Veröffentlicht | Englisch
Autor*in
Badami, Maisie; Benatallah, Boualem; Baez Gonzalez, MarcosFH Bielefeld
Abstract
Systematic literature reviews (SLRs) are a central part of evidence-based research, which involves collecting and integrating empirical evidence on specific research questions. A key step in this process is building Boolean search queries, which are at the core of information retrieval systems that support literature search. This involves turning general research aims into specific search terms that can be combined into complex Boolean expressions. Researchers must build and refine search queries to ensure they have sufficient coverage and properly represent the literature. In this paper, we propose an adaptive query generation and refinement pipeline for SLR search that uses reinforcement learning to learn the optimal modifications to a query based on feedback from researchers about its performance. Empirical evaluations with 10 SLR datasets showed our approach achieves comparable performance to queries manually composed by SLR authors. We also investigate the impact of design decisions on the performance of the query generation and refinement pipeline. Specifically, we study the effects of the type of input seed, the use of general versus domain-specific word embedding models, the sampling strategy for relevance feedback, and number of iterations in the refinement process. Our results provide insights into the effects of these choices on the pipeline’s performance.
Erscheinungsjahr
Zeitschriftentitel
Information Systems
Band
117
Artikelnummer
102231
ISSN
FH-PUB-ID

Zitieren

Badami, Maisie ; Benatallah, Boualem ; Baez Gonzalez, Marcos: Adaptive search query generation and refinement in systematic literature review. In: Information Systems Bd. 117, Elsevier BV (2023)
Badami M, Benatallah B, Baez Gonzalez M. Adaptive search query generation and refinement in systematic literature review. Information Systems. 2023;117. doi:10.1016/j.is.2023.102231
Badami, M., Benatallah, B., & Baez Gonzalez, M. (2023). Adaptive search query generation and refinement in systematic literature review. Information Systems, 117. https://doi.org/10.1016/j.is.2023.102231
@article{Badami_Benatallah_Baez Gonzalez_2023, title={Adaptive search query generation and refinement in systematic literature review}, volume={117}, DOI={10.1016/j.is.2023.102231}, number={102231}, journal={Information Systems}, publisher={Elsevier BV}, author={Badami, Maisie and Benatallah, Boualem and Baez Gonzalez, Marcos}, year={2023} }
Badami, Maisie, Boualem Benatallah, and Marcos Baez Gonzalez. “Adaptive Search Query Generation and Refinement in Systematic Literature Review.” Information Systems 117 (2023). https://doi.org/10.1016/j.is.2023.102231.
M. Badami, B. Benatallah, and M. Baez Gonzalez, “Adaptive search query generation and refinement in systematic literature review,” Information Systems, vol. 117, 2023.
Badami, Maisie, et al. “Adaptive Search Query Generation and Refinement in Systematic Literature Review.” Information Systems, vol. 117, 102231, Elsevier BV, 2023, doi:10.1016/j.is.2023.102231.

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar