Marvin Schöne
11 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 5882 |

Bültemeier J, Schöne M, Kohlhase M, Holst C-A, Lohweg V, Nelles O. Dichte-skaliertes Optimierungskriterium für Sliced Latin Hypercube Designs. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024. KIT Scientific Publishing; 2024:217-231. doi:10.58895/ksp//1000174544-14
HSBI-PUB
| DOI
| Download (ext.)
2023 | Diskussionspapier | FH-PUB-ID: 3731 |

Kösters J, Schöne M. Active Learning mit dem GUIDE-Entscheidungsbaum.
HSBI-PUB
| Dateien verfügbar
| Download (ext.)
2023 | Diskussionspapier | FH-PUB-ID: 3729 |

Kösters J, Schöne M, Kohlhase M. Benchmarking of Machine Learning Models for Tabular Scarce Data.
HSBI-PUB
| Dateien verfügbar
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2232
Voigt T, Schöne M, Kohlhase M, Nelles O, Kuhn M. Using Design of Experiments to Support the Commissioning of Industrial Assembly Processes. In: Yin H, Camacho D, Tino P, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2022:379-390. doi:10.1007/978-3-031-21753-1_37
HSBI-PUB
| DOI
2022 | Buchbeitrag | FH-PUB-ID: 2291 |

Hanitz M, Schöne M, Voigt T, Kohlhase M. Analysis of the Behavior of Online Decision Trees Under Concept Drift at the Example of FIMT-DD. In: Perner P, ed. Machine Learning and Data Mining in Pattern Recognition, MLDM 2022. Leipzig: ibai-publishing; 2022:121-135.
HSBI-PUB
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1912
Schöne M, Kohlhase M. Curvature-Oriented Splitting for Multivariate Model Trees. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE; 2021:01-09. doi:10.1109/SSCI50451.2021.9659858
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1560 |

Ewerszumrode J, Schöne M, Godt S, Kohlhase M. Assistenzsystem zur Qualitätssicherung von IoT-Geräten basierend auf AutoML und SHAP. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 31. Workshop Computational Intelligence . KIT Scientific Publishing; 2021:285-305. doi:10.5445/KSP/1000138532
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 3718
Voigt T, Schöne M, Kohlhase M, Nelles O, Kuhn M. Space-Filling Designs for Experiments with Assembled Products. In: 2021 3rd International Conference on Management Science and Industrial Engineering. New York, NY, USA: ACM; 2021:192-199. doi:10.1145/3460824.3460854
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2571
Voigt T, Migenda N, Schöne M, et al. Advanced Data Analytics Platform for Manufacturing Companies. In: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ). IEEE; 2021:01-08. doi:10.1109/ETFA45728.2021.9613499
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 1916
Schöne M, Kohlhase M. Least Squares Approach for Multivariate Split Selection in Regression Trees. In: Analide C, Novais P, Camacho D, Yin H, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2020:41-50. doi:10.1007/978-3-030-62362-3_5
HSBI-PUB
| DOI
| Download (ext.)
2020 | Buchbeitrag | FH-PUB-ID: 1915 |

Schöne M, Kohlhase M. Least-Squares-Based Construction Algorithm for Oblique and Mixed Regression Trees. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 30. Workshop Computational Intelligence. Karlsruhe: KIT Scientific Publishing; 2020. doi:10.5445/KSP/1000124139
HSBI-PUB
| DOI
| Download (ext.)
Suche
Publikationen filtern
Darstellung / Sortierung
Export / Einbettung
11 Publikationen
2024 | Konferenzbeitrag | FH-PUB-ID: 5882 |

Bültemeier J, Schöne M, Kohlhase M, Holst C-A, Lohweg V, Nelles O. Dichte-skaliertes Optimierungskriterium für Sliced Latin Hypercube Designs. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024. KIT Scientific Publishing; 2024:217-231. doi:10.58895/ksp//1000174544-14
HSBI-PUB
| DOI
| Download (ext.)
2023 | Diskussionspapier | FH-PUB-ID: 3731 |

Kösters J, Schöne M. Active Learning mit dem GUIDE-Entscheidungsbaum.
HSBI-PUB
| Dateien verfügbar
| Download (ext.)
2023 | Diskussionspapier | FH-PUB-ID: 3729 |

Kösters J, Schöne M, Kohlhase M. Benchmarking of Machine Learning Models for Tabular Scarce Data.
HSBI-PUB
| Dateien verfügbar
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2232
Voigt T, Schöne M, Kohlhase M, Nelles O, Kuhn M. Using Design of Experiments to Support the Commissioning of Industrial Assembly Processes. In: Yin H, Camacho D, Tino P, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2022:379-390. doi:10.1007/978-3-031-21753-1_37
HSBI-PUB
| DOI
2022 | Buchbeitrag | FH-PUB-ID: 2291 |

Hanitz M, Schöne M, Voigt T, Kohlhase M. Analysis of the Behavior of Online Decision Trees Under Concept Drift at the Example of FIMT-DD. In: Perner P, ed. Machine Learning and Data Mining in Pattern Recognition, MLDM 2022. Leipzig: ibai-publishing; 2022:121-135.
HSBI-PUB
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1912
Schöne M, Kohlhase M. Curvature-Oriented Splitting for Multivariate Model Trees. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE; 2021:01-09. doi:10.1109/SSCI50451.2021.9659858
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 1560 |

Ewerszumrode J, Schöne M, Godt S, Kohlhase M. Assistenzsystem zur Qualitätssicherung von IoT-Geräten basierend auf AutoML und SHAP. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 31. Workshop Computational Intelligence . KIT Scientific Publishing; 2021:285-305. doi:10.5445/KSP/1000138532
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 3718
Voigt T, Schöne M, Kohlhase M, Nelles O, Kuhn M. Space-Filling Designs for Experiments with Assembled Products. In: 2021 3rd International Conference on Management Science and Industrial Engineering. New York, NY, USA: ACM; 2021:192-199. doi:10.1145/3460824.3460854
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2571
Voigt T, Migenda N, Schöne M, et al. Advanced Data Analytics Platform for Manufacturing Companies. In: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ). IEEE; 2021:01-08. doi:10.1109/ETFA45728.2021.9613499
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 1916
Schöne M, Kohlhase M. Least Squares Approach for Multivariate Split Selection in Regression Trees. In: Analide C, Novais P, Camacho D, Yin H, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2020:41-50. doi:10.1007/978-3-030-62362-3_5
HSBI-PUB
| DOI
| Download (ext.)
2020 | Buchbeitrag | FH-PUB-ID: 1915 |

Schöne M, Kohlhase M. Least-Squares-Based Construction Algorithm for Oblique and Mixed Regression Trees. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 30. Workshop Computational Intelligence. Karlsruhe: KIT Scientific Publishing; 2020. doi:10.5445/KSP/1000124139
HSBI-PUB
| DOI
| Download (ext.)