
Legal Notice
This work is protected by copyright and/or related rights. You are free to use this work in any way
permitted by the copyright and related rights legislation that applies to your usage. For other uses, you
must obtain permission from the rights-holder(s).

This document is made available

Date of secondary publication:

Conference Paper |
This version is available at:

Secondary Publication

Primary publication

Cover sheet v2.0 (only this page) created by Alexander Kobusch for Bielefeld University of Applied Sciences and Arts is licensed under CC0 1.0 Universal.

Kuchling, Peter: Exploration Techniques in Active Learning in Classification

30.09.2024

Accepted Manuscript (Postprint)
https://doi.org/10.57720/4960

P. Kuchling, "Exploration Techniques in Active Learning in Classification," 2024 International Joint Conference on Neural
Networks (IJCNN), Yokohama, Japan, 2024, pp. 1-9, https://doi.org/10.1109/IJCNN60899.2024.10649980

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

with all rights reserved.

Publisher Statement

Exploration Techniques in Active Learning in
Classification

Peter Kuchling
Faculty of Engineering and Mathematics

Hochschule Bielefeld – University of Applied Sciences and Arts
Bielefeld, Germany

peter.kuchling@hsbi.de

Abstract—Active Learning is the process of selectively query-
ing unlabelled data to be classified by an expert for efficient
supervised learning on small data to, among other things, reduce
labelling costs. While many works are concerned with the notion
of uncertainty quantification as a measure to query informative
data points, less work has been dedicated to the preceding
exploration phase. In this article, we introduce techniques which
can be used to explore the unlabelled data before switching to
an exploitation algorithm such as query by uncertainty. Besides
benchmarking various algorithms, a novel “fake class”-technique
is introduced, which is specialized on discovering new classes
within the unlabelled dataset, but also generally improves the
performance of the algorithms.

Index Terms—Active Learning, Exploration, Supervised
Learning, Pool-based query

I. INTRODUCTION

A. Active Learning

Nowadays, a large amount of unlabelled data can be ac-
cessed for free or at relatively low cost. However, the labelling
process of such data can take up large amounts of resources,
such as time (e.g. annotating large texts or long videos) and
money (expensive experiments, medical procedures, expert’s
assessment). Therefore, one is inclined to reduce the amount
of resources needed by only labelling points which are deemed
“useful”. The hope is that this way, a learner can be trained on
a low amount of high-quality data to match the performance
of a classical supervised learner with a larger training set.
The idea of active learning is to let the learner itself decide
what it deems useful data to be labelled. This process is called
querying, where one or more points of the unlabelled data are
sent to an expert, or oracle, to be assigned their true label.

Usually, active learning can be categorized as one of three
settings. First, we have membership query synthesis, where
the learner generates synthetic points to be labelled by an
expert. This setting may not work in situations where the
learner may produce examples that are not recognizable, e.g.,
an arrangement of pixels that does not represent a number
in handwritten digit recognition [1]. The second scenario is
the stream-based scenario, where the examples are presented
to the learner sequentially and it needs to decide whether to

The author is supported by the SAIL network, funded by the Ministry of
Culture and Science of the State of North Rhine-Westphalia (Germany) under
the grant no NW21–059B.

keep an example and have it labelled, or to discard it. The
third setting is the pool-based scenario, where the learner
has access to the whole dataset from the beginning. It can
then decide which examples it wants to query for labelling.
Depending on the precise conditions, the querying process may
be done sequentially or at once. The focus of this article is
the pool-based scenario with query processes depending on
the algorithm. For more information on the various scenarios
and overviews of active learning in general, we refer to the
surveys [2], [3].

An illustration of the workflow of an active learner is given
by [4, Figure 1]: Assume that a set of already-labelled data
is available to the learner. Given a probabilistic model, each
unlabelled point can be assigned an uncertainty score. The
point with the highest uncertainty is then queried, since this
point is deemed to be the most informative. This part of
the active learning process is called exploitation phase, since
the learner exploits the previously gained knowledge of the
available class labels to improve the model. The technique is
used in various works, e.g. [5]. However, this technique can
fail if the initial data is not chosen properly, which is known
as sampling bias. One example is presented in Section I-C.

To mitigate this problem, one needs to employ an efficient
exploration technique on the data before exploiting the knowl-
edge gained there. This part is known as the exploration phase,
and it focuses on representative instead of informative data. In
this article, we introduce possible exploration techniques and
compare them to previously analysed methods. Furthermore, a
new exploration mechanism is introduced, which also employs
the probabilistic learner for exploration by generating a “fake
class”.

In summary, the contribution of this article is as follows:

• Introduce the two novel exploration algorithms “Latin
Hypercube Sampling Dirac” and the center of gravity-
based approach.

• Introduce the novel “fake class”-technique, which mod-
ifies any exploration algorithm to especially look for
undiscovered classes.

• Discuss practical considerations and benchmark the meth-
ods on various synthetic and real datasets against the state
of the art.

