28 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 5789
F.-M. Dockhorn and M. Kohlhase, “An Application-oriented Review of Standard and Integral Sparse Identification of Nonlinear Dynamics,” in Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024, Berlin, 2024, pp. 53–76.
HSBI-PUB
| DOI
2024 | Buchbeitrag | FH-PUB-ID: 4915
J. Weller et al., “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories,” in Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, vol. 18, O. Niggemann, J. Beyerer, M. Krantz, and C. Kühnert, Eds. Cham: Springer Nature Switzerland, 2024, pp. 89–100.
HSBI-PUB
| DOI
2023 | Konferenzbeitrag | FH-PUB-ID: 4700
J. Weller, N. Migenda, A. Wegel, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Conceptual Framework for Prescriptive Analytics Based on Decision Theory in Smart Factories,” in 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS), Marrakesh, Morocco, 2023, pp. 1–7.
HSBI-PUB
| DOI
2023 | Diskussionspapier | FH-PUB-ID: 3729 |

J. Kösters, M. Schöne, and M. Kohlhase, Benchmarking of Machine Learning Models for Tabular Scarce Data. .
HSBI-PUB
| Dateien verfügbar
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 3713 |

B. Jaster and M. Kohlhase, “Active Learning for Regression Problems with Ensemble Methods,” in Proceedings - 33. Workshop Computational Intelligence, Berlin, 2023, pp. 9–29.
HSBI-PUB
| DOI
| Download (ext.)
2023 | Artikel | FH-PUB-ID: 2855 |

L. Vollenkemper et al., “HUMANZENTRIERTE PRODUKTIONSPLANUNG MIT KI - Entwicklung eines Assistenzsystems,” Arbeitswelt.Plus Working Paper, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2023 | Artikel | FH-PUB-ID: 2849 |

L. Vollenkemper, F. Grumbach, M. Kohlhase, and P. Reusch, “Humanzentrierte Ablaufplanung von Montagelinien/Human-centered scheduling in assembly lines - Plug and play: Efficient algorithms minimize stress in flow shops,” wt Werkstattstechnik online, vol. 113, no. 04, pp. 158–163, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 1799 |

K. Vandevoorde, L. Vollenkemper, C. Schwan, M. Kohlhase, and W. Schenck, “Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks,” Sensors, vol. 22, no. 7, 2022.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2232
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, and M. Kuhn, “Using Design of Experiments to Support the Commissioning of Industrial Assembly Processes,” in Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Manchester, UK, 2022, pp. 379–390.
HSBI-PUB
| DOI
2022 | Buchbeitrag | FH-PUB-ID: 2291 |

M. Hanitz, M. Schöne, T. Voigt, and M. Kohlhase, “Analysis of the Behavior of Online Decision Trees Under Concept Drift at the Example of FIMT-DD,” in Machine Learning and Data Mining in Pattern Recognition, MLDM 2022, P. Perner, Ed. Leipzig: ibai-publishing, 2022, pp. 121–135.
HSBI-PUB
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2277 |

L. Vollenkemper and M. Kohlhase, “Spatial Temporal Transformer Networks for Sparse Motion Capture Applications,” in PROCEEDINGS 32. WORKSHOP COMPUTATIONAL INTELLIGENCE, Berlin, 2022, vol. 32.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1912
M. Schöne and M. Kohlhase, “Curvature-Oriented Splitting for Multivariate Model Trees,” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 2021, pp. 01–09.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1560 |

J. Ewerszumrode, M. Schöne, S. Godt, and M. Kohlhase, “Assistenzsystem zur Qualitätssicherung von IoT-Geräten basierend auf AutoML und SHAP,” in Proceedings - 31. Workshop Computational Intelligence , Berlin, 2021, pp. 285–305.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 3718
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, and M. Kuhn, “Space-Filling Designs for Experiments with Assembled Products,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 192–199.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Artikel | FH-PUB-ID: 3717 |

T. Voigt, M. Kohlhase, and O. Nelles, “Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge,” Mathematics, vol. 9, no. 19, 2021.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 1916
M. Schöne and M. Kohlhase, “Least Squares Approach for Multivariate Split Selection in Regression Trees,” in Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part I, Guimaraes, Portugal, 2020, pp. 41–50.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Buchbeitrag | FH-PUB-ID: 1915 |

