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Abstract: Algae-based biopolymers can be used in diverse energy-related applications, such as
separators and polymer electrolytes in batteries and fuel cells and also as microalgal biofuel, which is
regarded as a highly renewable energy source. For these purposes, different physical, thermochemical,
and biochemical properties are necessary, which are discussed within this review, such as porosity,
high temperature resistance, or good mechanical properties for batteries and high energy density
and abundance of the base materials in case of biofuel, along with the environmental aspects of
using algae-based biopolymers in these applications. On the other hand, bacterial biopolymers
are also often used in batteries as bacterial cellulose separators or as biopolymer network binders,
besides their potential use as polymer electrolytes. In addition, they are also regarded as potential
sustainable biofuel producers and converters. This review aims at comparing biopolymers from both
aforementioned sources for energy conversion and storage. Challenges regarding the production of
algal biopolymers include low scalability and low cost-effectiveness, and for bacterial polymers, slow
growth rates and non-optimal fermentation processes often cause challenges. On the other hand,
environmental benefits in comparison with conventional polymers and the better biodegradability
are large advantages of these biopolymers, which suggest further research to make their production
more economical.

Keywords: microalgal biofuel; algae-based biopolymers; bacterial biopolymers; polymer
electrolyte; batteries

1. Introduction

Polymers are used in diverse parts of our lives. Nowadays, an increasingly important
property of polymers is their sustainability. A polymer is regarded as sustainable if it is
produced from waste, from biological renewable resources, or from recycled material, and
if it can stay in the biological or technical cycle of a circular economy at the end of its life [1].
Usually, bio-based polymers are regarded more sustainable than oil-based ones, while
there are differences in the global warming potential and other environmental concerns for
different biopolymers [2].

The biopolymers which are often cited as especially sustainable alternatives to oil-
based polymers are algal [3–5] and bacterial biopolymers [6–8], amongst others. This may
be the reason why algal and bacterial biopolymers have been increasingly investigated
during the last two decades, as depicted in Figure 1.
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Figure 1. Results for different search phrases (with the asterisk as placeholder) in the Web of Sci-
ence. Data collected on 25 December 2023. 

However, sustainability is not the only reason for the choice of a specific polymer. 
Their chemical and physical properties vary across a broad range; thus, each application 
necessitates specific polymers [9,10]. 

One of the current applications of polymers is their use in batteries [11]. In lithium–
sulfur batteries, polymers can be used as electrodes, separators, binders. and electrolytes 
[12]. Similarly, in lithium-ion batteries, polymers are used as electrodes, separators, and 
electrolytes [13]. In lithium-polymer batteries, they serve as electrolytes [14]. In re-
chargeable batteries, electrochemically active polymers can be used, such as polyaniline, 
polypyrrole, different redox polymers, and others [15]. With new polymers with special 
physical properties, even completely new batteries can be developed, such as metal–
polymer, organic, polymer–air, or all-polymer batteries [16,17]. Research on biopolymers 
for battery applications has also significantly increased in recent decades. 

Another energy-related application of polymers can be found in the area of biofuels. 
Conductive polymers can be used for biofuel cells [18,19]. Biopolymers, such as polyhy-
droxyalkanoates (PHAs), can be used as a base for biofuel [20,21]. The research area of 
biopolymers for biofuel has also increasingly garnered interest in recent decades (Figure 
1).  

This review provides a general overview of algal and bacterial biopolymers, before 
the specific applications of these biopolymers for battery applications and biofuels are 
discussed in detail. For this purpose, studies published during the last five years were 
taken into account. 

2. Algal Biopolymers 
2.1. Different Algal Biopolymers 

Algae can produce a broad variety of biopolymers. Algae are diverse photosynthetic 
organisms that can be classified into various groups, including green algae, red algae, 
and brown algae. Algal biopolymers can be extracted from different parts of algae, such 
as the cell walls or intracellular compartments. These biopolymers possess unique prop-
erties that make them suitable for various applications in industries such as food, phar-
maceuticals, biotechnology, and materials science. Microalgae can produce polyhydrox-
yalkanoates (PHAs), proteins, and polysaccharides [22].  

PHAs consist of repeated ester units with a carbon chain that is connected to two 
oxygen atoms and an R-group (any group containing a carbon and a hydrogen atom that 
is attached to a molecule, refer Figure 2 [23]) and can be subdivided into short, medium, 
and long chain length PHAs [23]. Mechanically, they can have thermoplastic and elas-
tomeric properties, are stable in air, and have low water solubility, but are easily dis-
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However, sustainability is not the only reason for the choice of a specific polymer.
Their chemical and physical properties vary across a broad range; thus, each application
necessitates specific polymers [9,10].

One of the current applications of polymers is their use in batteries [11]. In lithium–sulfur
batteries, polymers can be used as electrodes, separators, binders. and electrolytes [12]. Simi-
larly, in lithium-ion batteries, polymers are used as electrodes, separators, and electrolytes [13].
In lithium-polymer batteries, they serve as electrolytes [14]. In rechargeable batteries, elec-
trochemically active polymers can be used, such as polyaniline, polypyrrole, different redox
polymers, and others [15]. With new polymers with special physical properties, even completely
new batteries can be developed, such as metal–polymer, organic, polymer–air, or all-polymer
batteries [16,17]. Research on biopolymers for battery applications has also significantly in-
creased in recent decades.

Another energy-related application of polymers can be found in the area of biofuels.
Conductive polymers can be used for biofuel cells [18,19]. Biopolymers, such as polyhy-
droxyalkanoates (PHAs), can be used as a base for biofuel [20,21]. The research area of
biopolymers for biofuel has also increasingly garnered interest in recent decades (Figure 1).

