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Abstract: Nanofibers can be produced by various techniques, such as a broad range of electrospinning
techniques to produce nanofiber mats from different polymers or polymer blends, often filled with
metallic or semiconducting nanoparticles or by different nanotechnological bottom-up or top-down
methods. They are important parts of a wide variety of energy applications, such as batteries, fuel
cells, photovoltaics, or hydrogen storage materials. Usually, their physical or chemical parameters are
measured by averaging over a fiber bundle or a part of a nanofiber mat. Here, we report the possibility
of measuring the different physical and chemical properties of single nanofibers and nanowires.
Such measurements of single nanofiber properties are more complicated than investigations of fiber
bundles or whole nanofiber mats and, thus, are less often found in the literature. After a fast increase
in such investigations between 2001 and 2009, the numbers of respective studies are now stagnating.
This review thus aims to make the different possibilities more visible to a broader scientific audience
by providing several examples based on atomic force microscopy (AFM) and other broadly available
techniques. The focus of this review is on technologies that reveal more information than the pure
surface morphology of nanofibers or nanowires, such as mechanical properties or wettability, porosity,
or electrical conductivity.
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1. Introduction

Nanofibers and nanowires are nowadays used for a wide variety of applications, from
sensing [1,2] to filtration [3,4], from biomedicine [5,6] to energy applications [7,8].

Nanofibers are often produced by electrospinning, enabling the creation of nanofiber
mats with aligned or arbitrarily distributed nanofiber from diverse polymers, polymer
blends, and included nanoparticles [9–11]. Such polymeric nanofiber mats can be car-
bonized to prepare carbon nanofibers [12–14], or even pure ceramic or metallic fibers can be
produced by calcination of the polymeric part of composite fibers [15–17]. Other processes,
such as enzyme-mechanical preparation of cellulose nanofibers, are usually applied only
for specific materials [18–20].

In many cases, these nanofiber mats are investigated as a whole, e.g., measuring the
average fiber diameter on a defined area of an electrospun nanofiber mat. Only a few studies
aim at measuring the physical or chemical properties of single nanofibers or nanowires, as
Figure 1 shows. This review collects the methods for single-fiber investigations reported in
the scientific literature and provides an overview of their possibilities and limits.
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Figure 1. Hits in the Web of Science for the indicated search phrases (data collected on 14 July 2024).

2. Nanofibers in Energy Applications

Nanofibers can be used in diverse energy applications [21,22]. Often, conductive
nanofibers, i.e., typically carbon nanofibers (CNFs), are used here, either alone or doped
with diverse nanomaterials [23]. Supercapacitors can be used as electrodes, where a high
surface area and good wettability are important parameters for high capacitance and good
cycle stability [24,25]. Such a high specific surface area as well as high total volume can be
obtained, e.g., by NaOH activation and subsequent carbonization of SiCNO nanofibers at
optimized temperatures [26]. Alternatively, CNFs can be used in composite electrodes with
a large surface area [27]. It should be mentioned that while high porosity and surface area
are generally found to be advantageous for nanofibers in energy applications, mechanical
robustness also has to be taken into account [28].

In fuel cells, CNFs can be used as catalyst carriers to reduce the necessary amount of Pt
or similar materials [29]. Here, charge transfer is a crucial parameter and thus conductivity
in single nanofibers as well as at the crossing points [30].

Diverse battery types use carbon nanofibers, such as lithium-ion batteries (LIBs), Na
ion batteries (NIBs), K-ion batteries (KIBs), etc. [21]. Here again, the porosity, the accessible
surface area, and the conductivity have been found to play an important role [31,32]. In
electrostatic capacitors, composites filled with Ba0.6Sr0.4TiO3 nanofibers were found to be
well-suitable dielectrics, reaching high energy storage efficiency [33].

