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Abstract: Nanofiber mats with a high surface-to-volume ratio can be prepared by electrospin-
ning. The Porosity is sometimes reported to be tunable by blending different materials, e.g., water-
soluble poly(ethylene oxide) (PEO) with not water-soluble poly(acrylonitrile) (PAN). Here, nanofiber
mats were electrospun from different PAN:PEO ratios, using a wire-based electrospinning machine
“Nanospider Lab”. Investigations of the as-spun nanofiber mats as well as of membranes after wash-
ing off the water-soluble PEO by scanning electron microscopy (SEM) revealed severe differences in
the nanofiber mat morphologies, such as varying fiber diameters and especially non-fibrous areas in
the carbonized nanofiber mats, depending on the amount of PEO in the nanofiber mat as well as the
molecular weight of the PEO. Similarly, the ratio and molecular weight of PEO influenced the results
of stabilization and carbonization. This paper discusses the possibility of tailoring nanofiber porosity
for the potential use of PAN nanofiber mats in tissue engineering, filtration, and other applications.

Keywords: porosity; stabilization; carbonization; polymer blend; nanofiber mat; nanofibrous membrane

1. Introduction

Nanofiber mats can be electrospun from a broad range of polymers and polymer
blends as well as embedded nanoparticles [1–3]. The electrospinning process can be
performed by different techniques, where needle-based electrospinning is most commonly
used, while different needleless techniques have been developed to increase the production
speed [4–6].

Typical applications of nanofibers are, e.g., filtration [7,8], biotechnology and
biomedicine [9–11], sensors [12,13], or energy applications [14–16]. In many of these appli-
cations, a high specific surface area is advantageous for the material performance [17,18].
While nanofibers already have a high specific surface, as compared to larger fibers or layers,
this value can be further increased by preparing porous nanofibers.

Several attempts have been described in the literature on how pores can be intro-
duced into nanofibers. A recent overview was given by Liu et al. [19], who described the
introduction of micropores, mesopores, and macropores into nanofibers by techniques
such as phase separation, calcination of polymer/ceramic or polymer/metal nanofibers, or
multi-fluid electrospinning, which can be used only for specific polymers, solvents, or with
special electrospinning equipment. A more general approach to gaining porous nanofibers
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from not water-soluble polymers is electrospinning in high humidity [20,21]. While this
approach has been shown to work well for several polymers, it was not successful for
poly(acrylonitrile) (PAN) [22], a polymer that is often used as a carbon precursor due
to its high carbon yield. In addition, spinning in high humidity may even impede the
electrospinning of PAN, e.g., in the case of wire-based electrospinning of PAN dissolved
in dimethylsulfoxide (DMSO), a low-toxic solvent, which is thus preferable for medical
applications [23–25].

Another possibility to produce porous nanofibers is given by combining water-soluble
with not water-soluble polymers and removing the first by washing after electrospinning. This
process was reported, e.g., for chitosan blended with poly(ethylene oxide) (PEO) in different
ratios, leading to porous chitosan nanofibers after washing out the PEO for 1 h [26].

On the other hand, carbonization was used as a method to gain porous carbon
nanofibers from electrospun polymer blends, such as lignin/poly(vinyl pyrrolidone)
(PVP) [27]. To prepare porous carbon nanofibers from PAN, often Si-containing com-
pounds are added, such as tetraethyl orthosilicate (TEOS), poly(methyl hydrosiloxane)
(PMHS), or phenylsilane [28]. Blending PAN with polymethyl methacrylate (PMMA) and
subsequent stabilization and carbonization also resulted in porous carbon nanofibers [29].
Another possibility to prepare porous carbon nanofibers from PAN is given by adding
graphene nanosheets or carbon nanotubes in the spinning solution [30,31]. Electrospinning
pure PAN nanofibers, followed by stabilization, carbonization, and, finally, activation
by adding steam to the nitrogen flow in the carbonization oven also resulted in porous
carbon nanofibers [32]. Electrospinning of PAN/FeC2O4, followed by stabilization and
carbonization as well as thermal treatment in NH3 at 800 ◦C for 1 h resulted in highly
porous Fe-N/carbon nanofibers [33].