This review provides a general overview of algal and bacterial biopolymers, before
the specific applications of these biopolymers for battery applications and biofuels are
discussed in detail. For this purpose, studies published during the last five years were
taken into account.

2. Algal Biopolymers
2.1. Different Algal Biopolymers

Algae can produce a broad variety of biopolymers. Algae are diverse photosynthetic
organisms that can be classified into various groups, including green algae, red algae, and
brown algae. Algal biopolymers can be extracted from different parts of algae, such as the
cell walls or intracellular compartments. These biopolymers possess unique properties that
make them suitable for various applications in industries such as food, pharmaceuticals,
biotechnology, and materials science. Microalgae can produce polyhydroxyalkanoates
(PHAs), proteins, and polysaccharides [22].

PHAs consist of repeated ester units with a carbon chain that is connected to two
oxygen atoms and an R-group (any group containing a carbon and a hydrogen atom that is
attached to a molecule, refer Figure 2 [23]) and can be subdivided into short, medium, and
long chain length PHAs [23]. Mechanically, they can have thermoplastic and elastomeric
properties, are stable in air, and have low water solubility, but are easily dissolved in many
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other solvents [22]. They are often biocompatible and biodegradable and thus used in many
biotechnological and biomedical applications [24,25].
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Proteins consist of amino acids bonded by amide linkages, for building polypeptide
chains [22]. Proteins are mainly used for food and thus to a lesser degree for bioplastic
production. Investigations of algal proteins for bioplastic production were often carried
out by blending the proteins as well as by comparing proteins received from different
microalgae [26–28].

Cellulose is a biodegradable polysaccharide from D-glucose monomers with glycosidic
bonds, but has other linkages and a rigid, elongated structure [29]. It can be found in algal
cell walls [29] with different amounts and different crystallinities, depending on the algal
species [30–32]. Cellulose is often used in composites to reduce its low thermal stability
and high moisture absorption [29].

Starch is also a biodegradable polysaccharide from D-glucose monomers with gly-
cosidic bonds, forming a helical structure [22]. Depending on the ratio of amylopectin to
amylose, its mechanical properties vary [33]. Starch can be converted to monomers used
in polymer synthesis, be a part of low-molecular-weight polymers, or be a filler in other
polymers [34].

It should be mentioned that other biopolymers, such as poly(lactic acid) (PLA), can be
produced from carbohydrates, which can be obtained from microalgae [35].

On the other hand, macroalgae, also called seaweed, can be used to produce the
polysaccharides, i.e., alginic acid and carrageenan, from which bio-based plastics can be
prepared [28]. Alginate is a linear copolymer of mannuronic acid and guluronic acid bonded
by glycosidic linkages, with the varying blocks of these acids resulting in different physical
and chemical properties [36]. While alginate is derived from brown algae, carrageenan
is mostly extracted from red algae. This polysaccharide consists of D-galactose and 3,6-
anhydro-D-galactose, similar to agarose, which is also derived from seaweed [37].

2.2. Algal Biopolymer Production

As mentioned before, the main reason to switch from well-known and well-suited
oil-based polymers to biopolymers is the increased sustainability of the latter. Nevertheless,
it is necessary to keep their whole life cycle in mind, regarding carbon footprint and the
necessary energy to produce the required biopolymers. Algae biopolymers were shown
to be advantageous in terms of biological composting and carbon sequestration as well as
not using arable land [3]. One possibility to further reduce the ecological impact, which is
often explored, is microalgae cultivation in wastewater, where wastewater treatment and
biopolymer production are combined [38–41].

Some of the commonly used microalgae are Nannochloropsis sp., Botryococcus braunii,
Spirulina sp., and Chlorella sp., while typical seaweeds from which biopolymers are ob-
tained are Ulva prolifera, Ecklonia radiate, Undaria pinnatifida, etc. [42]. Common biopolymer
production routes are the fermentation of algal biomass by microorganisms, biopoly-
mer production inside the algal biomass, or blending algal biomass with additives [42].
Amongst these routes, the zero-waste concept would include directly converting algal
biopolymers, while the conversion to monomers as bioplastic precursor offers a broader
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range of producible biopolymers [43]. Figure 3 shows algae-based biopolymer films using
carrageenan and agar as examples [43].
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The large-scale commercial production of biopolymers can be performed in open or
closed systems, with open systems having lower costs and larger production capacities
but also higher contamination risks [44]. These non-standardized production methods,
together with the broad range of algae used for biopolymer production and different
production routes, reduces the reproducibility of the physical and chemical properties
of the obtained biopolymers and thus should be optimized [45]. Besides extracting new
polymers, this is why several researchers compared different biopolymers, obtained from
various algal strands, and optimized algae cultivation and the subsequent biopolymer
production [46–49], e.g., by adding chemicals to modify the texture of alginate polymers
(Figure 4) [46].
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2.3. Typical Applications of Algal Biopolymers

Algal biopolymers, especially from seaweed, are often used as food since they are
abundant and sometimes especially healthy [50–52]. On the other hand, they can be used
for food packaging due to their nontoxicity and biodegradability [53–55].

In addition, the specific physical and chemical properties of algal biopolymers make
them suitable for different biomedical applications [56], such as nanocarriers for drug
release in anticancer treatments [57] and wound dressings [58] or the well-known agarose
gels for bacterial cultures and electrophoresis [56].