The article is structured as follows. The remaining part
of Section I explains the datasets used for benchmarking
and the quantities used to measure the performance of the
algorithms. We close the section by commenting on some
practical considerations. Section II presents the algorithms in
more detail. In Section III, we introduce and discuss the new
“fake class”-technique for exploration. Section IV presents and
discusses the results of the benchmarks, while Section V gives
a conclusion and outlook on possible future research.

B. Datasets used for benchmarking

Let us briefly describe the underlying tests conducted for
each algorithm. To focus the attention on the core aspects
of the exploration algorithms, the datasets considered for
benchmarking all have continuous real-valued features with no
missing data. Nevertheless, the datasets can be distinguished
by number of features and balance of classes. Besides testing
on some binary artificial datasets with varying degrees of
balance as in [4], we considered three real-world datasets
with more than two classes. Especially for class detection,
the glass dataset is interesting, as there are some classes with
a low number of occurences. Additionally, two instances of
the synthetic two moon dataset are generated to compare
the performance of the exploration algorithms on binary data
which is not linearly separable as well.

The tested datasets are as follows:
• Synthetic binary datasets, points uniformly distributed in

the unit square [0, 1]2. The class boundaries are given by
1) B1 = {x1 = x2}, balanced classes
2) B2 = {x2 = x1 +

1
2}, ratio 7:1

3) Checkerboard pattern, balanced classes
• Dry Bean Dataset [6]
• Yeast Dataset [7]
• Glass identification [8]
• Two moons, synthetic dataset, 2000 data points
• Two moons, synthetic dataset, 2000 data points with

Gaussian noise with standard deviation 0.2.
The three artificial datasets on [0, 1]2 as well as the noisy
moons are depicted in Figure 1. For each dataset, various
amounts of query budget were used for exploration. Fur-
thermore, to account for randomness in the initial sampling
process, each experiment was repeated 50 times with different
initial data.

As probabilistic classifier, a random forest with M = 200
trees was used, since it showed better performance than, say,
a neural network in the small-data setting of active learning.

C. Performance measures

The first measure for performance is the classification
accuracy of the active learning algorithm. However, as noted in
e.g. [9], exploration queries do not produce the most accurate
models, unless combined with an exploitation algorithm. This
is especially visible in [9, Figure 1]. Therefore, one is inclined
to use another way of judging the performance of exploration
techniques. To this end, let us look at the following motivating
example.

When examining active learning queries, one may be
tempted to start with exploitation query right away. After all,
the idea to eliminate uncertain classifications by obtaining a
definite label sounds like a good idea. However, if the model
is not prepared, this may have negative consequences. For our
example, let us look at an active learning situation given the
Iris dataset [10] with three random points as well as eight
queries by uncertainty. The result is depicted in Figure 2: Here,
the learner deemed the left region to be certainly belonging
to the blue class, while Figure 3 shows that this is actually
not the case. The example described above motivates adding
class discovery rate as an alternative performance measure.
Here, the number of classes discovered after the initial data is
recorded for each seed, then averaged over the total number
of classes. Especially in multiclass scenarios it may make
sense to take class discovery into account, which is done in
our benchmarks for the multiclass datasets. But even in an
imbalanced binary classification problem, this measure can
be used as an indicator of the capabilities of discovering the
minority class.

D. Practical Considerations

Besides performance in general, there are some factors one
should keep in mind when considering which exploration
algorithm to use. Some of the algorithms presented below
query points sequentially, while others divide the feature space
and distribute all points in one step. Such algorithms are not
suitable if one wishes to move freely between exploration and
exploitation, such as in ε-greedy algorithms.

The algorithms presented below are tested in a pool-based
scenario. However, most of them generate a synthetic point on
the way. Therefore, one may also think about using them in a
membership query scenario.

The nearest-neighbour search used in Section II needs
an underlying distance function on the feature space. When
replaced with the fake class-algorithm presented in Section
III, this requirement is no longer present. This also means
that the fake class-algorithm can be used in conjunction with
other algorithms not presented here, as long as they produce
a synthetic point in the feature space, even with categorical
features. However, this has not been tested for performance
yet. One drawback of the fake class-algorithm is the much
higher computational time, as the probabilistic learner has to
be trained for each query.

One last property to keep in mind is structure-agnostic vs.
structurally sensitive algorithms: Some of the algorithms pre-
sented below only need the boundaries of the feature space to
work, while others take the structure of the unlabelled dataset
into account. This may have benefits, but also drawbacks,
depending on the dataset.

II. EXPLORATION QUERIES

As stated before, an exploration algorithm should focus on
finding “representative” data points. The notion of representa-
tiveness is used in statistics when talking about e.g. surveys,
indicating that each participant of the underlying dataset is

(a) Linear decision boundary B1, bal-
anced classes

(b) Linear decision boundary B2, im-
balanced classes

(c) Checkerboard pattern (d) Two moons dataset, σ = 0.2

Fig. 1. Artificial datasets used for benchmarking.

Fig. 2. 3 random points and 8 uncertainty queries may result in a missing
class.

