10 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 4644
L. Klein, C. Ostrau, M. Thies, W. Schenck, and U. Rückert, “Exploratory Analysis of Machine Learning Methods for the Prognosis of Falls in Elderly Care Based on Accelerometer Data,” in Pervasive Computing Technologies for Healthcare. 17th EAI International Conference, PervasiveHealth 2023, Malmö, Sweden, November 27-29, 2023, Proceedings, Malmö, Schweden, 2024, pp. 423–437.
HSBI-PUB
| DOI
2024 | Artikel | FH-PUB-ID: 4626 |

B. Pottharst, A. Neumann, C. Ostrau, and U. Seelmeyer, “Bewältigung des Fachkräftemangels durch technologische Innovation?,” Sozial Extra, 2024.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2024 | Kurzbeitrag Konferenz | FH-PUB-ID: 4639 |

T. C. Herzig et al., “KI-gestütztes Monitoring zur Unterstützung in der häuslichen Pflege (KIMUP) ,” in Kongress KI@HSBI2023 Solutions im Fokus - Posterbeiträge , Bielefeld, 2024, vol. 1, pp. 9–10.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2639 |

C. Ostrau, C. Klarhorst, M. Thies, and U. Rückert, “Benchmarking Neuromorphic Hardware and Its Energy Expenditure,” Frontiers in Neuroscience, vol. 16, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Dissertation | FH-PUB-ID: 2640 |

C. Ostrau, Energy and Performance Estimation for Neuromorphic Systems. Universität Bielefeld, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Konferenzbeitrag | FH-PUB-ID: 2668
C. Ostrau, J. Homburg, C. Klarhorst, M. Thies, and U. Rückert, “Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware,” in Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II, Bratislava, Slovakia, 2020, pp. 610–621.
HSBI-PUB
| DOI
2019 | Kurzbeitrag Konferenz | FH-PUB-ID: 2669 |

C. Ostrau, C. Klarhorst, M. Thies, and U. Rückert, “Benchmarking and Characterization of event-based Neuromorphic Hardware ,” presented at the FastPath 2019 - International Workshop on Performance Analysis of Machine Learning Systems, Madison, Wisconsin, USA, 2019.
HSBI-PUB
| Download (ext.)
2017 | Artikel | FH-PUB-ID: 2644 |

A. Stöckel, C. Jenzen, M. Thies, and U. Rückert, “Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware,” Frontiers in Computational Neuroscience, vol. 11, 2017.
HSBI-PUB
| DOI
| Download (ext.)
Suche
Publikationen filtern
Darstellung / Sortierung
Export / Einbettung
10 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 4644
L. Klein, C. Ostrau, M. Thies, W. Schenck, and U. Rückert, “Exploratory Analysis of Machine Learning Methods for the Prognosis of Falls in Elderly Care Based on Accelerometer Data,” in Pervasive Computing Technologies for Healthcare. 17th EAI International Conference, PervasiveHealth 2023, Malmö, Sweden, November 27-29, 2023, Proceedings, Malmö, Schweden, 2024, pp. 423–437.
HSBI-PUB
| DOI
2024 | Artikel | FH-PUB-ID: 4626 |

B. Pottharst, A. Neumann, C. Ostrau, and U. Seelmeyer, “Bewältigung des Fachkräftemangels durch technologische Innovation?,” Sozial Extra, 2024.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2024 | Kurzbeitrag Konferenz | FH-PUB-ID: 4639 |

T. C. Herzig et al., “KI-gestütztes Monitoring zur Unterstützung in der häuslichen Pflege (KIMUP) ,” in Kongress KI@HSBI2023 Solutions im Fokus - Posterbeiträge , Bielefeld, 2024, vol. 1, pp. 9–10.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2639 |

C. Ostrau, C. Klarhorst, M. Thies, and U. Rückert, “Benchmarking Neuromorphic Hardware and Its Energy Expenditure,” Frontiers in Neuroscience, vol. 16, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Dissertation | FH-PUB-ID: 2640 |

C. Ostrau, Energy and Performance Estimation for Neuromorphic Systems. Universität Bielefeld, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Konferenzbeitrag | FH-PUB-ID: 2668
C. Ostrau, J. Homburg, C. Klarhorst, M. Thies, and U. Rückert, “Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware,” in Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II, Bratislava, Slovakia, 2020, pp. 610–621.
HSBI-PUB
| DOI
2019 | Kurzbeitrag Konferenz | FH-PUB-ID: 2669 |

C. Ostrau, C. Klarhorst, M. Thies, and U. Rückert, “Benchmarking and Characterization of event-based Neuromorphic Hardware ,” presented at the FastPath 2019 - International Workshop on Performance Analysis of Machine Learning Systems, Madison, Wisconsin, USA, 2019.
HSBI-PUB
| Download (ext.)
2017 | Artikel | FH-PUB-ID: 2644 |

A. Stöckel, C. Jenzen, M. Thies, and U. Rückert, “Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware,” Frontiers in Computational Neuroscience, vol. 11, 2017.
HSBI-PUB
| DOI
| Download (ext.)