Other potential applications are related to fuel cells for wastewater cleaning [59] and
energy harvesting and storage, as described in the next Sections. It should be mentioned
that, depending on the planned application, the functionalization of the algal biopolymers
is necessary, e.g., by crosslinking, by oxidation or substitution of functional groups, to
reach the required physical and chemical properties [60]. On the other hand, specific
processing techniques may support some applications, such as 3D printing, which has been
investigated for algal polysaccharides by several research groups [61]. A more detailed
description of some typical application areas is provided below.

2.3.1. Applications of Algae-Based Biopolymers for Food

1. Algae-derived carrageenan in food and beverage industry

Carrageenan, a polysaccharide extracted from certain species of red algae, is extensively
used as thickener and stabilizer in various food and beverage products. It enhances the texture,
viscosity, and palatability of food products in dairy products, desserts, beverages, and also
processed meats. Algae-derived carrageenan is natural, plant-based, and hence vegan-friendly,
meeting the growing consumer demand for clean-label ingredients [62].

2. Algae-based agarose as a gelling agent

Agarose, a polysaccharide derived from seaweed red algae, is generally used as a
gelling agent in food and beverage products. It forms stable gels even at considerably low
concentrations, making it ideal for confectioneries, desserts, and microbiological culture
media. Algae-derived agarose is vegetarian-friendly and allergen-free and possesses
excellent gel strength and clarity, making it a strong alternative for synthetic or animal-
derived alternatives [63].

3. Algae-based biopolymer films for food packaging

Algae-derived biopolymers, like alginate and ulvan, are currently researched for
their potential application in natural and biodegradable food packaging materials. These
biopolymer films are also flexible, and possess good barrier properties against moisture
and oxygen, making them suitable for extending the shelf-life of perishable food products.
Introducing algae-based biopolymers for food packaging meets the increasing demand for
eco-friendly alternatives to reduce plastic waste and environmental pollution [64].

2.3.2. Applications of Algae-Based Biopolymers in Pharmaceutics

1. Algal polysaccharides in drug delivery systems

Algal polysaccharides, like carrageenan and alginate, have been widely studied for
their applications in drug delivery systems due to their advantageous properties of biocom-
patibility and biodegradability and also mucoadhesive properties. These polysaccharides
can be formulated into different drug delivery systems, such as nanoparticles, hydrogels,
and microparticles for controlled and targeted drug release [65].

2. Chitosan from algal sources in wound healing

Chitosan, a biopolymer derived from chitin, has been utilized in wound healing
applications due to its antimicrobial properties, biocompatibility, and ability of promoting
tissue regeneration. Chitosan derived from algae is advantageous due to its sustainable and
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renewable source compared to that of traditional crustacean-derived chitosan. Alginate–
chitosan composite dressings have been developed for wound management, demonstrating
enhanced healing properties [66].

3. Algal polysaccharides as anticancer agents

Algal polysaccharides, such as fucoidan and ulvan, are rapidly gaining attention
for their potential anticancer properties. These biopolymers have demonstrated anti-
proliferative, anti-metastatic, and immunomodulatory effects against various cancer cell
lines. Fucoidan, in particular, has shown potential in inhibiting tumor growth and metasta-
sis through multiple mechanisms, including the induction of apoptosis and the suppression
of angiogenesis [67].

2.3.3. Applications of Algae-Based Biopolymers in Biotechnology and Tissue Engineering

1. Alginate

Alginate, a polysaccharide extracted from brown algae, has been extensively ap-
plied in biotechnology and tissue engineering for its ability to form hydrogels and its
biocompatibility. Alginate hydrogels are being employed as scaffolds for tissue engineering
applications due to their ability to support cell growth and mimic the extracellular matrix
(ECM) environment [68].

2. Carrageenan

Carrageenan, a polysaccharide derived from red algae, has shown promise as a
scaffold material in tissue engineering. Carrageenan-based hydrogels are being employed
for wound healing and drug delivery due to their biocompatibility and ability to form
stable hydrogel networks [69].

3. Ulvan

Ulvan, a sulfated polysaccharide extracted from green algae, has gained attention
in biotechnology and tissue engineering for its unique properties of biocompatibility,
biodegradability, and ability to stimulate cell proliferation and tissue regeneration. Ulvan-
based hydrogels have been investigated for applications such as controlled drug delivery
and wound healing [70].

2.3.4. Applications of Algae-Based Biopolymers in Cosmetics

1. Alginate

Alginate, a polysaccharide derived from brown seaweeds, such as Laminaria and
Macrocystis species, is widely employed in cosmetics for its ability to form hydrogels
and films, imparting moisturizing and emulsifying properties to skincare formulations.
Alginate-based masks, creams, and serums are popular in the cosmetics industry due to
their hydrating and soothing effects on the skin [71].

2. Carrageenan

Carrageenan, a sulfated polysaccharide extracted from red seaweeds, including Kappa-
phycus and Eucheuma species, is employed as a thickening and stabilizing agent in cosmetics
such as various skincare and haircare products. Its film-forming properties contribute to
the texture and viscosity of cosmetic formulations, enhancing their spreadability and shelf
stability [72].

3. Spirulina extract

Spirulina is a blue-green microalga rich in proteins, vitamins, minerals, and antioxi-
dants. Extracts from Spirulina are increasingly utilized in cosmetics for their anti-aging,
antioxidant, and skin-nourishing properties. Spirulina extracts are incorporated into various
skincare products, including facial masks, creams, and serums, to promote skin hydration,
elasticity, and rejuvenation [73].
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2.3.5. Applications of Algae-Based Biopolymers in Biofuels

1. Algal lipids as feedstock for biofuel production

Algal lipids, particularly triglycerides, are a valuable feedstock for biofuel production
due to their high lipid content and potential for conversion into biodiesel. Microalgae can
accumulate lipids under specific growth conditions, making them a promising source for
sustainable biofuel production [74].