A polymer blend that is often mentioned in the literature regarding porous PAN or
carbon fibers is PAN/PEO. Zhang and Hsieh used needle-based electrospinning of PAN
(150 kDa) with PEO (10 kDa) in a ratio 1:1 dissolved in dimethylformamide (DMF) to gain
carbon nanofibers with a rough surface, but without visible pores, and a smaller diameter
than carbon nanofibers from pure PAN [34]. In a previous study using identical polymers,
they showed the effect of water treatment to wash out the PEO from PAN/PEO nanofibers
mixed in ratios of 50:50 or 70:30, resulting in indents and ridges along the fiber surface [35].
On the other hand, Yang et al. showed highly porous carbon nanofibers prepared by
needle-based electrospinning of PAN (molecular weight 150 kDa) with PEO (300 kDa) from
DMF if the PAN:PEO ratio was 1:1 or 1:2 [36].

These different results may be attributed to the different molecular weights of the PEO
used in these experiments. Other electrospinning systems or solvents, however, have not
been taken into account yet in studies regarding PAN/PEO nanofibers.

Here, we report the effect of adding PEO in different ratios and with varying molecular
weight to PAN solutions prepared with the low-toxic solvent DMSO, electrospun with
the wire-based “Nanospider” system, stabilized, and carbonized. Investigations of wire-
based electrospinning of PAN:PEO nanofiber mats from DMSO have, to the best of our
knowledge, not been reported before in the scientific literature and are necessary for a
comparison with the aforementioned reports on needle-based electrospinning from DMF. To
characterize nanofiber mats and single nanofibers regarding their regularity and potential
porosity, respectively, microscopic techniques with different magnifications are used, from
confocal laser microscopy (CLSM) to scanning electron microscopy (SEM) to atomic force
microscopy (AFM).

2. Materials and Methods

Electrospinning solutions were prepared from PAN (X-PAN copolymer, consisting of
93.5% acrylonitrile, 6% methylacrylate, and 0.5% sodium methallyl sulfonate, produced
by Dralon, Dormagen, Germany; molecular weight 250 kDa) in DMSO (min. 99.9%,
S3 chemicals, Bad Oeynhausen, Germany). In addition to pure PAN, PAN:PEO blends
were dissolved in DMSO, keeping a solid content of 16%. Different PAN:PEO ratios of 9:1,
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8:2, 7:3, and 6:4 were chosen, where the last was nearly unspinnable, so that no further
ratios were tested. PEO with different molecular weights (40 kDa, 300 kDa, 600 kDa, and
1000 kDa, Sigma-Aldrich, Saint Louis, MO, USA) was used in the experiments. Solutions
were prepared by constant stirring with 200 rpm for 1 day at a temperature of 40 ◦C.

The wire-based electrospinning device “Nanospider Lab” (Elmarco Ltd., Liberec,
Czech Republic) was used to prepare nanofiber mats. Most spinning parameters were kept
constant, as follows: relative humidity 32–33%, carriage speed 100 mm/s, substrate speed
0 mm/min, electrode–electrode distance 240 mm, ground electrode–substrate distance
50 mm, nozzle diameter 0.9 mm, and duration 30 min. The voltage was slightly modified
to optimize the spinning process, while the current and temperature in the spinning
chamber could not be controlled. These parameters are given in Table 1 for the samples
under investigation.

Table 1. Varying electrospinning parameters. The first column gives mixing ratios and the molecular
weight of the included PEO.

Sample Voltage/kV Current/mA Temperature/◦C

PAN:PEO 9:1, 40 kDa 60 0.035 21.3
PAN:PEO 9:1, 300 kDa 60 0.03 22.4
PAN:PEO 9:1, 600 kDa 60 0.02 24.6
PAN:PEO 9:1, 1000 kDa 70 0.055 21.5
PAN:PEO 8:2, 300 kDa 70 0.05 23.6

PAN:PEO 7:3, 300 kDa * 70 0.07 (0.06) 24.4 (23.1)
PAN:PEO 6:4, 300 kDa * 70 0.1 (0.06) 23.4 (24.0)

Pure PAN 65 0.035 23.4
* These experiments were repeated at slightly different temperatures (in brackets).

