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Introduction

Electrospinning is a method often used to prepare nanofib-
ers or nanofiber mats.1–3 Due to their large surface-to-vol-
ume ratio, such nanofiber mats are used for diverse 
applications, from filter materials4,5 to catalysts6–8 to medi-
cal wound dressing.9 Besides pure polymers, also polymer 
blends or polymers with incorporated inorganic com-
pounds can be electrospun.10–12

A polymer which has been studied often is polyacryloni-
trile (PAN). On one hand, it can be used as a precursor for 
carbon nanofibers;13–16 on the other hand, it can be spun from 
low-toxic dimethyl sulfoxide (DMSO)17 which is especially 
advantageous for biotechnological applications.18

Carbonizing PAN nanofibers with included inorganic 
materials can be used to broaden the possible applications 

of such composites. TiO2 is of special interest as inorganic 
partner due to its photocatalytic properties.19–21 Song 
et  al.,22 for example, used electrospun TiO2/carbon 
nanofiber mats to reach high photocatalytic degradation 
efficiency tested with rhodamine B and proved a high 
durability of this effect. Similarly, composites 
from leaf-shaped TiO2 and reduced graphene oxide with 
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approximately 1% of reduced graphene oxide showed 
large photocatalytic activity.23 However, anodes for lith-
ium-ion batteries were produced from α-Fe2O3 grains 
grafted on TiO2/carbon nanofibers,24 N-doped TiO2/carbon 
nanofibers were used as anodes in sodium-ion batteries,25 
and carbon/TiO2 nanofibers were used as negative elec-
trodes for vanadium redox flow batteries.26

Typically, TiO2/carbon nanofibers are electrospun from a 
solution of titanium tetraisopropoxide, solvent, and poly-
mer.24,27 Since titanium tetraisopropoxide (Ti{OCH(CH3)2}4) 
is flammable and slightly toxic, however, it must be handled 
with care if used in a needleless electrospinning machine, 
spinning with high voltages up to 80 kV. Alternatively, tetra-
n-butyl titanate (Ti(C4H9O)4) can be used,23,25,26 a material 
which is also flammable and in addition, corrosive and 
toxic. Only few reports can be found in the literature about 
coating electrospun nanofibers with TiO2 nanoparticles;28–31 
however, immobilization of the TiO2 particles on the 
nanofiber surface is not easy.

Including TiO2 nanoparticles directly in the polymer 
solution is scarce. Chang et al.32 report on needle-electro-
spinning from dimethylformamide (DMF) as the solvent, 
using a TiO2:PAN weight ratio of 1:10. While the original 
electrospun nanofibers show a relatively even rough sur-
face, self-erosion of the embedded TiO2 particles results in 
several large holes along the fibers which become larger 
during carbonization. An et al.33 investigated three differ-
ent weight ratios of TiO2:PAN/PVP (from 3.4% to 13.8% 
of the precursor solution; the polymer content is not given) 
for the possible use as counter electrodes in dye-sensitized 
solar cells. By needle electrospinning this solution from 
DMF as the solvent, nanofibers with different surface 
roughness were gained. Electrospinning from a polyphe-
nylene vinylene (PPV) solution containing TiO2 was 
reported by Wang et al.,34 resulting in rough nanofibers in 
a broad range of diameters.

A systematic study of the morphological changes due to 
inclusion of different amounts of TiO2 in polymer nanofib-
ers, however, is still missing. The aim of this study is to 
thus investigate PAN nanofiber mats, needleless electro-
spun from DMSO—which was to the best of our knowl-
edge not yet reported in the literature—with different 
amounts of TiO2 in the spinning solution. The stabilization 
process which is known to significantly influence the 
nanofiber mat morphology by modifying stabilization 
temperatures and heating rates35 is examined in detail, 
before some exemplary nanofiber mats are carbonized at 
different temperatures. The changes of the nanofiber mats 
due to these processing steps are important to understand 
for all applications of carbon/TiO2 nanofiber mats, such as 
dye-sensitized solar cells or batteries.

Materials and methods

Nanofiber mats were produced with the needleless elec-
trospinning machine Nanospider Lab (Elmarco, Czech 

Republic). The spinning parameters were as follows: 
high voltage 70 kV, electrode-substrate distance 240 mm, 
nozzle diameter 0.8 mm, carriage speed 100 mm/s, using 
a static substrate, relative humidity 33%, and temperature 
21°C. It should be mentioned that the necessary relative 
humidity depends on the electrospinning technology and 
the electrospun polymer; in case of the Nanospider, 
working with a wire-based technology, a maximum 
humidity of 33% is ideal for spinning PAN, while higher 
relative humidity results in cotton-candy-like undesired 
structures.17

For the spinning solution, 16 wt% PAN were dissolved 
in DMSO (minimum 99.9% purity; S3 Chemicals, 
Germany); 0–10.2 wt% TiO2 P25 nanoparticles (Degussa, 
Germany) were added to this solution. Solutions with 
higher amounts of TiO2 could not be electrospun with the 
wire-based technology of the Nanospider Lab.