2. Algal polysaccharides for bioethanol production

Polysaccharides extracted from algae, such as cellulose and starch-like compounds,
can be enzymatically hydrolyzed into fermentable sugars, which can then be utilized
for bioethanol production. Algal polysaccharides are advantageous due to the rapid
growth, high carbohydrate content, and minimal land requirements of algae, making them
promising feedstocks for sustainable bioethanol production [75].

3. Algae-based hydrocarbons for biofuel synthesis

Some algae species have the capability to produce hydrocarbons, such as alkanes
and alkenes, which serve as precursors for renewable biofuels. These hydrocarbons can
be extracted from algae biomass and can be further processed into drop-in biofuels with
properties similar to petroleum-derived fuels [76].

2.3.6. Environmental Applications of Algae-Based Biopolymers

1. Algal polysaccharides for heavy metal remediation

Algal polysaccharides, such as alginate and carrageenan, have been studied for their
potential in heavy metal remediation from various water bodies. These biopolymers can
form complexes with heavy metal ions, facilitating their removal through precipitation or
adsorption processes. Research has demonstrated the effectiveness of algal polysaccharides
in removing heavy metals like lead, cadmium, and copper from contaminated water,
providing a sustainable and eco-friendly approach to water remediation [77].

2. Algal biopolymer-based membranes for wastewater treatment

Algal biopolymers have been investigated as membrane materials for wastewater
treatment applications due to their biocompatibility, biodegradability, and low-cost fabrica-
tion. These membranes can effectively separate pollutants from water using ultrafiltration,
nanofiltration, and reverse osmosis. Studies have shown that membranes fabricated from
algal biopolymers exhibit high permeability, selectivity, and fouling resistance, making
them attractive candidates for sustainable wastewater treatment systems [78].

3. Algae-based biopolymers for soil stabilization

Algae-based biopolymers have been examined for their potential in soil stabilization
and erosion control applications. These biopolymers, when applied to soil surfaces, can
form a protective layer that helps prevent soil erosion caused by wind and water. Research
has demonstrated the effectiveness of algae-based biopolymers in improving soil structure,
reducing sediment runoff, and enhancing vegetation growth in degraded ecosystems. This
application offers a sustainable and environmentally friendly solution to soil erosion and
land degradation issues [79].

2.3.7. Applications of Algae-Based Biopolymers in Medical Devices

1. Alginate hydrogel

Alginate, derived from algae, has been widely used in the fabrication of hydrogels
for various medical applications, including tissue engineering and drug delivery systems.
Alginate hydrogels possess biocompatibility and tunable mechanical properties suitable
for different tissue types [80].

2. Carrageenan-based wound dressings
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Carrageenan, a polysaccharide extracted from red algae, has been applied in the
development of wound dressings due to its biocompatibility, biodegradability, and ability
to promote wound healing. Carrageenan-based dressings offer a moist environment for
wound healing and can release therapeutic agents to aid wound recovery [81].

3. Spirulina-based scaffolds

Spirulina, a type of microalgae, has been employed in the fabrication of scaffolds
for tissue engineering applications. Spirulina-based scaffolds offer benefits such as high
porosity, biocompatibility, and the presence of bioactive compounds that can enhance cell
proliferation and differentiation [82].

3. Bacterial Biopolymers
3.1. Different Bacterial Biopolymers and Their Production

Bacteria can produce diverse biopolymers using fermentation. There are many ex-
amples of polysaccharides such as dextran, xanthan gum, gellan gum, glucan, xanthan,
pullulan, and glycogen [83]. Furthermore, bacterial biopolymers are also polypeptides such
as polylysine, polyamides, polyesters, polyphosphates, and protein components [84,85].
The most common building blocks of bacterial biopolymers are depicted in Figure 5 [23].
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Polysaccharides consist of sugars or sugar acids, which are either stored in bacterial
cells or segregated to build a film on the cell surface or to become part of the biofilm, such
as alginic acid or cellulose [86]. Dextran is a complex, branched glucan produced by special
lactic acid bacteria, e.g., by the bacterium Leuconostoc mesenteroides [87], while xanthan gum
is an anionic polysaccharide stemming from glucose/sucrose fermentation through the
bacterium Xanthomonas campestris [88]. The anionic polysaccharide gellan gum is produced
by Sphingomonas elodea [89].

Bacterial cellulose belongs to the most often used and investigated bacterial
biopolymers [90]. Cellulose can be produced by a few bacteria, especially Acetobacter
xylinum as well as other genera such as Agrobacterium, Achromobacter, Rhizobium, Sarcina,
Alcaligenes, Pseudomonas, Sarcina, Komagataeibacter, and others [91–93]. The morphology and
fiber diameter distribution depend, among others, on the carbon sources (Figure 6 [92]).
The synthesis of bacterial cellulose ideally works with glucose as the main carbon source of
the bacteria, followed by the extrusion of cellulose nanofibrils through the pores of the outer
bacteria membrane and the subsequent aggregation of these nanofibrils into a web-like
network [94]. Contrary to plant-based cellulose, no impurities like lignin or hemicellu-
lose can be found in bacterial cellulose, leading to higher crystallinity and higher tensile
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strength [95]. Furthermore, it is relatively inert, which can be changed using conjugation
with alginate, chitosan, gelatin, hyaluronic acid, or xyloglucan [96].
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originally published under a CC-BY license.