Stabilization of parts of these samples was performed in a muffle oven B150 (Nabertherm,
Lilienthal, Germany) by approaching a stabilization temperature of 280 ◦C with a heating rate of
1 K/min, followed by isothermal treatment for 1 h. The stabilized samples were carbonized in a
tube furnace CTF 12/TZF 12 (Carbolite Gero Ltd., Sheffield, UK) at 500 ◦C for 1 h, approached
by a heating rate of 5 K/min, in a constant nitrogen flow of 100 mL/min (STP). These heating
rates and temperatures correspond to previous studies to enable comparison [37,38]. Sample
masses were taken with an analytical balance (VWR, Radnor, PA, USA).

Surface investigations of the nanofiber mats were performed by CLSM (VK-8710,
Keyence, Neu-Isenburg, Germany), SEM (Phenom ProX G3 Desktop SEM, Thermo Fisher
Scientific, Waltham, MA, USA), and AFM (FlexAFM, Nanosurf, Liestal, Switzerland, using
a Tap 190 Al-G cantilever in the dynamic mode).

The nanofiber diameters were measured on the SEM images using ImageJ (version
1.53e, 2021, National Institutes of Health, Bethesda, MD, USA), taking into account 100 ar-
bitrarily chosen fibers per specimen.

The effect of watering the electrospun samples for different durations on the amount of
PEO in them was investigated by differential scanning calorimetry (DSC 3, Mettler-Toledo,
Gießen, Germany).

Raman microscopy was conducted utilizing a WITec alpha300 apyron (Ulm, Germany).
The spectra were acquired using a 532 nm laser with a power output of 10 mW, an integra-
tion time of 3 s, and a 50× objective. Spectral data processing was performed using the
software WITec Project SIX 6.2.10.147 (WITec, Ulm, Germany).

Fourier-transform infrared (FTIR) spectroscopy was measured by an IRTracer-100
(Shimadzu, Kyoto, Japan), using 40 scans with a resolution of 1 cm−1. This IR spectrometer
is equipped with a Specac Golden Gate ATR unit.

X-ray diffractometry (XRD) measurements were performed with an X’Pert Pro MPD
PW3040-60 diffractometer (Malvern Panalytical GmbH, Kassel, Germany) using Cu Kα
radiation (λ = 1.54056 Å).

Figure 1 shows a schematic representation of the working plan.
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3. Results and Discussion
3.1. Comparison of As-Spun Samples

Firstly, PAN:PEO nanofiber mats with different blend ratios and varying PEO molec-
ular weights were investigated regarding their spinnability and the general nanofiber
mat morphology. A comparison of samples prepared with a PAN:PEO ratio of 9:1 and
different PEO molecular weights is given in Figure 2, based on SEM images with identical
magnification of 5000×. SEM images with lower magnification (1000×) as well as CLSM
images can be found in the Supplementary Information (Figures S1 and S2). Generally,
all nanofiber mats look similar, besides the one prepared with PEO 600 kDa (Figure 2c),
which exhibits a large number of broken fibers, beads, and other non-fibrous structures. A
possible explanation for this finding is the relatively high temperature during spinning (cf.
Table 1), while a general problem with this specific PEO cannot be excluded.

For PEO with a molecular weight of 300 kDa, more mixing ratios were tested. This
molecular weight was chosen since the nanofiber mats with PEO 40 kDa were very thin
and irregularly spun with non-fibrous areas visible in CLSM (Figure S2), PEO 600 kDa led
to broken fibers and an unusually high number of beads (Figure 2c), and PEO 1000 kDa
showed undesired “cotton candy” formation during electrospinning so that PEO 300 kDa
can be assumed to be best spinnable. In addition, PAN:PEO solutions with PEO 300 kDa
had the longest shelf life of several weeks, while all other solutions were solidified or
unmixed after around two weeks.