Fig. 3. True classes of the first two features of the PCA-transformed Iris
dataset

equally likely to be selected. Hence, the first interpretation
of “representative” is simply “randomly chosen”. There are
actually already two ways to consider randomness on the
underlying dataset: On the one hand, one may pick a point
from the dataset at random, which we shall call “random
choice”. On the other hand, one may say that the points stem
from some underlying (unknown) distribution and we select
the points by uniformly sampling a point from the whole
feature space, then selecting the closest real data point, which
we call “spatial random” sampling.

Our goal is to try and intelligently select points in a way
that outperforms random selection, while keeping the idea of
“representative”. Therefore, we consider mechanisms which
imitate some property of random sampling while exploiting

the structure of the underlying data points and/or the already-
labelled points. The three concepts based on this idea are as
follows:
• “Representative” meaning “balanced”: This concept can

be seen within balanced exploration and in the Latin
Hypercube-based queries.

• Central limit theorem: This is a mathematical property
of random sampling. It can also be found in Latin
Hypercube sampling.

• The law of large numbers: This mathematical result states
that the average of a sample approximates the mean of
the underlying distribution. This concept is used for the
center of gravity-based approach.

The mathematical results mentioned above can be found in
any standard work on probability theory, such as [11]. The
connection of the concepts and the algorithms are explained
in more detail when describing the individual methods.

In total, we present six selection techniques for data ex-
ploration which will be explained in detail below. The first
two techniques (“Spatial Random” and “Random Choice”)
query points at random as a baseline. For comparability, all
algorithms start out with one random initially labelled point,
as this is required for some of the algorithms.

Most techniques usually generate a “synthetic” point in the
feature space which is not included in the underlying dataset.
In this case, we query the closest existing point (via Euclidean
distance). This idea was also applied in another active learning
context in [12] under the name “query synthesis and nearest
neighbor search”.

In Section III, a novel modification of the algorithms is
introduced taking into account the capabilities of the proba-
bilistic learner.

Let us explain the query techniques in detail now.

A. Spatial Random

For this method, a random point within the hypercube
enclosing the dataset is generated, uniformly distributed in
the feature space. The method is therefore completely dataset-
agnostic, only needing the boundaries of the feature space.

B. Random Choice

In this case, a random point from the pool of unlabelled
data is chosen in each step. As the first method, this one is

Fig. 4. Latin Hypercube Sampling with uniform division, on PCA-
transformed Iris dataset

completely random. However, since we can only query points
directly and not generate some point within the feature space,
this method takes into account the underlying structure of
the data. From another point of view, this method is more
likely than Spatial Random to sample a point from a densely
populated region. Since we select a point of the underlying
data directly, there is no need to query the nearest point. To
keep the idea consistent with the remaining methods, one can
think of it as randomly selecting a data point and querying the
closest point, which is the point itself.

C. Balanced Exploration

This method aims to query points in a way that is balanced
within the feature space. Namely, the query algorithm checks
for each dimension whether there are more points closer to the
upper bound or to the lower bound, and queries a random point
within the opposite region, accordingly. The method therefore
queries points from regions which are underrepresented. This
method was first introduced in [4].

D. Latin Hypercube Sampling, uniform intervals

The Latin hypercube sampling (LHS) method aims to
sample points uniformly in space. To this end, the space is
divided into Nd hypercubes of uniform size, where d is the
dimension of the feature space. A configuration of N samples
is chosen in such a way that no two samples share a row
or column. Figure 4 shows an example of Latin hypercube
sampling with uniform division of intervals on the first two
features of the PCA-transformed Iris dataset with d = 2 and
N = 5.

Note that this method of sampling is data-agnostic, since
the division of the feature space is done independently of the
underlying data. This method, together with various variants,
was used in [4] as well. The method actually has some
mathematical foundations, as it exhibits similar features to
random sampling, such as the central limit theorem. These
statistical properties have been discussed in works such as
[13]–[16].

Fig. 5. Latin Hypercube Sampling with division by number of points, on
PCA-transformed Iris dataset

E. Latin Hypercube Sampling, adjusted to the number of
points (“LHS Dirac”)

This novel approach takes into account the structure of
the underlying data and combines it with the idea of Latin
hypercube sampling. The structural information provided by
the unlabelled dataset remains unused in the above imple-
mentation of LHS. In the novel approach presented here, the
LHS approach is modified to incorporate the structure of the
unlabelled dataset into the interval bounds. Namely, for each
dimension, the space is divided up uniformly with respect to
the number of points instead of uniformly in space. The idea
here is to sample points via the Latin hypercube technique in
a way that represents the data density within the feature space.

Note that to employ the hypercube exclusion principle used
in this method, we are not able to divide the data uniformly
simultaneously in all dimensions. Similarly to Figure 4, we
illustrate this method on the PCA-transformed Iris dataset in
Figure 5.