PHAs are another often-researched class of bacterial polymers, e.g., poly(3-hydroxybutyrate)
(P3HB or PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV), poly(3-hydroxybutyrate-
co-3-hydroxyhexanoate) (PHBHHx), and poly-4-hydroxybutyrate (P4HB) [97]. They show good
biocompatibility and biodegradability and can be prepared with different side chain lengths,
enabling the variation in their mechanical properties over a broad range [98]. On the other hand,
bacterial polythioesters (PTEs) are not biodegradable due to the ester linkages present in their
backbones but can also show thermoplastic and elastomeric properties [99].

While PHB was catalyzed in a two-stage process from Acetobacterium woodii which
transformed carbon monoxide into formate, followed by its conversion into PHB by
Methylbacterium extorquens AM1 [100], PHAs can generally be produced from beer
brewery wastewater with maltose as the primary carbon source [101]. Other authors
suggested food waste-streams as a possible feedstock for bacterial fermentation for PHA
production [102] or other low-cost carbon sources, e.g., soy molasses, rice bran, dates [103],
or vinasse-containing substrates [104].

The cationic lysine homopolymer, polylysine, contains functional carboxyl and ε-
amine groups, has hydrophobic and hydrophilic properties, and is produced by Strepto-
myces bacteria [105].

Amongst the polyamides, poly(γ-d-glutamic acid) (γ-PGA) and poly(ε-l-lysine) (ε-PL)
are segregated and form a biofilm or encapsulate the cell [106]. Regarding polyesters, poly-
hydroxyalkanoates (PHAs) are synthesized by many bacteria as a way to store carbon and
energy [107]. Polyphosphates are used for energy and phosphate storage [108]. Amongst
the proteins, there are fimbrillin, pilin, or flagellin, which can self-assemble into nanofibers
or similar forms [109].
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3.2. Typical Applications of Bacterial Biopolymers

Bacterial biopolymers can have different physical and chemical properties and are thus
used in diverse applications. Bacterial cellulose is mainly used in biomedicine, as food, and
in bioengineering pharmaceutics and cosmetics [110,111]. Its properties can be optimized
in situ (before biosynthesis) or ex situ (after biosynthesis) for a special application [110]. It
is often used for wound dressing, for which it can further be optimized by adding silver
nanoparticles or ZnO to increase the antibacterial activity, hyaluronan for higher thermal
stability, or agarose to improve the mechanical properties and the fluid uptake [112].
Bacterial cellulose can also be used for other diverse biomedical applications, such as
medical implants [113], three-dimensional scaffolds with improved biocompatibility [114],
filtration, skin and vascular grafts, or drug delivery [115]. Special bacterial polymers can
even be used in cancer treatment [116], especially combined with other biopolymers and
supportive substances [117].

Other potential applications of bacterial biopolymers are as substrates for Co nanopar-
ticles used in catalytic experiments [118] and different energy applications, as discussed in
the next Sections.

4. Algal Biopolymers for Batteries

Using biopolymers from natural sources for batteries ideally terminates the “green
battery cycle”, as described by Liedel and depicted in Figure 7 [119]. In this cycle, pho-
tosynthesis of plants, e.g., algae, produces biomass, which is organically synthesized to
prepare “green” batteries, which provide energy, and whose CO2 emission is used again
for photosynthesis.
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Generally, batteries consist of two electrodes (i.e., anode and cathode) and the sepa-
rator between them, as shown in Figure 8 [120]. Both electrodes must have high electric
conductivity and must be chemically stable. The separator allows Li ions or the corre-
sponding charge carriers in the respective battery type to be transferred through it; thus,
its porosity and permeability as well as the absorption and retention of the electrolyte are
important parameters.

Biomass from algae and other natural sources can be used for all important parts
of batteries, i.e., electrodes (either in their natural form or after carbonization), binders,
electrolytes, and separators [119,121]. However, mostly algal biopolymers are used as
electrolytes and separators [122,123], while only few reports about algal biopolymers as
electrode materials or binders can be found in the scientific literature [124,125].
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4.1. Separator Materials

Typical materials used as separators are alginates and cellulose, while several other
algae biopolymers have also been investigated as ion-conducting membranes [126]. Sep-
arators composed of sodium alginate and poly(ethylene oxide) (PEO) were used in Li
metal batteries, where the sodium alginate supported the structure of the film, while PEO
absorbed the liquid carbonate electrolyte and thus enabled the diffusion of Li ions [127].
Embedding nanofibers from the natural mineral attapulgite into sodium alginate, Song
et al. prepared an eco-friendly porous separator with good thermal and chemical stabil-
ity, which could be efficiently wetted with the liquid electrolyte in a Li-ion battery [128].
Embedding cellulose as filler in calcium alginate, Tan et al. prepared Li-ion batteries with
a high capacity retention ratio of ~90%, thermal and chemical stability, and no hot melt
shrinkage at high temperatures, making this battery highly safe [129].

Algal cellulose was received from algal waste from the food industry and blended
with soy protein to prepare a sustainable separator with high ionic conductivity
(5.8 mS/cm), which showed good cycling properties in Li-ion batteries [130]. Serra et al.
underlined the high porosity of 80–90% of their separator membranes, where the average
pore size depended on the algal cellulose content, the thermal stability of the membranes
up to 150 ◦C, and the good mechanical properties, as compared to pure soy protein
separators [130]. Algal cellulose from Cladophora was even used to prepare a pure paper-
based battery, where the high crystallinity, porosity, and specific surface area of the algal
cellulose enables using the material as a separator with good electrolyte wettability, thereby
increasing capacity, stability, and safety of Li-ion batteries [131].