Besides these energy-storing applications in rigid or flexible electronics [34], diverse
applications in energy harvesting or conversion are reported in the literature. In hydro-
gen production by electrochemical hydrogen reaction (HER), CNFs can be used due to
their high electronic conductivity, enabling high electrocatalytic activity [35]. Mechanical
energy harvesting by a triboelectric nanogenerator (TENG) is often studied using com-
posites containing CNFs of other conductive nanofibers, such as polyvinylidene fluoride
(PVDF)/graphene, whose conductivity and surface structure are crucial for the charge
collection and transfer [36–39]. With perovskite/PVDF nanofiber composites, triboelectric
and piezoelectric energy harvesting can be combined [40]. Using CNT/PEDOT:PSS conduc-
tive nanofibers, the thermoelectric effect was used for human body energy harvesting [41].
Mesoporous carbon nanowires or graphene oxide (GO)/cellulose nanofibers have also
been used for osmotic energy conversion [42,43].

Based on these studies, important parameters of nanofibers and nanowires are their
morphology, especially the porosity, conductivity, wettability, and mechanical properties.
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3. Measuring the Morphology of Single Nanofibers

While the morphology of nanofiber mats is regularly investigated in diverse studies,
there are also many reports of the morphology, i.e., surface structure and porosity, of
single nanofibers. Depending on the required resolution, the methods can coincide. While
normal optical microscopy is not suitable for nanofiber mats, confocal laser scanning
microscopy (CLSM) can often be used to visualize nanofiber mats if the single nanofibers
are not too thin [44–46]. The maximum lateral resolution of a CLSM is in the range of
140–200 nm [47,48], depending on the wavelength of the used laser and the numerical
aperture of the used lens, making this technology useful for an overview of the nanofiber
orientation. Measuring the nanofiber diameters, however, is limited to such nanofibers
with sufficiently large diameters since thinner ones are not visible in CLSM images and
will necessarily result in a larger error than measurements with higher resolution.

Amongst the latter, typical methods to investigate whole nanofiber mats are scanning
electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force
microscopy (AFM), with resolutions depending on the used instruments and also on
the sample surfaces [49]. SEM images are especially often shown in reports of diverse
nanofiber mats. While they are often used to measure nanofiber diameters [50–52], high-
quality SEMs can also investigate the fiber surface to a certain degree [53], as well as
integrated nanoparticles [54]. Some examples of such high-resolution SEM images are
given in Figure 2.

Figure 2. Scanning electron microscopy (SEM) images of nanofibers. (a) carbon nanofibers with
uniformly dispersed Fe/Co alloy nanoparticles, reprinted with permission from [54], Copyright
2021, Elsevier; (b) Au nanoparticles on graphene oxide (GO) nanofibers, reprinted with permission
from [55], Copyright 2020, Elsevier; (c) porous carbonized poly(acrylonitrile) (PAN)/poly(vinyl
pyrrolidone) (PVP) nanofibers, reprinted with permission from [56], Copyright 2020, Elsevier; (d) sur-
face and porous cross-section of activated carbon nanofibers, nitrogen-doped in the presence of Ni
foil, reprinted with permission from [57], Copyright 2020, Elsevier.
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Higher resolutions are enabled by TEM and AFM images. TEM allows for investigating
nanoparticles not only in the nanofibrous membranes [58] but also inside the nanofibers
themselves [59–61]. At the same time, TEM can, in principle, be performed on parts of
nanofiber mats or fiber bundles [62]. Very often, only single fibers are shown, and authors
should carefully avoid “cherry-picking” those parts of such nanofibers that best fit the
intended message [62]. It should be mentioned that sample preparation for TEM is much
more complicated than for many other techniques. Single fibers can, e.g., be dispersed in
isopropyl alcohol or in acetone, possibly ultrasonicated and drop-casted on a holey carbon
grid [58]. Alternatively, fibers can be inserted in acetone, transmit resin, polymerized,
and cut by an ultra-microtome to get thin slices [62]. Exemplary TEM images of single
nanofibers with nanoparticles or pores are depicted in Figure 3.