M. Schöne and M. Kohlhase, “Least-Squares-Based Construction Algorithm for Oblique and Mixed Regression Trees,” in Proceedings - 30. Workshop Computational Intelligence, H. Schulte, F. Hoffmann, and R. Mikut, Eds. Karlsruhe: KIT Scientific Publishing, 2020.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Konferenzbeitrag | FH-PUB-ID: 1557
S. Godt and M. Kohlhase, “Identifikation eines nichtlinearen dynamischen Mehrgrößensystems mit rekurrenten neuronalen Netzen im Vergleich zu lokal-affinen Zustandsraummodellen,” in Proceedings - 30. Workshop Computational Intelligence, Berlin, 2020, pp. 159–180.
HSBI-PUB
| DOI
2020 | Artikel | FH-PUB-ID: 1368
T. Voigt, M. Kohlhase, and A. Peter, “Bestandsanlagen in der smarten Produktion, Integrationsstrategien anhand eines Praxisbeispiels,” atp magazin, vol. 62, no. 04, pp. 62–69, 2020.
HSBI-PUB
2019 | Konferenzbeitrag | FH-PUB-ID: 1371 |

T. Voigt, M. Kohlhase, and O. Nelles, “Inkrementelle Modellbildung von statischen Prozessen auf Basis von Latin Hypercube Designs,” in Proceedings - 29. Workshop Computational Intelligence, Dortmund, 2019, pp. 267–288.
HSBI-PUB
| DOI
| Download (ext.)
2019 | Konferenzbeitrag | FH-PUB-ID: 1559 |

S. Godt and M. Kohlhase, “Data Mining im geschlossenen Regelkreis basierend auf adaptiven Kennfeldern mit integriertem Anti-Windup-Mechanismus,” in Proceedings - 29. Workshop Computational Intelligence, Dortmund, 2019, pp. 51–72.
HSBI-PUB
| DOI
| Download (ext.)
2018 | Konferenzbeitrag | FH-PUB-ID: 1369 |

T. Voigt and M. Kohlhase, “Schätzung von datenbasierten lokal-linearen Modellen auf der Grundlage von LOLIMOT für den systematischen Entwurf von lokal-linearen Zustandsreglern,” in Proceedings - 28. Workshop Computational Intelligence, 2018, pp. 93–111.
HSBI-PUB
| Download (ext.)
Suche
Publikationen filtern
Darstellung / Sortierung
Export / Einbettung
28 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 5789
F.-M. Dockhorn and M. Kohlhase, “An Application-oriented Review of Standard and Integral Sparse Identification of Nonlinear Dynamics,” in Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024, Berlin, 2024, pp. 53–76.
HSBI-PUB
| DOI
2024 | Buchbeitrag | FH-PUB-ID: 4915
J. Weller et al., “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories,” in Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, vol. 18, O. Niggemann, J. Beyerer, M. Krantz, and C. Kühnert, Eds. Cham: Springer Nature Switzerland, 2024, pp. 89–100.
HSBI-PUB
| DOI
2023 | Konferenzbeitrag | FH-PUB-ID: 4700
J. Weller, N. Migenda, A. Wegel, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Conceptual Framework for Prescriptive Analytics Based on Decision Theory in Smart Factories,” in 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS), Marrakesh, Morocco, 2023, pp. 1–7.
HSBI-PUB
| DOI
2023 | Diskussionspapier | FH-PUB-ID: 3729 |

J. Kösters, M. Schöne, and M. Kohlhase, Benchmarking of Machine Learning Models for Tabular Scarce Data. .
HSBI-PUB
| Dateien verfügbar
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 3713 |

B. Jaster and M. Kohlhase, “Active Learning for Regression Problems with Ensemble Methods,” in Proceedings - 33. Workshop Computational Intelligence, Berlin, 2023, pp. 9–29.
HSBI-PUB
| DOI
| Download (ext.)
2023 | Artikel | FH-PUB-ID: 2855 |

L. Vollenkemper et al., “HUMANZENTRIERTE PRODUKTIONSPLANUNG MIT KI - Entwicklung eines Assistenzsystems,” Arbeitswelt.Plus Working Paper, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2023 | Artikel | FH-PUB-ID: 2849 |

L. Vollenkemper, F. Grumbach, M. Kohlhase, and P. Reusch, “Humanzentrierte Ablaufplanung von Montagelinien/Human-centered scheduling in assembly lines - Plug and play: Efficient algorithms minimize stress in flow shops,” wt Werkstattstechnik online, vol. 113, no. 04, pp. 158–163, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 1799 |