4.2. Electrolyte Materials

Most researchers concentrate on algal biopolymers as solid polymer electrolytes for
batteries and other energy-storage devices, where the biopolymer forms a matrix which
contains different ionic dopants, such as Li or Mg salts [132], and thus combines electrolyte
and separator. Typical algal biopolymers for electrolytes in the form of membranes or
hydrogels are polysaccharides, e.g., alginate or κ-carrageenan [133–135].

κ-carrageenan is already being used in different industries on relatively large scales;
however, it is hydrophilic and has low mechanical properties, making its use as poly-
mer electrolyte challenging [136]. Nevertheless, it is often investigated for different
battery types.

κ-carrageenan was used in Li-ion batteries by Arockia Mary et al., who added LiNO3 to
the biopolymer to increase the ionic conductivity up to 1.9 · 10−3 S/cm and achieved electro-



Polymers 2024, 16, 610 12 of 26

chemical stability of up to 3.2 V for the optimum amount of LiNO3 in the membrane [137].
In the same group, LiCl salt was added to κ-carrageenan to form a membrane with ionic
conductivity of 1.2 · 10−2 S/cm, reaching a voltage of 3.25 V in a rechargeable battery with a
LiFePO4 cathode and an activated charcoal/graphite anode [138]. Rudati et al. added ammo-
nium chloride to κ-carrageenan and used the resulting free-standing film as an electrolyte in
an organic C/Zn battery, which reached a voltage of 2.1 V [139]. By doping κ-carrageenan
with ammonium bromide, Nithya et al. prepared an electrolyte with high conductivity of
2.8 · 10−3 S/cm, and the battery composed of this electrolyte, a zinc/graphite anode, and
a lead oxide/graphite/vanadium pentaoxide cathode showed an open-circuit voltage of
4.29 V [140]. Using a κ-carrageenan/NH4Cl film as an electrolyte resulted in a ionic conduc-
tivity of 3 · 10−4 S/cm, which was used to prepare a battery with zinc sulfate/graphite/zinc
anode and vanadium pentaoxide/graphite/lead oxide cathode, which showed an open-circuit
voltage of 1.74 V [141]. Especially for wearable devices, Perumal and Selvin developed flexible
solid electrolytes from κ-carrageenan and NH4COOH, which showed a proton-conductivity
of 8.5 · 10−4 S/cm and electrochemical stability of up to 6.3 V [142].

Alginate electrolytes were prepared by Diana et al. who doped sodium alginate with
sodium thiocyanate (NaSCN), resulting in an ionic conductivity of 1.2 · 10−2 S/cm and a mea-
sured open-circuit voltage of 2.87 V in an all-solid-state sodium-ion battery [143]. For use in
magnesium-ion batteries, Tamilisai et al. embedded magnesium nitrate (Mg(NO3)2·6H2O) in
sodium alginate, leading to a ionic conductivity of 4.6 · 10−3 S/cm and an open-circuit voltage
of 1.93 V [144]. Blending alginate with chitosan and doping the blend with ZnCl2 (Figure 9),
Fernández-Benito et al. prepared an aqueous zinc ion polyelectrolyte with a conductivity of
approx. 10−3 S/cm and high electrochemical cyclability of over 7000 cycles [145].
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Another algal biopolymer that has been investigated as a potential electrolyte for
batteries is an agarose matrix with concentrated KOH as a liquid electrolyte for zinc–air
batteries, amongst others [146]. Besides these algal biopolymers, the next Section describes
bacterial biopolymers with potential use in batteries.

5. Bacterial Biopolymers for Batteries

Similar to algal biopolymers, many bacterial biopolymers can be used for batteries.
Bacterial cellulose can be carbonized to form nano-carbon, with a very high specific surface
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area and used as a binder or an electrode, or it can be used without carbonization as an
encapsulation material in lithium–sulfur batteries [147,148]. Another bacterial biopolymer
that can be used as a binder is xanthan gum, derived from Xanthomonas campestris, which is
water-soluble and has a high molecular weight, which was found to provide good capacity
retention [149].

The carbonization of bacterial cellulose leads to interconnected porous structures
and abundant oxygen-containing groups as well as the formation of oriented graphite
structures [150–152]. Thus, such “hard” carbons are broadly investigated as anode materials
for lithium-ion and sodium-ion batteries [153]. Carbonized bacterial cellulose was also used
to prepare a binder-free freestanding cathode for KS (potassium sulfur) batteries by dip-
coating the carbonized bacterial cellulose with sulfur/carbon disulfide and subsequently
using melt diffusion at 160 ◦C, resulting in a capacity of 123 mAh/g after stabilization
with a capacity retention of 86% after 500 cycles [154]. Other researchers reported different
methods to create electrodes from bacterial cellulose, typically using carbonization or
pyrolyzation, partly followed by KOH activation or similar chemical treatments [155].