Figure 3. Transmission electron microscopy (TEM) images of nanofibers. (a) ZnO nanoparticles
in poly(vinyl alcohol) (PVA) nanofibers, from [28], originally published under a CC BY license;
(b) carbon nanofibers with uniformly dispersed Fe/Co alloy nanoparticles, reprinted with permission
from [54], Copyright 2021, Elsevier; (c) Janus nanofiber with EC-Ag nanoparticles on one side and PVP
on the other side; reprinted with permission from [63], Copyright 2020, Elsevier; (d) porous cellulose
acetate-based carbon nanofiber, reprinted with permission from [64], Copyright 2022, Elsevier.

AFM has another advantage besides the high resolution and the possibility to easily
measure the roughness of single nanofiber surfaces [65,66], that is, the option to detect mate-
rial differences, measure elastic properties, etc., in addition to the surface morphology [66].
The disadvantage, on the other hand, is the overestimation of nanofiber diameters due to
the AFM tip radius, which broadens the apparent diameter and the elastic displacement of
nanofibers in the scan direction [49]. Generally, the touching measurement method—even
in the so-called non-contact or tapping mode—often results in measurement errors due to
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erroneous fiber movements, and generally, objects with relatively large height: width ratio,
such as nanofibers, will lead to less sharp images due to the required AFM settings [67].
Some exemplary AFM images of fiber morphologies are depicted in Figure 4, including a
phase image in which height changes are better visible than in standard topography maps.

Figure 4. Atomic force microscopy (AFM) images of nanofibers. (a) PAN and PAN/poly(ethylene
glycol) (PEG) fibers with different blend ratios, reprinted with permission from [68], Copyright, 2022,
Elsevier; (b) AFM phase image of a poly (L-lactic acid) (PLLA) nanofiber, reproduced from [69], origi-
nally published under a CC-BY license; (c) topography of polyethylene terephthalate/thermoplastic
polyurethane (PET/TPU) nanofiber with TPU bead, reprinted from [70], originally published under a
CC-BY license.

While such morphological investigations of single or few nanofibers can often be
found in the literature, there are other AFM modes that can be used to measure more
properties of nanofiber than just pure morphology, as described in the next section.
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4. Other AFM Techniques to Investigate Single Nanofibers

Atomic force microscopy can not only be used to measure surface topography but also
to detect several more properties depending on the chosen modes and cantilevers, which
are briefly described here.

Magnetic properties, e.g., can be measured with high spatial resolution by magnetic
force microscopy (MFM) [71,72]. MFM measurements can be performed relatively simply
on flat surfaces, using a special cantilever with a magnetized tip and applying a specific
double-scanning technique to separate morphological from magnetic information. On
nanofiber mats, however, MFM measurements are much more complicated due to the
great height differences and large pores between neighboring nanofibers [73]. Only a few
experimental reports of MFM on electrospun nanofiber mats can thus be found in the litera-
ture [74,75]. Interestingly, more studies have used MFM on single nanofibers or nanowires
placed on a sample holder, reducing the problem of height differences [73]. Nevertheless,
the interpretation of the magnetic configuration in such nanowires or nanofibers is not
straightforward and needs proper interpretation [76–78]. Especially the stray field of the
tip may influence the measurement results and make their interpretation complicated [79],
leading to studies that verified their finding by micromagnetic simulations [80] or even
developed new MFM tips to tailor the stray fields [81].

Kelvin probe force microscopy (KPFM) can be used to measure the surface potential (or
work function) on a wide variety of materials using a conductive AFM tip [82]. Measuring
the force between the sample and tip is possible in the amplitude modulation mode, i.e.,
the intermediate mode in which the cantilever oscillates near its resonance frequency, while
the force gradient is measured in the frequency modulation mode, i.e., the non-contact
mode [82]. Using this technique, Wu et al. measured the photocatalytic performance of
single TiO2 nanofibers under illumination [83]. Measuring the surface potential of self-
assembled poly(3-hexylthiophene) (P3HT) nanofibers by KPFM, Liscio et al. mentioned
the necessity to simulate the KPFM image in order to extract the surface potential of very
fine nanofibers from KPFM measurements [84]. Deconvolution procedures to increase
the resolution of KPFM were also investigated in other studies [85]. However, KPFM
measurements on nanofiber mats or single nanofibers are not often reported in the literature.