SEM images of these nanofiber mats are depicted in Figure 3 for a nominal magnifi-
cation of 5000× and in Figures S3 and S4 for smaller nominal magnifications. While the
PAN:PEO ratio of 6:4 shows a highly porous mat with only a few fibers (Figure 3c), as
already mentioned before based on the optical appearance of the nanofiber mat, the ratio
7:3 (Figures 3b and S3b) unexpectedly shows fibers with a much larger diameter. This may
again be attributed to a higher temperature during spinning (cf. Table 1) since all other
solution and spinning parameters were identical with the samples with other ratios. To
test this idea, the solutions with PAN:PEO 7:3 and 6:4 were again electrospun at slightly
different temperatures (cf. Table 1), leading to significantly thinner fibers for PAN:PEO 7:3
at a lower temperature and slightly increased fiber diameters for PAN:PEO 6:4 spun at a
higher temperature.

Raman microscopy was used to chemically analyze the samples. Initially, pure refer-
ence spectra of PAN and PEO powders were obtained, revealing the characteristic bands
associated with these two compounds (Figure 4a). Subsequently, a pure PAN nanofiber
mat was examined under the microscope, where a small area (Figure 4b) was scanned with
an integration time of 3 s. A Raman false-color image was generated using a sum filter
based on the peak observed at 1460 cm×1, illustrating the heterogeneity of the compound
within the mat (Figure 4c).
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Following this, a PAN:PEO 9:1 sample was analyzed (Figure 5a). Again, a localized
area of the sample was scanned, leading to the creation of two Raman false-color images
through univariate analysis. The first false-color image corresponded to PAN, while
the second was attributed to PEO. These images indicated that the predominant region
comprised PAN, with only a minor area consisting of PEO. This will be discussed further
in correlation with the FTIR measurements on this sample.
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3.2. Effect of Watering the Samples

In this paper, mainly the effect of PEO on PAN nanofiber mats and nanofibers should
be investigated after washing the PEO out of the nanofiber mat or after carbonization to
enable full thermal degradation of PEO, which happens around 400 ◦C, with the exact
temperature range depending on the molecular weight [39–41], i.e., below the chosen
carbonization temperature of 500 ◦C.

Figure 6 thus compares CLSM images of PAN:PEO 9:1 with PEO 300 kDa as-spun and
after watering for 1 min or 21 h as well as corresponding DSC measurements. Generally,
on this scale, some irregularities are visible in the nanofiber mats, which increase upon
watering (Figure 6a–c). It should be mentioned that the DSC measurement (Figure 6d)
reveals that PEO with a melting point near 65 ◦C [40–42], depending on the molecular
weight, is reduced after 1 min of watering and mostly vanishes after 21 h of watering.
This indicates that the brighter, less fibrous areas especially visible in Figure 6c stem from
washed-out PEO.
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While washing apparently influences the nanofiber mats on relatively large scales,
a comparison on smaller scales is given in Figure 7. Comparing the SEM images of the
as-spun (Figure 7a) and watered samples (Figure 7c), no differences are visible. Similarly,
the AFM images of both samples (Figure 7b,d) do not show any obvious differences. In
particular, there are no pores in the fibers visible after watering for 21 h (Figure 7d). While
Yang et al. [36] found pores in PAN:PEO nanofiber mats using PEO with the same molecular
weight of 300 kDa as in the sample investigated here, they used samples with a much
higher ratio of PEO (50% or 67% of the solid content), which could not be tested in our
wire-based electrospinning device where a PEO ratio of 40% of the solid content already
resulted in a very thin, irregular nanofiber mat.
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Figure 7. PAN:PEO 9:1, with PEO 300 kDa: as-spun, images by (a) SEM and (b) AFM; watered for
21 h, images by (c) SEM and (d) AFM.

Similarly to the sample with PEO 300 kDa, no differences in the fiber surface could be
measured by AFM in the other samples with PAN:PEO ratio of 9:1, as shown in Figure 8
(AFM images) and Figure S5 (SEM images). Here, again, no clear differences are visible
between as-spun and samples watered for 1 min, and, in particular, no pores can be found in
the watered samples. Next, the impact of stabilization and carbonization on these samples
is investigated.
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The PEO powder spectrum allows for the identification of typical peaks such as 1467 
cm−1 (asymmetric CH2 bending), 1342 cm−1 (CH2 wagging of amorphous PEO), 1093 cm−1 
(asymmetric –C–O–C– stretching), 961 cm−1 (CH2 twisting), and 841 cm−1 (CH2 wagging) 
[45–47]. 