Stabilization of the samples was performed in a muffle 
furnace B150 (Nabertherm, Germany), approaching tem-
peratures from 120°C to 300°C by heating rates between 
0.5°C/min and 8°C/min, followed by isothermal treatment 
for 1 h. Opposite to a former experiment,35 the samples 
were not fixed during this process to enable investigation of 
the influence of the TiO2 content on the morphology change 
during this process. A furnace CTF 12/TZF 12 (Carbolite 
Gero Ltd., UK) was used for carbonization at 500°C or 
800°C, approached with a heating rate of 10°C/min.

The sample morphology was investigated by a scan-
ning electron microscope (SEM) Zeiss 1450VPSE, 
using a nominal magnification of ×5000. An Excalibur 
3100 (Varian, Inc., USA) was applied for Fourier-
transform infrared (FTIR) spectroscopy. Sample masses 
were taken with an analytical balance (VWR, Radnor, 
Pennsylvania, USA).

Results and discussion

In this section, SEM images of nanofiber mats after elec-
trospinning, stabilization, and carbonization are shown, 
followed by chemical investigations using FTIR.

The first examinations concentrate on the morphology 
of the nanofibers. Figure 1 depicts the nanofiber mats elec-
trospun with increasing amounts of TiO2 (Figure 1(a)–(e)). 
While for the lowest amount of TiO2 (Figure 1(a)), the fib-
ers are mostly relatively smooth, straight, and regular, like 
pure PAN nanofiber mats,16,35 more and thicker beads 
become visible for higher TiO2 concentrations. These 
beads are typically visible if electrospinning is performed 
from solutions based on DMSO or other slowly evaporat-
ing solvents with relatively low solid content. Recent 
investigations of electrospinning PAN from DMSO with 
the Nanospider showed such beads for concentrations up 
to 15% solid content,14 while they vanished for concentra-
tions of 16% or higher. Here, these beads seem to be 
related to TiO2 agglomerations which are surrounded by 
the polymer, according to the relatively uneven surface of 
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the beads visible in Figure 1(e), indicating that they con-
tain more TiO2 than the smooth fibers.

The overall fiber diameter is not visibly changed from 
the lowest TiO2 content (91 ± 25 nm) to the highest one 
(85 ± 16 nm), but the images show that the fibers are deco-
rated with TiO2 nanoparticles or small agglomerations. It 
should be mentioned that in comparison with the literature, 
the amounts of TiO2 depicted here are relatively high 
(12.1%–38.9%) as compared to Wang et al.30 (11.7%) in 
which the TiO2 nanoparticles were mostly embedded in the 
polymer fibers.

The nanofiber mats presented in Figure 1 were now sta-
bilized at different temperatures, using a heating rate of 
1°C/min. Figure 2 depicts the morphologies for a stabiliza-
tion temperature of 280°C, the temperature found to be 
ideal to stabilize needleless electrospun PAN nanofiber 
mats without TiO2.35 The samples were not fixed during 
stabilization which lead to a typical change of the mor-
phology toward meandering fibers with conglutinations 
along the crossing points,16,35 also resulting in more visible 
beads per depicted area. This result is also visible here. 
However, here it may be recognized as a positive effect 

Figure 1.  SEM images of PAN nanofiber mats with different amounts of TiO2 after electrospinning: (a) 2.2% TiO2, (b) 4.2% TiO2, 
(c) 6.2% TiO2, (d) 8.2% TiO2, and (e) 10.2% TiO2.
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since the fiber decoration by TiO2 nanoparticles becomes 
more regular during stabilization. In addition, fewer con-
glutinations are visible in the nanofiber mats with the high-
est TiO2 content.

An interesting finding is depicted in Figure 3, compar-
ing the nanofiber mat with the highest TiO2 content after 
stabilization at 280°C, approached with heating rates of 
0.5°C/min and 8°C/min. While such different heating rates 
resulted in significantly different morphologies for pure 
PAN, with large conglutination areas for high heating 
rates,35 here both mats look similar. Apparently, the large 
amount of TiO2 stabilizes the nano-structure to a certain 

extent, similar to the nearly complete conversation of the 
fiber structure by metal nanoparticles.36

The nanofiber mats stabilized at 280°C with a heating 
rate of 1°C/min were afterwards carbonized. Some results 
are depicted in Figure 4. As already expected from Figure 
2, the strongest conglutinations are visible in the nanofiber 
mats with smallest TiO2 content, while for the highest TiO2 
content, the nanofibers meander stronger and are obvi-
ously decorated with TiO2 nanoparticles in a relatively 
regular way, but have kept their original fiber structure 
instead of melting to form a more membrane-like struc-
ture, as it is visible for the samples with the lowest TiO2 

Figure 2.  SEM images of PAN nanofiber mats with different amounts of TiO2 after stabilization at 280°C, approached with 1°C/
min: (a) 2.2% TiO2, (b) 4.2% TiO2, (c) 6.2% TiO2, (d) 8.2% TiO2, and (e) 10.2% TiO2.
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content. Carbonized pure PAN nanofiber mats are visible 
in Sabantina and colleagues.16,35

For a chemical examination, Figure 5(a) depicts the 
results of FTIR measurements directly after electrospin-
ning. In all samples, the typical PAN absorbance peaks 
are visible: a stretching vibration of the C≡N nitrile 
functional group at 2240 cm−1, a carbonyl (C=O) stretch-
ing peak at 1732 cm−1, ester (C–O and C–O–C) vibra-
tions of the co-monomers like itaconic acid or methyl 
acrylate which are often applied in industrial production 
of PAN occurring in the ranges of 1230–1250 cm−1 and 
1050–1090 cm−1, and bending and stretching vibrations 
of CH2 at 2938, 1452, and 1380 cm−1.37 In addition, the 
strong peak approximately below 880 cm−1 can be 
attributed to TiO2.