F. Center of gravity-based queries

One way to approach systematic exploration is to query
points in regions which are less explored. To do so, starting
from the center of the unlabelled data, we want to explore
“away” from the already-labelled data, i.e.,

Xsynth = CU +A(CU − CL) (1)

where A > 0 and CU and CL denote the centers of the
unlabelled and labelled data, respectively. Of course, one may
ask how to choose the parameter A correctly. This is answered
by considering a different idea. Recall from statistics that
random sampling follows the law of large numbers, i.e., under
certain assumptions, the average of a sample converges to the
theoretical mean of its distribution:

1

N

N∑
i=1

Xi
N→∞−−−−→ EX

where X,X1, X2, . . . are all independent samples following
the same distribution. While we do not know the true distri-
bution of the data, we can take the center of gravity (COG) of
the whole dataset as an approximation of EX . To this end, we

query the point which moves the COG of the labelled data as
close to the COG of the whole dataset as possible. The idea
here is to use the COG as an indicator of similarity between the
labelled data and the whole dataset, so trying to match these
centers would indicate that the labelled data is representative
of the whole dataset.

Denote by L = {x1, . . . , x|L|} and U = {y1, . . . , y|U|} the
set of labelled and unlabelled data points, respectively, where
|L| and |U| denote the number of points in each of the sets.
Furthermore, CL and CU are explicitly defined as

CL :=
1

|L|

|L|∑
i=1

xi and CU :=
1

|U|

|U|∑
j=1

yj .

Denote by D the total dataset, i.e., D = L ∪ U and

CD =
1

|D|

[|L|∑
i=1

xi +

|U|∑
j=1

yj

]
.

Note that |D| = |L|+ |U|. We also consider the centers after
querying a new datapoint q ∈ U :

CL∪{q} =
CL|L|+ q

|L|+ 1
and CU\{q} =

CU |U| − q

|U| − 1

We want to find the unlabelled point which - once added to
the labelled set - would move the center of the labelled data
as close as possible to the center of the whole dataset. In other
words, our goal is to query the point q ∈ U such that

q = argmin
q∈U

|CL∪{q} − CD|

= argmin
q∈U

∣∣∣CL|L|+ q

|L|+ 1
− CL|L|+ CU |U|

|L|+ |U|

∣∣∣
= argmin

q∈U

∣∣∣ CL|L||L|+ 1
− CL|L|+ CU |U|

|L|+ |U|
+ q · 1

|L|+ 1

∣∣∣
where the outer | · | denotes the Euclidean distance. Note that
the argmin stays invariant if we multiply the whole expression
by the positive number |L|+ 1:

q = argmin
q∈U

|CL∪{q} − CD|

= argmin
q∈U

∣∣∣CL|L| − |L|+ 1

|L|+ |U|
(
CL|L|+ CU |U|

)
+ q
∣∣∣

= argmin
q∈U

∣∣∣ |L|+ 1

|L|+ |U|
(
CL|L|+ CU |U|

)
− CL|L|︸ ︷︷ ︸

(∗∗)

−q
∣∣∣

where in the last step, we multiplied the part within the
absolute value by (−1) (keeping its value equal).

Looking at the final expression, our goal is to find the point
q ∈ U which is closest to the vector (∗∗). Let us further
examine this expression:

(∗∗) = |L|+ 1

|D|
(
CL|L|+ CU |U|

)
− |L|(|L|+ |U|)

|D|
CL

=
1

|D|
(
CL|L|+ CU |U|+ |U||L|(CU − CL)

)
= CD +

|U||L|
|D|

(CU − CL)

In an active learning situation, we usually have |U| � |L| and
hence, |D| = |U| + |L| ≈ |U| and CU ≈ CD. Using these
approximations above, we get

(∗∗) = CD +
|U||L|
|U|+ |L|

(CU − CL)

≈ CU +
|U||L|
|U|

(CU − CL)

= CU + |L|(CU − CL)

Comparing this term with the construction of the synthetic
point (1), we see that the expressions coincide when choosing
A = |L|. Hence, we see that querying away from the labelled
data, towards the unlabelled data is achieving a similar task as
querying with the objective of aligning the centers of gravity.

Remark 1:
1) In (∗∗), we replace CD by CU . Both are valid as an

interpretation of exploration. The former (CD) means we
start in the center of the whole data and move towards
the higher mass concentration of the unlabelled set, the
latter (CU) means we already start in the middle of
the unlabelled set and move even further away from
the center of the labelled set. Both interpretations make
sense, and in an AL situation, the centers are usually
close anyway, as argued above.

2) A similar calculation to the one above also shows that
the query minimizing the distance between CL∪{q} and
CD also minimizes the distance between CL∪{q} and
CU\{q}, i.e., the query minimizes the distance between
the COG of the labelled and unlabelled data as well.

