PUBLIKATIONSSERVER

Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature

F. Deckers, K. Rasim, C. Schröder, Journal of Polymer Research 29 (2022).

Artikel | Veröffentlicht | Englisch
Autor*in
Deckers, Fabian; Rasim, Karsten; Schröder, ChristianFH Bielefeld
Abstract
Abstract - Molecular dynamics (MD) simulations in the canonical (NVT) and the isothermal-isobaric (NPT) ensemble using COMPASS III molecular force fields were performed to study the penetrant diffusion of water (H 2 O), hydrogen peroxide (H 2 O 2 ) and oxygen (O 2 ) in isotactic polypropylene (iPP) and hydrogen (H 2 ) in iPP and atactic polypropylene (aPP) for time intervals up to 11 ns and in the case of H 2 O 2 up to 22 ns. We found robust cluster formation in the case of H 2 O and H 2 O 2 . Further, the diffusion coefficients for all these systems were estimated by mean-square displacement analysis. Our results are consistent with previously published experimental and computational data except for the diffusion of H 2 in polypropylene where our results are one and two orders of magnitude higher, respectively. Grand Canonical Monte Carlo (GCMC) simulations were used to determine the sorption loading and saturation concentration of H 2 O, O 2 and H 2 in iPP, where we find good agreement for H 2 O with experimental results. By means of MD simulation the glass transition temperature (T g ) of iPP was estimated to 273.66 ± 4.21 K which is consistent with previously published experimental results.
Erscheinungsjahr
Zeitschriftentitel
Journal of Polymer Research
Band
29
Zeitschriftennummer
11
Artikelnummer
463
ISSN
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of LibreCat University.
FH-PUB-ID

Zitieren

Deckers, Fabian ; Rasim, Karsten ; Schröder, Christian: Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. In: Journal of Polymer Research Bd. 29, Springer Science and Business Media LLC (2022), Nr. 11
Deckers F, Rasim K, Schröder C. Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. Journal of Polymer Research. 2022;29(11). doi:10.1007/s10965-022-03304-y
Deckers, F., Rasim, K., & Schröder, C. (2022). Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. Journal of Polymer Research, 29(11). https://doi.org/10.1007/s10965-022-03304-y
@article{Deckers_Rasim_Schröder_2022, title={Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature}, volume={29}, DOI={10.1007/s10965-022-03304-y}, number={11463}, journal={Journal of Polymer Research}, publisher={Springer Science and Business Media LLC}, author={Deckers, Fabian and Rasim, Karsten and Schröder, Christian}, year={2022} }
Deckers, Fabian, Karsten Rasim, and Christian Schröder. “Molecular Dynamics Simulation of Polypropylene: Diffusion and Sorption of H2O, H2O2, H2, O2 and Determination of the Glass Transition Temperature.” Journal of Polymer Research 29, no. 11 (2022). https://doi.org/10.1007/s10965-022-03304-y.
F. Deckers, K. Rasim, and C. Schröder, “Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature,” Journal of Polymer Research, vol. 29, no. 11, 2022.
Deckers, Fabian, et al. “Molecular Dynamics Simulation of Polypropylene: Diffusion and Sorption of H2O, H2O2, H2, O2 and Determination of the Glass Transition Temperature.” Journal of Polymer Research, vol. 29, no. 11, 463, Springer Science and Business Media LLC, 2022, doi:10.1007/s10965-022-03304-y.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar