10 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 4644
Klein, Lukas, et al. “Exploratory Analysis of Machine Learning Methods for the Prognosis of Falls in Elderly Care Based on Accelerometer Data.” Pervasive Computing Technologies for Healthcare. 17th EAI International Conference, PervasiveHealth 2023, Malmö, Sweden, November 27-29, 2023, Proceedings, edited by Dario Salvi et al., Springer Nature Switzerland, 2024, pp. 423–37, doi:10.1007/978-3-031-59717-6_27.
HSBI-PUB
| DOI
2024 | Artikel | FH-PUB-ID: 4626 |

Pottharst, Bill, et al. “Bewältigung des Fachkräftemangels durch technologische Innovation?” Sozial Extra, Springer Science and Business Media LLC, 2024, doi:10.1007/s12054-024-00694-9.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2024 | Kurzbeitrag Konferenz | FH-PUB-ID: 4639 |

Herzig, Tim Christian, et al. “KI-gestütztes Monitoring zur Unterstützung in der häuslichen Pflege (KIMUP) .” Kongress KI@HSBI2023 Solutions im Fokus - Posterbeiträge , edited by Institute for Data Science Solutions, vol. 1, Hochschule Bielefeld, 2024, pp. 9–10, doi:10.60802/sidas.2024.1 .
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2639 |

Ostrau, Christoph, et al. “Benchmarking Neuromorphic Hardware and Its Energy Expenditure.” Frontiers in Neuroscience, vol. 16, Frontiers Media SA, 2022, doi:10.3389/fnins.2022.873935.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Dissertation | FH-PUB-ID: 2640 |

Ostrau, Christoph. Energy and Performance Estimation for Neuromorphic Systems. Universität Bielefeld, 2022, doi:10.4119/UNIBI/2962759.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Konferenzbeitrag | FH-PUB-ID: 2668
Ostrau, Christoph, et al. “Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware.” Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II, edited by Igor Farkaš et al., Springer International Publishing, 2020, pp. 610–21, doi:10.1007/978-3-030-61616-8_49.
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 2642
Ostrau, Christoph, et al. “Benchmarking of Neuromorphic Hardware Systems.” Proceedings of the Neuro-Inspired Computational Elements Workshop, ACM, 2020, pp. 1–4, doi:10.1145/3381755.3381772.
HSBI-PUB
| DOI
2019 | Kurzbeitrag Konferenz | FH-PUB-ID: 2669 |

Ostrau, Christoph, et al. Benchmarking and Characterization of Event-Based Neuromorphic Hardware . 2019.
HSBI-PUB
| Download (ext.)
2019 | Konferenzbeitrag | FH-PUB-ID: 2643
Ostrau, Christoph, et al. “Comparing Neuromorphic Systems by Solving Sudoku Problems.” 2019 International Conference on High Performance Computing & Simulation (HPCS), IEEE, 2019, pp. 521–27, doi:10.1109/HPCS48598.2019.9188207.
HSBI-PUB
| DOI
2017 | Artikel | FH-PUB-ID: 2644 |

Stöckel, Andreas, et al. “Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware.” Frontiers in Computational Neuroscience, vol. 11, Frontiers Media SA, 2017, doi:10.3389/fncom.2017.00071.
HSBI-PUB
| DOI
| Download (ext.)
Suche
Publikationen filtern
Darstellung / Sortierung
Export / Einbettung
10 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 4644
Klein, Lukas, et al. “Exploratory Analysis of Machine Learning Methods for the Prognosis of Falls in Elderly Care Based on Accelerometer Data.” Pervasive Computing Technologies for Healthcare. 17th EAI International Conference, PervasiveHealth 2023, Malmö, Sweden, November 27-29, 2023, Proceedings, edited by Dario Salvi et al., Springer Nature Switzerland, 2024, pp. 423–37, doi:10.1007/978-3-031-59717-6_27.
HSBI-PUB
| DOI
2024 | Artikel | FH-PUB-ID: 4626 |

Pottharst, Bill, et al. “Bewältigung des Fachkräftemangels durch technologische Innovation?” Sozial Extra, Springer Science and Business Media LLC, 2024, doi:10.1007/s12054-024-00694-9.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2024 | Kurzbeitrag Konferenz | FH-PUB-ID: 4639 |

Herzig, Tim Christian, et al. “KI-gestütztes Monitoring zur Unterstützung in der häuslichen Pflege (KIMUP) .” Kongress KI@HSBI2023 Solutions im Fokus - Posterbeiträge , edited by Institute for Data Science Solutions, vol. 1, Hochschule Bielefeld, 2024, pp. 9–10, doi:10.60802/sidas.2024.1 .
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2639 |

Ostrau, Christoph, et al. “Benchmarking Neuromorphic Hardware and Its Energy Expenditure.” Frontiers in Neuroscience, vol. 16, Frontiers Media SA, 2022, doi:10.3389/fnins.2022.873935.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Dissertation | FH-PUB-ID: 2640 |

Ostrau, Christoph. Energy and Performance Estimation for Neuromorphic Systems. Universität Bielefeld, 2022, doi:10.4119/UNIBI/2962759.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Konferenzbeitrag | FH-PUB-ID: 2668
Ostrau, Christoph, et al. “Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware.” Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II, edited by Igor Farkaš et al., Springer International Publishing, 2020, pp. 610–21, doi:10.1007/978-3-030-61616-8_49.
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 2642
Ostrau, Christoph, et al. “Benchmarking of Neuromorphic Hardware Systems.” Proceedings of the Neuro-Inspired Computational Elements Workshop, ACM, 2020, pp. 1–4, doi:10.1145/3381755.3381772.
HSBI-PUB
| DOI
2019 | Kurzbeitrag Konferenz | FH-PUB-ID: 2669 |

Ostrau, Christoph, et al. Benchmarking and Characterization of Event-Based Neuromorphic Hardware . 2019.
HSBI-PUB
| Download (ext.)
2019 | Konferenzbeitrag | FH-PUB-ID: 2643
Ostrau, Christoph, et al. “Comparing Neuromorphic Systems by Solving Sudoku Problems.” 2019 International Conference on High Performance Computing & Simulation (HPCS), IEEE, 2019, pp. 521–27, doi:10.1109/HPCS48598.2019.9188207.
HSBI-PUB
| DOI
2017 | Artikel | FH-PUB-ID: 2644 |

Stöckel, Andreas, et al. “Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware.” Frontiers in Computational Neuroscience, vol. 11, Frontiers Media SA, 2017, doi:10.3389/fncom.2017.00071.
HSBI-PUB
| DOI
| Download (ext.)