While the PAN:PEO 6:4 sample shows the expected superposition of PAN and PEO 
peaks, unexpectedly, the PEO peaks nearly completely vanished in PAN:PEO 9:1, even in 
the as-spun sample and not only in the watered one where PEO could be expected to be 
washed out. This finding may be attributed to the separation of both polymers during the 

Figure 8. AFM images before (upper row) and after watering (lower row) of PAN:PEO 9:1 samples
with different PEO molecular weights: (a) 40 kDa as-spun; (b) 1000 kDa as-spun, (c) 40 kDa watered
for 1 min; (d) 1000 kDa watered for 1 min.

The chemical analysis of the nanofiber mats was performed by Raman microscopy
(Figures 4 and 5) and FTIR. FTIR measurements are depicted in Figure 9. PAN powder as
well as the pure PAN nanofiber mat show the typical spectrum of a PAN copolymer [43].
Prominent PAN peaks can be found at 2939 cm−1, 1451 cm−1, and 1363 cm−1 (C-H2
bending and stretching) as well as 2243 cm−1 (C≡N stretching vibration) [43,44]. The peak
at 1734 cm−1 is typical for a PAN copolymer and can probably be attributed to the C=O
stretching vibration, which may stem from an ester group in a co-monomer unit [43].
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The PEO powder spectrum allows for the identification of typical peaks such as
1467 cm−1 (asymmetric CH2 bending), 1342 cm−1 (CH2 wagging of amorphous PEO),
1093 cm−1 (asymmetric –C–O–C– stretching), 961 cm−1 (CH2 twisting), and 841 cm−1 (CH2
wagging) [45–47].

While the PAN:PEO 6:4 sample shows the expected superposition of PAN and PEO
peaks, unexpectedly, the PEO peaks nearly completely vanished in PAN:PEO 9:1, even
in the as-spun sample and not only in the watered one where PEO could be expected to
be washed out. This finding may be attributed to the separation of both polymers during
the spinning process and thus to larger areas mainly consisting of PAN and smaller areas
mainly consisting of PEO. This finding corresponds to the results of Raman microscopy on
the PAN:PEO 9:1 sample, as discussed before.

3.3. Stabilization and Carbonization

After stabilization and carbonization, pure PAN samples become brown and dark
gray/black, respectively, as depicted in Figure 10. For the here chosen relatively low car-
bonization temperature of 500 ◦C, carbonization will not be completed, resulting in slightly
brownish fibers after this incipient carbonization instead. This behavior is typical for the
oxidative stabilization process and the subsequent carbonization, respectively [37,38].
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Figure 10. CLSM images of pure PAN reference samples: (a) as-spun; (b) stabilized; (c) carbonized.
Scale bars correspond to 1 µm.

Interestingly, this is different for PAN:PEO blended samples, where stabilized samples
become darker with an increasing amount of PEO (Figure 11). While samples with 90%
PAN are nearly fully brown after stabilization (Figure 11a), dark-gray areas become visible
for the samples with 20% PEO (Figure 11b), while the sample with the highest amount
of PEO has largely dark-gray non-fibrous areas with brown fibrous regions embedded
(Figure 11d). Interestingly, the sample with PAN:PEO 7:3 (Figure 11c) shows brown as
well as dark-gray fibers, suggesting that thicker PEO fibers can withstand the stabilization
process in spite of the PEO melting point (~63 ◦C) being much lower than the stabilization
temperature. The clear difference between brown and dark-gray fibers further suggests
that the difference between this sample and the others is not related to better mixing of the
polymers, but has to be related to a difference in the spinning process.