III. FAKE CLASS-SYNTHETIC QUERY

In the pool-based scenario, an expert can only label data
points which are actually present in the real dataset. There-
fore, instead of asking for the label of the point that the
learner generated, the algorithms above query the closest point
available in the unlabelled pool. This may not always be the
optimal query, though, as the closest point may e.g. already
be in a well-explored region. However, the learner itself is
able to process this synthetic point directly. Since we are also
concerned with class detection, we want to “tell” the learner
that we suspect an undiscovered class at the synthetic point.
The learner shall then use this information to query the (real)
point that it deems most likely to belong to an undiscovered
class. The learner can process the synthetic point just fine,
while we end up with a real data point to be labelled.

The way to accomplish this is as follows: The synthetic
point is temporarily added to the training set. Assuming the
“real” classes are given by y = 0, 1, 2, . . . , the synthetic point
is assigned class −1. A probabilistic model is then trained,
and the point with the highest probability belonging to this
class is queried:

q = argmax
x∈U

P(y = −1|x)

The point q is queried, labelled by an expert and added to the
training set with its true label. The synthetic point is discarded
and the process is repeated if desired. The query method is
listed in more detail in Algorithm 1.

In summary, the idea of the algorithm is to answer the
question, “If there was an undiscovered class, which point is
most probable to belong to it?”

Since most of the algorithms introduced in the section above
generate synthetic points anyway, these algorithms are pre-
destined to be used for this technique. For the random choice
exploration, we may treat the chosen point as a synthetic point,
also enabling the fake class procedure.

Algorithm 1 Query a point based on a synthetic fake class-
point.

Input: L = {(x1, y1), . . . , (x|L|, y|L|)} with yi ∈ N0 and
U = {x1, . . . , x|U|}, point generator f(L,U), classifier C

Output: Point X ∈ U to be queried
1: Xsynth ← f(L,U)
2: ysynth ← −1
3: Train probabilistic classifier C on (L∪{(Xsynth, ysynth)})
4: X ← argmaxX∈U P(C(X) = −1)
5: return X

Remark 2: One may wonder if this method selects the
closest point to a generated (synthetic) point, just as the
nearest neighbour search as described above. However, the
probabilistic learner may also choose a different point. Imagine
a situation where the synthetic point is close to a cluster
of labelled points sharing one class, let’s say y0. Then any
unlabelled points in this area will also belong to the class y0
with high probability, even though our synthetic point with
fake class is close. This means that the algorithm will not
query points which are already (relatively) safely classified as
one of the known classes. The hope is that the learner benefits
from this technique as it prevents oversampling of regions.

Remark 3: The fake class technique also works in feature
spaces without a distance function. Furthermore, it enables
membership query synthesis techniques to be used in a pool-
based scenario.

IV. RESULTS AND DISCUSSION

Let us now compare the performance of the algorithms
introduced above. Each algorithm was tested using nearest
neighbour query and fake class query. The results are displayed
in the tables. The first column presents the query budget of
the learner, i.e., the number of points that the algorithm was

TABLE I
BINARY CLASSES, BOUNDARY B1 , NEAREST POINT QUERY, ACCURACY

SR RC BE LHS U LHS D COG

5 0.654 0.704 0.676 0.720 0.739 0.765

10 0.767 0.787 0.776 0.797 0.806 0.758

15 0.809 0.825 0.827 0.834 0.835 0.769

20 0.838 0.849 0.852 0.862 0.863 0.774

25 0.862 0.872 0.870 0.877 0.878 0.789

30 0.875 0.889 0.880 0.887 0.887 0.804

allowed to query. The other columns represent the various
exploration algorithms and their accuracy or discovery rate,
respectively. While we don’t show both accuracy and discov-
ery rate for all datasets, note that there is some correlation
between the two, as the number of unknown classes obviously
limits the accuracy theoretically possible.

A. Synthetic datasets

Let us present the results for the synthetic datasets. For
the binary datasets with balanced class distribution, the class
discovery record is not very meaningful, as both classes were
detected by all algorithms on a small query budget. Hence,
the analysis presented here focuses on the accurcy of the
algorithms. For the artificial datasets, we only display the data
up to a budget of 30 data points, as all of them except for the
COG-based methods show similar performances.

For the unbalanced dataset, we show the discovery rates, as
these are more meaningful than accuracy here, and extend the
query budget to 60. One sees that the discovery performance is
quite similar for all datasets, except for the COG-based query,
which in most cases was not able to discover the minority
class. Adding the fake class-method, all performances are
improved, and even the COG-query is able to discover the
minority class, given a sufficiently high query budget.

Note that in general, all algorithms except COG show
similar performance on each of the three datasets shown in
Fig. 1a, 1b and 1c. A possible explanation is that the points
are uniformly distributed in the feature space, and there is no
structural difference between the classes that could be used by
the exploration algorithms.

On the two moon datasets (with and without noise), all
algorithms except the COG-based approach performed sim-
ilarly, while COG showed much worse accuracy. However,
when combining the algorithms with the fake class-method,
this difference in performance was equalized.

B. Real world datasets

Here, we discuss the performance on the beans, yeast and
glass identification datasets. Since the novel approaches did
not show significant differences or no improvement over the
well-known methods in terms of accuracy, the accuracy results
are not explicitly presented here.