During stabilization, most of these peaks are exchanged 
by new ones (Figure 5(b)): large peaks of C=N stretching 
vibrations at 1582 cm−1 and C=C stretching vibration at 
1660 cm−1 37 as well as C–H bending and C–H2 wagging 
at 1360 cm−1.38 The peak around 800 cm−1 can be attributed 
to aromatic C−H vibrations originating from oxidative 
dehydrogenation aromatization in the presence of oxy-
gen.39 Comparing this stabilization behavior with the tem-
perature dependence of pure PAN nanofiber mats,35 no 
differences of the stabilized states are visible. Further 
FTIR measurements are thus not shown here.

The influence of stabilization temperatures between 
120°C and 300°C and heating rates between 0.5°C/min 
and 8°C/min on the mass yield after stabilization is 
depicted in Figure 6. For all amounts of TiO2, masses are 
relatively stable in the temperature range between 120°C 
and 240°C. The small mass loss can mostly be attributed to 
a drying process. For higher temperatures of 260°C to 
300°C, a higher mass loss is visible, based on the chemical 
stabilization process itself. This finding is qualitatively 
and quantitatively similar to the few available reports on 
stabilization temperature-dependent carbon yield of pure 
PAN samples or PAN/gelatin samples.35,40

Investigating the influence of the heating rate on the 
mass loss (Figure 6(b)), nearly no impact of this value is 
visible. Only for the lowest heating rate, slightly smaller 
mass ratios are visible, but the differences are not signifi-
cant, similar to the previous experiments with pure PAN 
nanofiber mats.35 An influence of the TiO2 concentration 
cannot be recognized either.

After carbonization at 500°C, a material yield of 
73% ± 7% as compared to the stabilized samples (i.e. an 
overall mass yield of 0.64% ± 7% after stabilization and 
carbonization) was gained, while carbonization at 800°C 
resulted in a material yield of 43% ± 5% as compared to 
the stabilized samples (i.e. an overall mass yield of 
0.38% ± 5%). No significant influence of the TiO2 con-
tent, stabilization temperature, or maximum temperature is 
visible for all samples under examination.

These results underline the possibility to use the pre-
pared TiO2/carbon nanofiber mats in the above-described 
applications, such as front electrodes in dye-sensitized 
solar cells,41 for photocatalytic degradation,19–23 and or as 
electrodes in different sorts of batteries.24–26

Conclusion

TiO2/PAN nanofiber mats with different amounts of TiO2 
were prepared by electrospinning and afterwards stabi-
lized at varying temperatures, approached with diverse 
heating rates, and finally carbonized at two different 
temperatures.

Despite the partly large amounts of TiO2 in the nanofiber 
mats, the samples under investigation behave in most cases 
very similar to pure PAN nanofiber mats. This is also vis-
ible within this study by comparing the samples with and 
without TiO2.

An interesting effect occurs with respect to the sample 
morphology. While the TiO2 seems to form bead-like 
agglomerations for larger amounts of TiO2 after electro-
spinning, the TiO2 becomes more and more visible also 

Figure 3.  SEM images of PAN nanofiber mats with 10.2% TiO2 after stabilization at 280°C, approached with different heating rates: 
(a) 0.5°C/min and (b) 8°C/min.
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along the fibers after stabilization and especially after car-
bonization. In addition, higher amounts of TiO2 seem to 
stabilize the sample structure during stabilization. These 
findings are important for the applications of TiO2/carbon 
nanofibers in batteries or dye-sensitized solar cells, as they 
show that carbonization of TiO2/PAN nanofiber mats, 
needleless electrospun from a DMSO solution, is possible 
and relatively high amounts of TiO2 are even advantageous 
in maintaining the desired fibrous morphology, as opposed 
to pure PAN nanofiber mats.

Our study shows that electrospinning a blend of PAN 
and TiO2 offers the possibility to create mats of nanofibers 
decorated with TiO2 for possible use in dye-sensitized 
solar cells, for photodegradation of dyes, and similar 
applications.
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Figure 4.  SEM images of PAN nanofiber mats with different amounts of TiO2 after carbonization at different temperatures, 
approached with 10°C/min: (a) 2.2%/500°C, (b) 2.2% TiO2/800°C, (c) 6.2% TiO2/500°C, (d) 6.2% TiO2/800°C, (e) 10.2% 
TiO2/500°C, and (f) 10.2% TiO2/800°C.
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