Comparing the stabilization processes of PAN:PEO samples with a ratio of 9:1 and
different PEO molecular weights, Figure 12a shows a large amount of dark-gray PEO “isles”
for PEO 40 kDa, while PEO 600 kDa (Figure 12b) leads to a relatively homogeneous result
after stabilization, and PEO 1000 kDa (Figure 12c) shows clear inhomogeneities where PEO
forms rounded lines. This supports the previous choice PEO 300 kDa as ideal for these tests.
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to Figure 11c. This finding is unexpected since the carbonization temperature of 500 °C is 
higher than the usually reported degradation temperatures of PEO [39–41]. However, 
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carbonization of PAN, PEO in different blends with chitosan could even be carbonized in 
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Figure 12. CLSM images of PAN:PEO samples after stabilization with a PAN:PEO ratio of 9:1 and
PEO molecular weights of (a) 40 kDa; (b) 600 kDa; (c) 1000 kDa. Scale bars correspond to 1 µm.

Going one step further, Figure 13 shows CLSM images of carbonized samples with
different amounts of PEO 300 kDa. While PAN:PEO 9:1 reveals a mostly fibrous sample
with only a small non-fibrous area (Figure 13a), more non-fibrous areas are visible for the
8:2 blend (Figure 13b), and even a large part of the 6:4 sample is non-fibrous (Figure 13d).
On the other hand, no non-fibrous areas are visible in the 7:3 sample (Figure 13c), similar
to Figure 11c. This finding is unexpected since the carbonization temperature of 500 ◦C
is higher than the usually reported degradation temperatures of PEO [39–41]. However,
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there are reports in the literature that PEO can indeed also be carbonized [48], although
with lower efficiency than PAN [49]. While the stabilization step is mandatory for the
carbonization of PAN, PEO in different blends with chitosan could even be carbonized
in a one-step process under N2 flow to obtain carbon nanofibers [49,50]. Alternatively,
nanofibers electrospun from NaH2PO4, NH4VO3, citric acid, and PEO can be carbonized
at 500 ◦C under the Ar atmosphere [51]. The here visible non-fibrous areas have not been
found in the literature. A simple explanation for this difference could be that usually the
best parts of the produced nanofiber mats are shown in a paper, while the here shown
arbitrarily chosen larger areas impede such “cherry-picking” [52].
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Figure 13. CLSM images of PAN:PEO samples after carbonization with a PAN:PEO ratio of (a) 9:1;
(b) 8:2; (c) 7:3; (d) 6:4 and PEO 300 kDa. Scale bars correspond to 1 µm.

By comparing the stabilized (Figure 11) and carbonized samples (Figure 13), it is
obvious that the formation of non-fibrous areas happens already during the stabilization
process. One possibility to avoid this problem may be given by stabilization under an
inert gas atmosphere, as described in [49–51]; however, this would impede the stabilization
of PAN, which necessitates oxygen. To explain the difference to the nanofibers reported
in [34–36] where no large non-fibrous areas were shown, the different electrospinning
processes—needle-based in [34–36] and wire-based in this study—have to be taken into
account. Such deviations may manifest in different mixing of the polymer solution in
the syringe/carriage, different electric fields in both techniques (typically 1 kV/cm for
needle-based electrospinning; here, 2.5–3 kV/cm), potentially different spinning durations,
temperatures or humidities. Further parameters such as the needle length in needle-based
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electrospinning also have an impact on the spinning process, but are not always given in
the literature.

A comparison of the other carbonized samples is shown in Figure 14. The samples look
very similar to the stabilized ones shown in Figure 12, with 1000 kDa now again having
silvery round areas (Figure 14c) instead of the rounded lines visible after stabilization
(Figure 14b). This difference can be attributed to investigating different randomly selected
areas on the nanofiber mat. For all samples, the SEM images taken after stabilization and
carbonization, corresponding to Figures 11–14, can be found in Figures S4–S7.
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Figure 14. CLSM images of PAN:PEO samples after carbonization with a PAN:PEO ratio of 9:1 and
PEO molecular weights of (a) 40 kDa; (b) 600 kDa; (c) 1000 kDa. Scale bars correspond to 1 µm.