Comparing the algorithms without the fake class method,
one sees that the success of class discovery is highly dependent

TABLE II
BINARY CLASSES, BOUNDARY B1 , FAKE CLASS QUERY, ACCURACY

SR RC BE LHS U LHS D COG

5 0.683 0.671 0.691 0.715 0.722 0.712

10 0.782 0.778 0.778 0.786 0.794 0.779

15 0.827 0.824 0.840 0.823 0.829 0.794

20 0.854 0.845 0.866 0.859 0.855 0.808

25 0.867 0.870 0.876 0.875 0.878 0.821

30 0.881 0.885 0.881 0.885 0.889 0.823

TABLE III
BINARY CLASSES, BOUNDARY B2 , NEAREST POINT QUERY, DISCOVERY

RATE

SR RC BE LHS U LHS D COG

5 0.420 0.520 0.620 0.620 0.620 0.320

10 0.780 0.720 0.800 0.780 0.760 0.320

15 0.880 0.780 0.940 0.960 0.960 0.320

20 0.920 0.860 0.960 0.980 0.980 0.320

25 0.960 0.920 0.960 1.000 1.000 0.320

30 0.980 0.960 0.960 1.000 1.000 0.320

40 1.000 1.000 0.980 1.000 1.000 0.320

50 1.000 1.000 1.000 1.000 1.000 0.320

60 1.000 1.000 1.000 1.000 1.000 0.320

TABLE IV
BINARY CLASSES, BOUNDARY B2 , FAKE CLASS QUERY, DISCOVERY RATE

SR RC BE LHS U LHS D COG

5 0.480 0.520 0.500 0.600 0.580 0.340

10 0.840 0.740 0.820 0.760 0.780 0.340

15 0.920 0.800 0.880 0.960 0.980 0.460

20 0.960 0.900 0.980 1.000 1.000 0.580

25 0.960 0.920 0.980 1.000 1.000 0.640

30 0.980 0.980 1.000 1.000 1.000 0.800

40 1.000 1.000 1.000 1.000 1.000 0.920

50 1.000 1.000 1.000 1.000 1.000 0.980

60 1.000 1.000 1.000 1.000 1.000 1.000

TABLE V
BINARY CLASSES, CHECKERBOARD, NEAREST POINT QUERY, ACCURACY

SR RC BE LHS U LHS D COG

5 0.519 0.522 0.534 0.531 0.540 0.540

10 0.595 0.621 0.626 0.618 0.623 0.593

15 0.650 0.697 0.689 0.701 0.691 0.657

20 0.704 0.744 0.730 0.750 0.751 0.767

25 0.753 0.783 0.772 0.771 0.774 0.823

30 0.790 0.816 0.801 0.800 0.803 0.853

on the dataset. For instance, the COG-method falls behind
on either the beans and the yeast dataset, while it discov-
ers all classes present in the glass dataset, which is highly