However, bacterial cellulose is more often used as separator. Baranwal et al. prepared
polydopamine(PDA)-functionalized bacterial cellulose as a separator for a lithium–sulfur
battery [156,157]. Thus, polysulfide shuttling could be avoided by providing active sites
where the polysulfides were trapped, prohibiting undesired migration to the anode. On the
other hand, the migration of Li ions was improved by functional groups in the separator,
and a uniform Li-ion flux at the Li anode was supported by the homogeneous pore distri-
bution in the separator, and thus, a large capacity of 1450 mAh/g with a very low decrease
during 650 cycles was reached [156]. Avoiding the shuttle effect of polysulfides by bacterial
cellulose interlayers was also investigated in other studies in order to improve the cycle
stability of different batteries [158]. Combining bacterial cellulose with Al2O3, Ulfa et al.
achieved a higher crystallinity than that of pure bacterial cellulose as well as increased
porosity, electrolyte absorption, and conductivity, suggesting the use of this composite as a
battery separator [159]. Heydorn et al. investigated bacterial cellulose separators especially
for nickel–zinc batteries and found high hydroxide and zincate ion diffusion as well as
high electrolyte uptake for a porous separator and better zincate shielding for a denser
separator, while combining both resulted in slower cell aging and less ZnO in the pores of
the separator [160]. For Li-ion batteries, Chen et al. suggested a bacterial cellulose/chitosan
separator whose pore size could be tailored, as depicted in Figure 10 [161]. They found
improved pore structure and porosity as well as dispersion uniformity due to chitosan
grafting. The separator showed electrolyte absorption of more than 300%, high ionic con-
ductivity, and good interface compatibility. The battery prepared with this separator had a
high capacity retention of 90% after 100 cycles and a specific capacity of 150 mAh/g [161].
Huang et al. used zeolitic imidazolate framework-67 (ZIF-67) instead to form a composite
separator with bacterial cellulose in order to improve the pore structure and increase the
electrolyte retention capability as well as to strongly increase the ionic conductivity, leading
to capacity retention of 91.4% after 100 cycles and a large capacity of 156 mAh/g [162].
Combining bacterial cellulose with polyether block amide, Ajkidkarn and Manuspiya
prepared a highly porous membrane with high wettability and electrolyte uptake as well
as good ionic conductivity, thermal stability, and mechanical properties, which could be
used as a separator for Li-ion batteries [163].

Bacterial cellulose and other bacterial biopolymers can also be used as electrolytes
in different batteries. Shi et al. used a gel electrolyte from bacterial cellulose with LiI as
the redox mediator for Li-O2 batteries that reduced the I3− ion shuttle effect and thus led
to good cycling performance without self-discharge [164]. Bacterial cellulose can also be
blended with poly(vinyl alcohol) (PVA) to prepare flexible, conductive, mechanically strong
solid electrolyte materials for rechargeable zinc–air batteries [165].

Besides bacterial cellulose, gellan gum is also often used as an electrolyte in batteries.
Buvaneshwari et al. prepared gellan gum electrolytes with Mg(ClO4)2 salts as magne-
sium ion-conducting solid electrolyte and found a ionic conductivity of up to 10−2 S/cm
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and an open-circuit voltage of the magnesium battery prepared with this electrolyte of
2.52 V [166]. Combined with sodium perchlorate (NaClO4), gellan gum was also used as a
solid electrolyte for solid-state sodium-ion batteries, where the addition of the salt increased
the ionic conductivity from 3.87 · 10−6 S/cm for pure gellan gum to 4.85 · 10−3 S/cm, and
an open circuit voltage of 2.99 V was found for the sodium ion battery [167]. By adding
ammonium thiocyanate (NH4SCN) salt to gellan gum, the same group produced an elec-
trolyte with proton conductivity of 1.41 · 10−2 S/cm and a corresponding proton battery
with open circuit voltage of 1.62 V [168].
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After describing the large potential of algal and bacterial biopolymers for applications
in batteries, their potential use as biofuel will be discussed in the next Sections.

6. Algal Biopolymers for Biofuel

Algal biomass can be used to produce liquid, gaseous, or solid biofuels, such as
bioethanol, bio-methane, biodiesel, bio-hydrogen, or bio-gas [169]. Bioethanol is produced
with the fermentation or gasification of algal polysaccharides, mostly from brown algae,
which have high carbohydrate content, but also from green and read algae [170]. For
bio-methane, the anaerobic digestion of algae can be used [171], while biodiesel is derived
from oils or lipids produced by microalgae [172]. Bio-hydrogen can be produced by green
algae under anaerobic conditions [173], while biogas results from the anaerobic digestion
of microalgae [174]. For detailed overviews, please see reviews [175–177].

While biomass from microalgae allows producing biopolymers, biofertilizers, and
biofuels at the same time, the extraction of these components from the microalgae is more
complicated and thus less economical than from other sources [178,179]. This makes
producing biofuel from algal biomass commercially challenging and suggests combining
biofuel production with the extraction of high-value components from algae, such as
therapeutics, nutraceuticals, and cosmetics [41,180]. On the other hand, waste-streams can
be better managed if they are used as feedstock for algal growth, thereby using a waste-as-
a-value approach that reduces the overall costs for the received algal products [181,182].
Furthermore, microalgal biomass can be grown on non-arable land and shows higher
productivity of usable biomass than terrestrial plants, making algae advantageous for
biofuel production [182].

Generally, bioenergy feedstock should contain a large amount of biopolymers, making
especially green and blue microalgae interesting for biofuel generation [183,184]. Cellulose
belongs to the class of biopolymers that can be used for biofuel production by simultaneous
saccharification and either fermentation or co-fermentation after a suitable pretreatment
of the cellulose feedstock [185]. Pretreatment is necessary to disintegrate the cell walls of
the algal biomass in order to release the intracellular biopolymers [186,187]. Biological
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pretreatment can occur in different ways, as depicted in Figure 11, and it is either enzyme-
mediated or biological agent-mediated [188].
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Biofuel production from algae is thus ideally combined with either wastewater clean-
ing or the production of high-value products. Arun et al. suggested a biorefinery concept
in which algal oil was extracted from C. vulgaris biomass in order to produce biodiesel
as well as the biopolymer PHB from the de-oiled cake, as depicted in Figure 12 [189].
The combined production of biofuel and PHB from Chlorella pyrenoidosa was described
by Das et al. [190]. Different pretreatments, such as acidic, enzymatic, and microwave
laser-hydrogen peroxide-Fe-nanoparticle pretreatment, were tested by AlMomani et al.
with respect to their effect on the production of bioethanol and biopolymer from algal
biomass [191]. On the other hand, Kumar et al. concentrated on the de-oiled algal biomass
pretreated using a hybrid physicochemical/enzymatic method and found that it could be
used as a feedstock for bioethanol as well as biopolymer (PHB) production; thus, the whole
de-oiled algal biomass could be used without producing any waste [192]. Vickram et al.
also described algal biomass and as a feedstock for biofuel production and the biopoly-
mer PHA, but also the acid hydrolysis of PHA to receive biofuels from methyl esters of
hydroxyalkanoates (HAME) and hydroxybutyrate (HBME) [193].
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It is evident from these examples that the production of biofuels from algal biomass,
often combined with the extraction of polymers, has several advantages but also economic
challenges. The next Section investigates the opportunities and challenges for the biofuel
production from bacterial biopolymers.