Based on the SEM images of the stabilized and carbonized nanofiber mats
(Figures S6–S9), Figure 15 depicts exemplarily the nanofiber diameter distributions for
a pure PAN nanofiber mat and PAN:PEO 9:1 (300 kDa). While the nanofiber diameter
of the PAN nanofiber mat decreases with each thermal treatment, the average diameter
remains approximately constant for the PAN:PEO 9:1 (300 kDa) sample during stabilization
and carbonization.
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Figure 15. Diameter distribution of pure PAN and PAN:PEO 9:1 (300 kDa) nanofiber mats.

Exemplary AFM images of samples after stabilization and carbonization can be found
in Figure 16. The stabilized and carbonized fibers look very similar to the as-spun ones,
besides the 7:3 sample with its thicker fibers. It should be mentioned that for the AFM
images, fibrous regions on the samples were chosen, while CLSM and SEM images were
taken on arbitrary sample areas.
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Figure 16. AFM images of PAN:PEO samples after stabilization (upper row) and carbonization 
(lower row) of different samples: (a,d) pure PAN; (b,e) PAN:PEO 9:1, PEO 300 kDa; (c,f) PAN:PEO 
7:3, PEO 300 kDa. 

The chemical investigation of the stabilized and carbonized nanofiber mats was 
performed by Raman microscopy and FTIR. Figure 17a shows the FTIR spectra of the 
stabilized PAN in comparison with PAN:PEO samples in two different blend ratios. 
Generally, stabilization leads to a reduction in the nitrile (C≡N) and carbonyl (C=O) 
peaks, while new peaks occur due to C=N (1576 cm−1) and C=C stretching vibrations 
(weakly visible around 1660 cm−1), indicating the cyclization–aromatization of the poly-
mers [53]. The peak at 801 cm−1 is related to aromatic C–H vibrations, while the peak 
around 1354 cm−1 shows C–H bending and C–H2 wagging [53]. The peak around 1239 
cm−1 stems from oxygen cross-linking between the polymer chains and indicates C–O 
vibrations [53]. For PAN:PEO 6:4, the latter seems to be broadened due to superposition 
with the strongest PEO peak at 1093 cm−1. 

Figure 16. AFM images of PAN:PEO samples after stabilization (upper row) and carbonization (lower
row) of different samples: (a,d) pure PAN; (b,e) PAN:PEO 9:1, PEO 300 kDa; (c,f) PAN:PEO 7:3, PEO
300 kDa.

The chemical investigation of the stabilized and carbonized nanofiber mats was per-
formed by Raman microscopy and FTIR. Figure 17a shows the FTIR spectra of the stabilized
PAN in comparison with PAN:PEO samples in two different blend ratios. Generally, sta-
bilization leads to a reduction in the nitrile (C≡N) and carbonyl (C=O) peaks, while new
peaks occur due to C=N (1576 cm−1) and C=C stretching vibrations (weakly visible around
1660 cm−1), indicating the cyclization–aromatization of the polymers [53]. The peak at
801 cm−1 is related to aromatic C–H vibrations, while the peak around 1354 cm−1 shows
C–H bending and C–H2 wagging [53]. The peak around 1239 cm−1 stems from oxygen
cross-linking between the polymer chains and indicates C–O vibrations [53]. For PAN:PEO
6:4, the latter seems to be broadened due to superposition with the strongest PEO peak at
1093 cm−1.
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lated well with the observed patterns in the wide-field images. These findings suggest the 
presence of regions within the mat that exhibit a greater number of defects or a higher 
degree of disorder, which could potentially influence the properties of the nanofiber mat. 
These areas of higher degree of disorder are identical to the non-fibrous areas, as visible 
in the microscopic images. 
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Figure 17. FTIR measurements of (a) stabilized and (b) carbonized samples.
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The carbonized samples (Figure 17b) show relatively large signals, indicating that
carbonization is not finished, as pure carbon is chemically almost inert and thus does not
show any peaks [54,55]. Here, again, a clear difference between PAN:PEO 6:4 and both
other samples is visible, as was also the case for stabilized and raw samples.