TABLE VI
BINARY CLASSES, CHECKERBOARD, FAKE CLASS QUERY, ACCURACY

SR RC BE LHS U LHS D COG

5 0.527 0.529 0.522 0.540 0.539 0.543

10 0.614 0.605 0.604 0.621 0.608 0.655

15 0.665 0.678 0.658 0.692 0.698 0.727

20 0.722 0.737 0.729 0.749 0.743 0.775

25 0.770 0.772 0.768 0.784 0.768 0.829

30 0.799 0.811 0.804 0.808 0.813 0.873

TABLE VII
TWO MOON DATASET WITHOUT NOISE, NEAREST POINT QUERY,

ACCURACY

SR RC BE LHS U LHS D COG

10 0.824 0.834 0.858 0.864 0.870 0.672

20 0.901 0.890 0.902 0.955 0.939 0.687

30 0.935 0.919 0.923 0.976 0.968 0.688

40 0.968 0.927 0.938 0.976 0.965 0.674

50 0.982 0.942 0.943 0.989 0.971 0.673

TABLE VIII
TWO MOON DATASET WITHOUT NOISE, FAKE CLASS QUERY, ACCURACY

SR RC BE LHS U LHS D COG

10 0.875 0.837 0.825 0.886 0.881 0.787

20 0.929 0.888 0.887 0.948 0.941 0.884

30 0.954 0.915 0.912 0.961 0.958 0.944

40 0.971 0.927 0.929 0.961 0.958 0.972

50 0.972 0.943 0.944 0.972 0.961 0.976

TABLE IX
NOISY MOONS DATASET (σ = 0.2), NEAREST POINT QUERY, ACCURACY

SR RC BE LHS U LHS D COG

10 0.781 0.801 0.802 0.809 0.828 0.514

20 0.852 0.851 0.855 0.876 0.883 0.526

30 0.881 0.873 0.878 0.886 0.915 0.552

40 0.896 0.890 0.895 0.891 0.918 0.650

50 0.905 0.899 0.903 0.906 0.930 0.684

TABLE X
NOISY MOONS DATASET (σ = 0.2), FAKE CLASS QUERY, ACCURACY

SR RC BE LHS U LHS D COG

10 0.784 0.798 0.793 0.819 0.837 0.646

20 0.858 0.845 0.852 0.879 0.893 0.717

30 0.884 0.874 0.879 0.886 0.919 0.793

40 0.904 0.895 0.891 0.897 0.920 0.855

50 0.913 0.902 0.902 0.906 0.924 0.888

TABLE XI
BEANS DATASET, NEAREST POINT QUERY, DISCOVERY RATES

SR RC BE LHS U LHS D COG

10 0.350 0.677 0.703 0.460 0.637 0.567

15 0.410 0.833 0.823 0.527 0.693 0.617

20 0.447 0.893 0.877 0.597 0.720 0.630

25 0.497 0.927 0.913 0.613 0.733 0.630

30 0.507 0.950 0.940 0.637 0.890 0.630

35 0.557 0.967 0.950 0.680 0.883 0.630

40 0.593 0.973 0.957 0.710 0.863 0.630

45 0.623 0.983 0.963 0.703 0.870 0.630

50 0.637 0.990 0.970 0.727 0.887 0.630

TABLE XII
BEANS DATASET, FAKE CLASS QUERY, DISCOVERY RATES

SR RC BE LHS U LHS D COG

10 0.683 0.660 0.740 0.723 0.820 0.773

15 0.807 0.823 0.850 0.843 0.920 0.880

20 0.887 0.903 0.897 0.877 0.980 0.943

25 0.917 0.940 0.933 0.910 0.973 0.977

30 0.963 0.963 0.947 0.963 0.997 0.993

35 1.000 0.983 0.957 0.970 0.997 1.000

40 1.000 0.990 0.963 0.983 1.000 1.000

45 1.000 0.997 0.970 0.997 1.000 1.000

50 1.000 0.997 0.977 0.997 1.000 1.000

TABLE XIII
YEAST DATASET, NEAREST POINT QUERY, DISCOVERY RATES

SR RC BE LHS U LHS D COG

10 0.460 0.400 0.398 0.496 0.420 0.262

15 0.542 0.493 0.487 0.580 0.484 0.298

20 0.604 0.549 0.551 0.647 0.518 0.331

25 0.673 0.589 0.609 0.678 0.553 0.367

30 0.702 0.618 0.629 0.698 0.558 0.418

40 0.744 0.682 0.682 0.762 0.616 0.476

50 0.769 0.744 0.729 0.791 0.638 0.513

imbalanced. Also note that structurally agnostic algorithms,
namely, spatial random query and LHS uniform, show similar
performances.

Using the fake class method, we see an improvement of
performance in most situations. Wherever this method is not
beneficial, the discrepancy between the nearest point-query
and the fake class query is minimal.

The LHS-based algorithms occasionally show performance
drops when increasing the query budget. This is because the
points could not be queried sequentially, meaning that each
query budget may use a completely different set of data points.

TABLE XIV
YEAST DATASET, FAKE CLASS QUERY, DISCOVERY RATES

SR RC BE LHS U LHS D COG

10 0.576 0.396 0.384 0.591 0.478 0.438

15 0.689 0.498 0.469 0.713 0.560 0.489

20 0.747 0.571 0.536 0.771 0.616 0.524

25 0.778 0.633 0.582 0.807 0.684 0.571

30 0.813 0.673 0.611 0.824 0.713 0.604

40 0.858 0.742 0.664 0.869 0.764 0.653

50 0.893 0.789 0.718 0.896 0.813 0.696

TABLE XV
GLASS DATASET, NEAREST POINT QUERY, DISCOVERY RATES

SR RC BE LHS U LHS D COG

10 0.672 0.632 0.648 0.572 0.696 0.764

15 0.780 0.728 0.772 0.680 0.772 0.908

20 0.844 0.836 0.844 0.728 0.876 0.968

25 0.892 0.888 0.888 0.768 0.904 0.992

30 0.924 0.920 0.928 0.824 0.940 0.996

35 0.952 0.952 0.952 0.856 0.948 1.000

40 0.968 0.964 0.960 0.884 0.972 1.000

45 0.976 0.972 0.964 0.896 0.980 1.000

50 0.984 0.976 0.976 0.920 0.972 1.000

TABLE XVI
GLASS DATASET, FAKE CLASS QUERY, DISCOVERY RATES

SR RC BE LHS U LHS D COG

10 0.724 0.588 0.632 0.744 0.756 0.728

15 0.828 0.704 0.760 0.840 0.856 0.832

20 0.896 0.812 0.836 0.900 0.904 0.920

25 0.936 0.876 0.880 0.964 0.936 0.952

30 0.956 0.924 0.920 0.976 0.964 0.976

35 0.976 0.968 0.944 0.972 0.984 0.984

40 0.992 0.976 0.952 0.996 0.984 0.988

45 0.992 0.988 0.956 0.996 1.000 0.988

50 0.996 0.988 0.972 1.000 0.996 0.988

V. CONCLUSION AND OUTLOOK

The presented algorithms show promising results by outper-
forming random search on some datsets. Combined with the
fake class-technique, all algorithms showed at least similar
performance to random search, often outperforming it.