Piezoresponse force microscopy (PFM) can be used to measure the local piezoelectric
deformation of a specimen due to the electric field applied by the AFM tip, enabling making
ferroelectric domains visible [86]. This technique was used, e.g., to measure the out-of-plane
and in-plane piezoelectric response of poly(vinylidene fluoride) (PVDF) nanofibers [87]. On
Pb(Zr0.52Ti0.48)O3-CoFe2O4 composite nanofibers, PFM was used to map Young’s modulus
on multiferroic nanofibers [88]. An improved so-called dual-frequency resonance tracking
PFM technique was applied to map ferroelectric domains in a BiFeO3 nanofiber with
very small out-of-plane piezoresponse [89]. PFM measurements on different PVDF/Fe3O4
nanofibers revealed differences between the single nanofibers, while the results along one
single nanofiber were similar [90].

Scanning thermal microscopy (SThM) can be used to measure thermal conductivity
on the nanoscale [91]. Besides a special SThM probe, which is thermally active or ther-
mally sensitive, using a nanoscale thermocouple or resistor, the instrument needs a high
temporal resolution with milli- to microseconds thermal time constant to enable these
measurements [92]. Only a few studies of SThM on nanofibers can be found in the litera-
ture, e.g., measuring the thermal performance of polyimide (PI) nanofibers with thermally
conductive silicon nitride (SiN) nanoparticles [93], thermoplastic polyurethane fibers with
SiN nanoparticles [94], or carbon/boron nitride nanotubes [95].

Finally, the PeakForce quantitative nanomechanical mapping (PFQNM) mode avail-
able in some AFMs should be mentioned, which allows for measuring Young’s modulus of
different materials [96]. This technique is often applied to cells and in other biophysical
investigations [97,98]. Only a few studies on single nanofibers can be found in the literature,
such as PFQNM on differently functionalized cellulose nanofibers [99] or on modified
chitosan nanofibers [100].
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5. Conductivity Measurements of Single Nanofibers

Measuring the electric conductivity of a nanofiber mat is not easy, as the Ohm me-
ter/multimeter or impedance spectrum analyzer, used for DC or AC conductivity mea-
surements, respectively, needs good contact with the conductive nanofiber mat without
destroying the nanofibrous structure [101,102]. Contacting a single nanofiber electrically,
however, requires much more preparation.

One possibility to prepare a four-probe measurement setup for single nanofibers
was described by Wang et al. [103]. Starting with a Si/SiO2 substrate, they deposited a
patterned Au film (Figure 5a), etched the area between the electrodes away (Figure 5b),
positioned the nanofiber for measurement (Figure 5c), bonded it by the conductive ionomer,
which also formed the nanofiber (Figure 5d), and finally performed four-probe impedance
measurements (Figure 5e). By this technique, they could show the negative influence of the
carrier polymer PEO on the proton conductivity of a Nafion/PEO nanofiber as well as the
high sensitivity of this nanofiber on the relative humidity, while the proton conductivity of
a nanofiber with diameter 650 nm at 25 ◦C and 97% relative humidity was approximately
10−2 S/cm [103].

Figure 5. Preparation process of a micro-electrode with ionomer nanofiber. (a) Deposit Au on
the silicon substrate with an oxide layer on the surface; (b) Etch the substrate between the middle
electrodes by Reactive-Ion Etching (RIE) method. (c) Place the nanofiber on the micro-electrode by
micro-probe using the nanofiber manipulation system; (d) Inject tiny droplets of ionomer solution
to the contact region between nanofiber and micro-electrode by micro-pipette; (e) Dry the ionomer
droplets into film and conduct impedance measurement. Electrode A and D are the current-carrying
electrodes, and electrodes B and C are the potential-sensing electrodes in the four-probe setup.
Reprinted with permission from [103], Copyright 2022, Elsevier.