7. Bacterial Biopolymers for Biofuel

One of the possibilities to prepare biofuel from bacterial biopolymers is provided
by the use of lignocellulosic material, which is pretreated with bacteria, leading to the
biodegradation of cellulose, hemicellulose, and lignin in different amounts, depending
on the chosen bacteria (Figure 13) [194]. Bacterial pretreatment can be finished within
some hours to days, while pretreatment with white-rot fungi usually takes from weeks
to months; nevertheless, it is often used due to its high efficiency [195]. Generally, the
production of biofuel from lignocellulosic feedstock is reasonable since this material is
highly abundant and can be found in large amounts in woody and non-woody plants;
however, to make the process economical, biofuel production is often combined with the
production of biopolymers, industrial biocatalysts, and other high-value products [196].
Furthermore, it is possible to use agro-industrial waste as feedstock, thereby achieving an
environmentally friendly bioconversion biofuel and other into viable bioproducts [197,198].
Among the often-used bacteria, Pseudomonas putida, Rhodococcus pyridinivorans CCZU-B16,
Arthrobacter sp. C2, and Caldicellulosiruptor kronotskyensis are used for the depolymerization
of lignin [199].
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Besides lignocellulosic material, several other biopolymers and other materials can be
used for biofuel production by bacteria. Banu et al. investigated the possibility to use waste-
activated sludge that can contain harmful pathogens and other problematic organic and
inorganic substances for bioenergy production [200]. For this purpose, they pretreated the
sludge using bacterial disintegration, supported by a TiO2-embedded chitosan thin film that
increased this effect by an increased hydrolytic activity [200]. PHAs, which can be produced
by microalgae as well as by diverse bacteria, are often used as a base for the production of
HAME biofuels, as already discussed in Section 6 [20,201]. De Paula et al. showed PHA
production from crude glycerol as the only carbon source by the newly found bacterium
Burkholderia glumae MA13 [202]. On the other hand, Rhodopseudomonas palustris can not
only degrade lignocellulosic biomass hydrolysates but also assimilate short-chain organic
acids and crude glycerol from agricultural as well as industrial wastewater [203]. Glucose
was used as feedstock for Clostridium acetobutylicum NCIM 2337 to produce biohydrogen,
biobutanol, and an undefined biopolymer [204]. Special bacteria, called methanotrophs,
can metabolize methane to produce methanol as well as exo-polysaccharides [205]. Simi-
larly, Ralstonia eutropha and similar bacteria can produce biofuels from CO2 and H2 using
fermentation [206].
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8. Discussion
8.1. Advantages and Disadvantages of Algae-Based and Bacterial Biopolymers

As evident from the previous Sections, algae-based biopolymers and bacterial biopoly-
mers have both emerged as promising candidates for applications in batteries and biofuels,
with unique advantages and different challenges.

Algae-based biopolymers are potentially carbon neutral as they are derived from
renewable and biodegradable algae sources. They possess great potential for battery
applications due to their high surface area, porosity, and conductivity, which in turn boost
electrode performance and stability [207]. Additionally, algae-based biopolymers reduce
environmental load compared to conventional electrode materials due to their sustainable
nature. However, challenges such as scalability and cost-effectiveness still need to be
addressed to make them commercially viable for large-scale battery production [208].

Bacterial biopolymers such as PHAs have exhibited their potential in biofuel applica-
tions due to their biodegradability, high energy content, and compatibility with existing
fuel infrastructure [209]. PHAs are produced from various renewable feedstocks, including
agricultural and industrial waste, offering a sustainable carbon-deficient solution for bio-
fuel production. However, slow growth rates, slow bacterial polymer accumulation, and
the optimization of fermentation processes deter their widespread implementation and
competitiveness with conventional fuels [210].

Despite these challenges, both algae-based and bacterial biopolymers hold significant
potential for advancing sustainable energy technologies. Algae-based biopolymers and
bacterial biopolymers both show potential for applications in batteries and biofuel pro-
duction. Algae-based biopolymers offer advantages such as their high surface area and
porosity, which can enhance electrode performance and electrolyte absorption, leading
to improved battery efficiency in battery applications [211]. The abundant availability
of algae as a renewable resource contributes to their appeal for sustainable energy ap-
plications. However, algae-based biopolymers face challenges related to scale-up and
cost-effectiveness in battery production due to the complexity of cultivation, contamination,
and bioprocessing [212]. On the other hand, bacterial biopolymers offer distinct advantages
for biofuel applications due to their compatibility with the existing infrastructure for biofuel
production [213]. Bacterial biopolymers can be derived from various wastewater sources.
Bacterial biopolymers such as PHAs can be utilized as precursors for biofuels, offering
a renewable and biodegradable alternative to fossil fuels. