

EISFELDINGENIEURE

Prof. Dr.-Ing. Michael Eisfeld MSc

THINK VISIONARY - DESIGN PASSIONATELY

Structural engineers since 1938 in third generation

BIM & AI pioneers in structural design in Germany

Reliable partner from the idea to the implementation

CERTIFICATES AND MEMBERSHIPS:

FACTSHEET

Employees	over 70 engineers, modelers and draftsmen	
Technology	state-of-the-art BIM software / in-house developed AI tools / agile management	
Network	research partners, specialists in foundation engineering and construction	

CORPORATE DIVISIONS

STRUCTURAL ENGINEERING

Erweiterung & Sanierung Rathaus Langenhagen

PRECAST PLANNING

SIEMENS Campus Erlangen

STRUCTURAL CHECKING

SMA Repair Center Niestetal

GENERAL PLANNING

Variowohnen Kassel

BUILDING TYPOLOGIES

ENGINEERING STRUCTURES

Bridge to the production module Client SMA Solar Technology AG Architect HHS Planer und Architekten AG

COMMERCIAL BUILDINGS

Goldbeck Campus Fasanenhof Stuttgart Client Objekt Fasanenhof B. V. & Co. KG Architect Goldbeck Süd GmbH

INDUSTRIAL BUILDINGS

Conversion and refurbishment of CMS calcination plant Client K+S Kali GmbH General planning Eisfeld Ingenieure AG

EDUCATION

Heinrich Schütz School Kassel Client City of Kassel Architect Schultze + Schulze Architects BDA

RESIDENTIAL CONSTRUCTION

Salamander site, Kornwestheim Client Immobilien Projektgesellschaft Salamander GmbH Architect Global Conzept GmbH

EXHIBITION / MEETING

Refurbishment and extension of Göttingen City Hall Client City of Göttingen Architect SSP Architekten + Ingenieure AG

Why we are interested in Artificial Intelligence

BIM & AI IN EISFELD ENGINEERING

DrIng. Michael Eisfeld MSc joins the office	VR application for QA tasks like checking reinforcement	Michael Eisfeld appointed professor at Bielefeld University of Applied Sciences	Approval of Michael Eisfeld as checking engineer	AI in practice for different design tasks
2005 2006 2011	2012 2013	2017 2019	2020	2021
First BIM project	ISO 9001 Certification EISI	FELDINGENIEURE 75 JAHRE VISIONÄRDEINEN LEIDENSCHAFTLICHPLANEN	Opening of branch in Vilnius	AR comes to construction site - cooperation of e3p and Xella
	9001	Development of BIM software ConED for conceptual design		

DIGITAL PLANNING & CONSTRUCTION OVER LIFECYCLE

Often symbolic information processing by engineers \rightarrow planning, synthesis and learning

Traditional number crunching does not work → searching, rules and pattern matching

Knowledge is required to solve a task → spatial, structural and procedural

Hybrid AI combines different approaches like logic, neural networks and graph reasoning

Federal Ministry of Education and Research

Can a machine learn to build a BIM model from 2D drawings?

AutoBuild3D R&D project: 390 kE budget, 2 years duration

Datei Bearbeiten Ansicht Extras Anzeigen ?

3

[🖼 🖻 🦉 🌮 🎾 🖉 🖉

Optionen		Plan	Informatio	
•	Q 🖕	Grundriss		
) <u>0</u>	Floor_06_(-6,7;-2,6;21,4).dwg	OG[6]	
) <u>0</u>	Floor_05_(-6,7;-2,6;18,32).dwg	OG[5]	
) <u>0</u>	Floor_04_(-6,7;-2,6;15,24).dwg	OG[4]	
) <u>0</u>	Floor_03_(-6,7;-2,6;12,16).dwg	OG[3]	
) <u>0</u>	Floor_02_(-6,7;-2,6;9,08).dwg	OG[2]	
) <u>(</u>	Floor_01_(-6,7;-2,6;6,0).dwg	OG[1]	
) <u>0</u>	Floor_00_(-6,7;-2,6;1,81).dwg	EG[0]	
) <u>0</u>	Floor_U1_(-6,7;-15,55;-2,23).dwg	UG[-1]	
• <u>0</u> •		Schnitte		
) <u>0</u>	Section_Y-pos_(-6,7;16,4;-12,97).dwg	yPositiv	
•	0	Ansichten		
) <u>0</u>	Elevation_X-neg_(21,6;-2,6;-12,97).dwg	xNegativ	
) Q	Elevation_X-pos_(8,5;47,4;-11,77).dwg	xPositiv	

Algemen	1014			l
Position	W1		•	
Art	Normal		•	
Material	Stahlbeton		•	
Gruppe			•	
Geschoss	KG			
Haltung	1-seitig		•	
Knicklänge [m]	nicht berecher	nbar		
Flächenlast [kN/m²]	0.00			
Bewehrung				
Bewehrungsanteil (kg/m3)	120.000			
Volumen (m³)	3.478			
Geschätzter	417.420			
Material				
Betongüte	C20/25		-	
Stahlsorte	BSt 500 S(B)		-	
E Geometrie				
XY-Koordinate-1 [m]	10.626	6.745		
XY-Koordinate-2	6.287	2.900		
Z-Koordinate [m]	0.000			
Z2-Koordinate [m]	3.000			
□Querschnitt				
Dicke [cm]	20.00			
Länge (m)	5.797			
Eigengewicht [kN/m²]	5.00			1
ELastabtrag				
Belastet durch				

A

-

1

LOAD PROPAGATION AS GRAPH REASONING

yellow = current deep beam in focus green = loading elements ↑ slab ↑ wall ↑ ↑ walls and so on blue = supporting elements ↓ wall ↓ wall

LOGIC OF STRUCTURE FOR VALUE COMPUTATION

Can a machine learn to reinforce prefab elements?

3D-ARP R&D project: 860 kE budget, 2 years duration

3D-ARP MOVIE

What benefit brings Al into design practice

AI-ASSISTED DESIGN TASKS IN FUTURE

Tedious and boring work can be done by computer \rightarrow more fun and time for employees

Productivity increase up to 50% \rightarrow less persons are needed for the job

More intellectual tasks can be carried out by computer \rightarrow engineers have more time to think and check

LOOKING FOR NEW MOTIVATED TEAM MEMBERS IN VILNIUS!