In a similar way, Sengupta et al. measured the conductivity of single carbonized
PAN nanofibers by direct electrospinning them on micro-trench substrates positioned on a
fast-rotating cylindrical collector, resulting in automatic alignment of single fibers across the
trench so that measurements could be performed by connecting the conducting electrodes
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between the nanofiber was located by glued Cu strips, as depicted in Figure 6 [104].
A similar method was suggested by Mondal et al. to measure Ag/C nanofibers [105].

Figure 6. Schematic of the electrospinning setup for single PAN nanofibers across micro-trench and
nanofiber bundles on an aluminum foil substrate; photograph of the fabricated micro-trench sample;
SEM image of electrospun single PAN nanofibers across the micro-trench. Reprinted from [104],
originally published under a CC-BY license.

Placing a conductive nanofiber over the 40 µm broad gap between two electrodes and mea-
suring current-voltage curves was also used by Serrano-Garcia et al. to measure the conductivity
of single poly(3-hexylthiophene-2,5-diyl)/polystyrenepoly(benzimidazobenzophenanthroline)
(P3HT/PS-BBL) nanofibers with P3HT/PS core and BBL shell, detecting a conductivity
around 1.4 × 10−4 S/m [106]. Similarly, Lee et al. deposited a single conductive nanofiber
over an array of gold contacts with distances 50 µm between them and measured current-
voltage curves to receive the Ohmic resistance of around 1.6 kS/m [107].

Another way to establish a four-probe contact with a single titanium oxynitride
(TiOxNy) carbon composite nanofiber was described by Koderman Podborsek et al., who
connected the four measurement chip’s contacts with the nanofiber by platinum deposited
by focused ion-beam (FIB), resulting in conductivity values around 1 kS/m [108]. In a
similar way, Henrichsen et al. contacted single nanofibers by placing them on silicon dioxide
support and coating electrodes, separated by a shadow mask to receive two unconnected
conductive electrode areas, as shown in Figure 7 [109].

Figure 7. SEM image of a conductive nanofiber on a silicon dioxide support with electrodes separated
by the shadow of a silicon wire mask. Reprinted with permission from [109], Copyright 2007, Elsevier.

An interesting test was performed by Qi et al., who measured the conductivity of
nanofibers along the fiber direction and perpendicular to it [110]. For this, they prepared



Nanoenergy Adv. 2024, 4 308

samples with aligned nanofibers and measured parallel and perpendicular to the fiber
direction by covering parts of the nanofiber mats with thin conductive sheets, as shown in
Figure 8, resulting in conductivities in the range of 10−6–10−3 S in the conductive direction
and of around 10−10 S in the insulating direction [110]. It should be mentioned that this
measurement method is not related to single fibers but is added here as an example of how
conductivity perpendicular to the fiber direction may be made measurable.

Figure 8. Test method for the conductive anisotropy of the samples. (a) Measuring conductivity
along the fibers; (b) measuring conductivity perpendicular to the fibers. Reprinted from [110], with
permission from Elsevier.

6. Measuring the Wettability of Single Nanofibers

Due to the importance of wettability in diverse applications, this parameter is often
measured on nanofiber mats [24,25]. For such nanofibrous membranes, the wettability
can not only be modified by the material composition of the nanofibers [66,111,112] and a
potential chemical or thermal post-treatment [113,114], but it also depends on the nanofiber
diameters [115]. The wettability of nanofiber mats is mostly related to the water contact
angle (or contact angle measured for other fluids that are relevant for a specific applica-
tion) [116–118], but water uptake and drying rate are sometimes also taken into account in
the definition of wettability [115].

For single nanofibers, water uptake and drying rate are not well-defined. The water
contact angle, on the other hand, can not easily be measured on a single nanofiber, as a
droplet for the sessile drop test—the most common method to measure the water contact
angle [119–121]—would have to be smaller than the nanofiber diameter. While wetting
inside nanotubes and nanochannels is indeed studied in theory and experiment [122],
experimental investigations of sessile nanodrops on nanofibers are usually not found in
the literature. Besides experimental challenges, this may also be attributed to the wetting
properties of nanofibers differing from those of plain solid surfaces [123].