The stabilized and carbonized materials were also examined under the Raman mi-
croscope, focusing on small areas of the samples that exhibited distinct circular patterns
(Figure 18). For each of the three samples, we successfully differentiated between areas
with lower and higher ratios of D (@ 1320 cm−1) and G (@ 1560 cm−1) bands in the carbon
spectrum. The regions with a higher D/G ratio were highlighted in the false-color images
using yellow coloration. Overall, these yellow patterns in the false-color images correlated
well with the observed patterns in the wide-field images. These findings suggest the pres-
ence of regions within the mat that exhibit a greater number of defects or a higher degree
of disorder, which could potentially influence the properties of the nanofiber mat. These
areas of higher degree of disorder are identical to the non-fibrous areas, as visible in the
microscopic images.
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In addition, the as-spun, stabilized, and carbonized samples (pure PAN and PAN:PEO
9:1, 300 kDa) were investigated by XRD (Figure 19). All XRD patterns show a broad
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diffraction peak of molecular short-range order in the range between 15 and 35◦, which is
characteristic of amorphous polymers or amorphous regions in semi-crystalline polymers.
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Figure 19. XRD patterns of pristine, stabilized, and carbonized nanofibers made of PAN and a
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The XRD patterns of the untreated PAN and PAN/PEO nanofibers show clearly
identifiable diffraction peaks, which can be assigned to the respective polymers in good
agreement with the published literature (17◦ for PAN and 19.1◦ and 23.3◦ PEO) [56,57].
Stabilization leads to amorphization, which is indicated by the disappearance of sharp
diffraction peaks. Progressive carbonization and cyclization of the molecular structure
lead to a gradual increase in long-range order, which gradually narrows the diffraction
peaks towards a semi-crystalline hard carbon structure. The characteristic diffraction peaks,
which only fully appear at higher temperatures, are [002] at about 22.2◦ (26.5◦ for graphite)
and [100] at about 43.5◦ [58].

Finally, the carbon yield as well as the mass ratios gained after stabilization and
carbonization only are depicted in Figure 20. Firstly, the mass ratio after stabilization
depends strongly on the PEO content (Figure 20a), as expected, showing that PEO is
largely degraded during the stabilization process, as expected. On the other hand, the pure
carbonization process shows very similar values for all samples, with a slight tendency
towards higher values for samples with more PEO. This may be attributed to a lower
degree of carbonization in the non-fibrous areas with their lower surface-to-volume ratio.
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The overall carbon yield (Figure 20b) is correspondingly larger for samples with a
lower amount of PEO, i.e., highest for pure PAN and lowest for the 6:4 sample. On the
other hand, if the mass after carbonization is related to the mass of PAN in the sample, all
samples show higher normalized carbon yields than the pure PAN sample, indicating that
the PEO is indeed partly carbonized.

This finding shows that more research is necessary on the stabilization and carboniza-
tion of PAN:PEO nanofiber mats, especially related to the stabilization process, to possibly
find a more suitable process that enables stabilizing both polymers, e.g., by performing a
first stabilization step at low temperatures under N2 atmosphere, followed by typical tem-
peratures for the stabilization of PAN in air. Alternatively, stabilization could be performed
after fully washing the PEO out of the nanofiber mat blend; however, since no pores were
visible in the nanofibers after washing, it can be assumed that further thermal treatment of
the washed samples will not result in pore formation.

Finally, the unusual morphology of the 7:3 sample (first spinning process) indicates
that either small temperature changes in the spinning chamber have a larger impact than
expected, or even more spinning parameters have to be taken into account when results
from needle-based electrospinning are planned to be upscaled by changing to wire-based
or other needleless electrospinning techniques.

4. Conclusions

PAN:PEO nanofiber mats with different mass ratios and PEO molecular weights were
electrospun by a wire-based device and partly watered, stabilized, and carbonized. While
previous studies of needle-based electrospinning of similar solutions reported either smooth
or porous nanofibers after carbonization, depending on the exact solution parameters, here
we found smooth fibers combined with non-fibrous areas in the nanofiber mats as well
as unexpectedly large fiber diameters for a PAN:PEO ratio of 7:3. These results show
that transferring results from needle-based to needleless electrospinning is not always
straightforward, and more research on this polymer blend system is necessary to identify
all relevant solution and spinning parameters, which may influence the nanofiber and
mat morphologies.
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