K. Vandevoorde, L. Vollenkemper, C. Schwan, M. Kohlhase, and W. Schenck, “Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks,” Sensors, vol. 22, no. 7, 2022.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2232
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, and M. Kuhn, “Using Design of Experiments to Support the Commissioning of Industrial Assembly Processes,” in Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Manchester, UK, 2022, pp. 379–390.
HSBI-PUB
| DOI
2022 | Buchbeitrag | FH-PUB-ID: 2291 |

M. Hanitz, M. Schöne, T. Voigt, and M. Kohlhase, “Analysis of the Behavior of Online Decision Trees Under Concept Drift at the Example of FIMT-DD,” in Machine Learning and Data Mining in Pattern Recognition, MLDM 2022, P. Perner, Ed. Leipzig: ibai-publishing, 2022, pp. 121–135.
HSBI-PUB
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2277 |

L. Vollenkemper and M. Kohlhase, “Spatial Temporal Transformer Networks for Sparse Motion Capture Applications,” in PROCEEDINGS 32. WORKSHOP COMPUTATIONAL INTELLIGENCE, Berlin, 2022, vol. 32.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1912
M. Schöne and M. Kohlhase, “Curvature-Oriented Splitting for Multivariate Model Trees,” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 2021, pp. 01–09.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1560 |

J. Ewerszumrode, M. Schöne, S. Godt, and M. Kohlhase, “Assistenzsystem zur Qualitätssicherung von IoT-Geräten basierend auf AutoML und SHAP,” in Proceedings - 31. Workshop Computational Intelligence , Berlin, 2021, pp. 285–305.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 3718
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, and M. Kuhn, “Space-Filling Designs for Experiments with Assembled Products,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 192–199.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Artikel | FH-PUB-ID: 3717 |

T. Voigt, M. Kohlhase, and O. Nelles, “Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge,” Mathematics, vol. 9, no. 19, 2021.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 1916
M. Schöne and M. Kohlhase, “Least Squares Approach for Multivariate Split Selection in Regression Trees,” in Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part I, Guimaraes, Portugal, 2020, pp. 41–50.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Buchbeitrag | FH-PUB-ID: 1915 |

M. Schöne and M. Kohlhase, “Least-Squares-Based Construction Algorithm for Oblique and Mixed Regression Trees,” in Proceedings - 30. Workshop Computational Intelligence, H. Schulte, F. Hoffmann, and R. Mikut, Eds. Karlsruhe: KIT Scientific Publishing, 2020.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Konferenzbeitrag | FH-PUB-ID: 1557
S. Godt and M. Kohlhase, “Identifikation eines nichtlinearen dynamischen Mehrgrößensystems mit rekurrenten neuronalen Netzen im Vergleich zu lokal-affinen Zustandsraummodellen,” in Proceedings - 30. Workshop Computational Intelligence, Berlin, 2020, pp. 159–180.
HSBI-PUB
| DOI
2020 | Artikel | FH-PUB-ID: 1368
T. Voigt, M. Kohlhase, and A. Peter, “Bestandsanlagen in der smarten Produktion, Integrationsstrategien anhand eines Praxisbeispiels,” atp magazin, vol. 62, no. 04, pp. 62–69, 2020.
HSBI-PUB
2019 | Konferenzbeitrag | FH-PUB-ID: 1371 |

T. Voigt, M. Kohlhase, and O. Nelles, “Inkrementelle Modellbildung von statischen Prozessen auf Basis von Latin Hypercube Designs,” in Proceedings - 29. Workshop Computational Intelligence, Dortmund, 2019, pp. 267–288.
HSBI-PUB
| DOI
| Download (ext.)
2019 | Konferenzbeitrag | FH-PUB-ID: 1559 |

S. Godt and M. Kohlhase, “Data Mining im geschlossenen Regelkreis basierend auf adaptiven Kennfeldern mit integriertem Anti-Windup-Mechanismus,” in Proceedings - 29. Workshop Computational Intelligence, Dortmund, 2019, pp. 51–72.
HSBI-PUB
| DOI
| Download (ext.)
2018 | Konferenzbeitrag | FH-PUB-ID: 1369 |

T. Voigt and M. Kohlhase, “Schätzung von datenbasierten lokal-linearen Modellen auf der Grundlage von LOLIMOT für den systematischen Entwurf von lokal-linearen Zustandsreglern,” in Proceedings - 28. Workshop Computational Intelligence, 2018, pp. 93–111.
HSBI-PUB
| Download (ext.)