Interestingly, measuring the contact angle is nevertheless possible on single nanofibers.
For this, the so-called Wilhelmy force balance method is used [124,125]. Its principle is
depicted in Figure 9 [126]. For such measurements, a nanofiber is usually attached to the
tip of an AFM by a nanomanipulator and fixed by a drop of glue so that it can be inserted
into a probe liquid, and the force (in the range of nN) due to the fiber-liquid contact is
measured [127]. This force is equal to F = γdcosθ with the surface tension γ of the liquid,
the nanofiber diameter d, and the liquid-nanofiber wetting contact angle θ, which is the
only unknown parameter [127].

Some studies have reported single nanofiber contact angles based on this technique.
Wang et al. used it to measure the contact angle on carbon fibers with grafted car-
bon nanofibers [128], while Barber et al. examined single carbon nanotubes [124,129].
Stachewicz et al. measured contact angles on PA6 nanofibers [130] and examined wetting
differences between complete nanofiber mats and single nanofibers [131]. Yazdanpanah
et al. used metal alloy nanowires instead, grown on the AFM probe, to investigate the
contact angle with different low molecular weight liquids [132].

However, in spite of the available and well-known technique, the number of studies
of single nanofiber wetting behavior is still small. This is different for measurements of
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the mechanical properties of single nanofibers, although the measurement techniques are
similarly complicated, as shown in the next section.

Figure 9. Wilhelmy force balance method, showing nanotubes NT for testing and as a sample
introduced in a test liquid. Reprinted with permission from [126]. Copyright 2006, American
Chemical Society.

7. Measuring the Mechanical Properties of Single Nanofibers

Among the typical mechanical properties that can be measured on macroscopic scales,
mechanical stability, and flexibility are amongst the most important ones for nanofiber mats
used in energy applications [28]. This is especially important for carbonized nanofiber mats
in which mechanical robustness and foldability are often reduced as compared to as-spun
polymeric nanofiber mats, strongly depending on stabilization and carbonization parame-
ters as well as nanofiber orientation, spinning parameters, and spinning solution [133–135].

For single nanofibers, measuring different mechanical properties typically involves an
atomic force microscope. Tan et al. described a tensile test on a single PEO nanofiber [136].
They used an inverted microscope stage to stretch the nanofiber, which was glued on a
coverslip, and a piezoresistive AFM cantilever with a known spring constant to measure the
tensile load. Nanofiber manipulation was performed by so-called femtotips, i.e., ultrafine-
tipped micropipettes. Electrospinning was performed for a short time using a wooden
frame with parallel conductive strings as a substrate to gain single nanofibers, which
leads to highly aligned nanofibers oriented perpendicular to the conductive strings. In
this way, stress-strain curves of single PEO nanofibers could be measured, resulting in
Young’s modulus of approximately 45 MPa [136]. In a similar way, Zou et al. investigated
the influence of pre-oxidation on the mechanical properties of single PAN nanofibers and
found the highest strength, modulus, and toughness for a pre-oxidation temperature of
210 ◦C [137].

A similar approach was used by Hwang et al., who performed tensile tests with an
AFM cantilever inside a scanning electron microscope [138]. Here, both ends of a PA
6 nanofiber are fixed, and the cantilever hooks the nanofiber (Figure 10a), elongates it
(Figure 10b), and drags it further (Figure 10c) until it breaks (Figure 10d). The authors
mentioned using a cantilever with a conical tip instead of a pyramidal one to avoid fiber
fracture at the contact point. In this way, they found maximum elongations of 44–130% as
well as a tensile strength of 364–94 MPa for nanofibers with diameters of 60–170 nm [138].
The idea of fixing both ends of a nanofiber and dragging it apart by an AFM tip in the
middle was also used by Alharbi et al., who investigated PCL nanofibers in this way and
found Young’s modulus to decrease from 3 GPa to 0.5 GPa upon increasing the nanofiber
diameter from 40 nm to 100 nm [139]. Similarly, Sharpe et al. measured fibrinogen:PCL
nanofibers, where they found strong strain softening from 1.1 GPa (for 5–10% strain) to
110 MPa (for more than 40% strain) [140], while Baker et al. reported a tensile modulus of
around 62 MPa for single PCL nanofibers [141].
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Figure 10. The procedure of the nano-tensile test: (a) fiber hook-up, (b) fiber elongation, (c) further
fiber elongation, and (d) fiber fracture and entanglement. Reprinted with permission from [138],
Copyright 2010, Elsevier.