The performance was highly dependent on the underlying
dataset. Also, one can notice a dependence on underlying
properties of the exploration algorithms, such as structural
sensitivity. Therefore, the following ideas may be pursued in
future research:
• Examine if performance depends on specific dataset

properties, such as imbalances. To choose an optimal
exploration algorithm, it is necessary to find criteria
inherent to the dataset. The idea here is that in an active

learning situation, we should use the structure of the
unlabelled data to optimally select the data points for
labelling.

• Adding to the first point: Explore the mathematical
background of the exploration queries, especially the
“fake class”-technique, to gain a better understanding
for the performance of each algorithm. This may help
understanding and predicting in which situation each
algorithm performs well or not and help in designing
improved algorithms.

• Check performance in combination with exploitation al-
gorithms: As the goal of exploration is not purely classifi-
cation accuracy but preparation for the exploitation phase,
we need to test the algorithms coupled with exploitation
algorithms as already done in some cases in [4], [17]. The
goal is to find the exploration algorithms which produce
a good set of labelled points for the exploitation queries
to build on for improved accuracy.

• Obtain new performance measures: Ideally, there should
be a performance measure which takes an exploration
algorithm and predicts the performance of a coupled
exploration-exploitation-algorithm for reasons explained
in the previous point. This would serve as a performance
measure for exploration algorithms in general, but also
would make benchmarking such algorithms more effi-
cient, as one wouldn’t need to run the (computationally
expensive) exploitation algorithm to record the total per-
formance.

REFERENCES

[1] K. J. Lang and E. B. Baum, “Query Learning Can Work Poorly
when a Human Oracle is Used,” Proceedings of the International Joint
Conference on Neural Networks, Baltimore, MD, USA, vol. 8, no. 5,
1992.

[2] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009. [Online].
Available: https://burrsettles.com/pub/settles.activelearning.pdf

[3] A. Tharwat and W. Schenck, “A survey on active learning: State-
of-the-art, practical challenges and research directions,” Mathematics,
vol. 11, no. 4, 2023. [Online]. Available: https://www.mdpi.com/2227-
7390/11/4/820

[4] ——, “Balancing exploration and exploitation: A novel
active learner for imbalanced data,” Knowledge-Based Sys-
tems, vol. 210, p. 106500, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705120306298

[5] M. Sharma and M. Bilgic, “Evidence-based uncertainty sampling for
active learning,” Data Mining and Knowledge Discovery, vol. 31, pp.
164–202, 2017.

[6] “Dry Bean Dataset,” UCI Machine Learning Repository, 2020, DOI:
https://doi.org/10.24432/C50S4B.

[7] K. Nakai, “Yeast,” UCI Machine Learning Repository, 1996, DOI:
https://doi.org/10.24432/C5KG68.

[8] B. German, “Glass Identification,” UCI Machine Learning Repository,
1987, DOI: https://doi.org/10.24432/C5WW2P.

[9] S.-J. Huang, R. Jin, and Z.-H. Zhou, “Active learning by querying
informative and representative examples,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 10, pp. 1936–1949, 2014.

[10] R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1988, DOI:
https://doi.org/10.24432/C56C76.

[11] H. Bauer, Probability Theory. Berlin, New York: De Gruyter, 1996.
[Online]. Available: https://doi.org/10.1515/9783110814668

[12] L. Wang, X. Hu, B. Yuan, and J. Lu, “Active learning via
query synthesis and nearest neighbour search,” Neurocomputing,
vol. 147, pp. 426–434, 2015, advances in Self-Organizing Maps

Subtitle of the special issue: Selected Papers from the Workshop
on Self-Organizing Maps 2012 (WSOM 2012). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231214008145

[13] J.-S. Park, “Optimal latin-hypercube designs for computer
experiments,” Journal of Statistical Planning and Inference,
vol. 39, no. 1, pp. 95–111, 1994. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0378375894901155

[14] A. B. Owen, “A central limit theorem for latin hypercube
sampling,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 54, no. 2, pp. 541–551, 1992. [Online].
Available: http://www.jstor.org/stable/2346140

[15] W.-L. Loh, “On Latin hypercube sampling,” The Annals of Statistics,
vol. 24, no. 5, pp. 2058 – 2080, 1996. [Online]. Available:
https://doi.org/10.1214/aos/1069362310

[16] M. Stein, “Large sample properties of simulations using latin hypercube
sampling,” Technometrics, vol. 29, no. 2, pp. 143–151, 1987. [Online].
Available: http://www.jstor.org/stable/1269769

[17] A. Tharwat and W. Schenck, “A novel low-query-budget active learner
with pseudo-labels for imbalanced data,” Mathematics, vol. 10, no. 7,
2022. [Online]. Available: https://www.mdpi.com/2227-7390/10/7/1068

	Deckblatt_ZV_Kuchling_final.pdf
	a350-kuchling_final.pdf