Another mechanical investigation of nanofibers was suggested by Parvej et al., who
examined the transverse elastic modulus of cellulose nanofibrils using AFM-based nanoin-
dentation on top of the nanofiber surface [142]. By measuring normal force vs. z-piezo
displacement on top of the cellulose nanofibril in comparison with the normal force for
the same measurement on the silicon wafer below, they modeled the elastic modulus from
different analytical models and assumptions, resulting in a transverse elastic modulus of
(6.9 ± 0.4) GPa [142]. Nanoindentation by an AFM tip was also used by Bidhar et al. to cal-
culate Young’s modulus of zirconia nanofibers from force-distance measurements by some
assumptions and models, leading to a value of around 190 GPa [143]. Similarly, Bulbul et al.
calculated Young’s modulus of single biocomposite nanofibers by nanoindentation [144].

In a more complex setup, Cheng and Wang mounted a cellulose nanofibril over
a groove with defined length and measured the deflection of the fibril at this position
(Figure 11) [145]. By also measuring the cantilever deflection on the waiver and on the
cellulose fibril where it is placed on the waver, they could evaluate the difference between
the values measured at these different positions to differentiate deflection from compression
of the fibril. The elastic modulus, calculated by beam theory for a long beam with both ends
fixed, was found to be approx. 93 GPa for a cellulose nanofibril of diameter 170 nm [145].

Figure 11. Three AFM tip testing positions during the bending test. Reprinted with permission
from [145], Copyright 2008, Elsevier.
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As mentioned before, calculations of mechanical properties from nanoindentation,
nano-tensile, and nano-bending tests are not easy and necessitate several models and
assumptions. An overview of such calculations of the mechanical properties from different
AFM-based mechanical test methods for single nanofibers or nanowires can be found in
Ref. [146].

8. Other Microscopic Techniques to Investigate Single Nanofibers

Besides the aforementioned techniques to investigate different parameters of nanofibers,
a few more should be mentioned here. Scanning near-field optical microscopy (SNOM) can
be used to measure the propagation of excited surface plasmon polaritons in nanofibrous
waveguides [147] for nanoscale morpho-chemical profiling of polymer blend nanofibers [148]
or detection of the molecular orientation angles in nanofibers [149]. Polarized (confocal)
Raman microscopy enables quantifying molecular orientation and crystal structure of
single nanofibers [150,151] or characterization of the chemical structure and morphology of
core-shell nanofibers [152]. Tip-enhanced Raman scattering (TERS) allows for detecting
water-decorated carboxyl/hydroxyl groups at edge atoms of carbon-coated fibers [153] or
measuring spectral modes of carbon nanotubes [154].

The properties of single nanofibers described in this section are different from the
previously defined most important properties of nanofibers for energy applications (as
defined at the end of Section 2) and are thus not described in more detail.

9. Conclusions

This review gives an overview of measurements on single nanofibers, concentrating
on the physical values most important for energy applications, i.e., porosity and surface
roughness, conductivity, wettability, and mechanical properties. Most of these parameters
can be measured using AFM-based techniques. In the cited papers, usually, only a few
single nanofibers are investigated due to the great effort necessary for single nanofiber
contacting/fixation and performing the planned measurements. Nevertheless, we hope
that this overview will inspire more authors to use these techniques, especially since an
AFM is available in many research groups, to gain more precise measurements instead of
the common values averaged over parts of nanofiber mats.
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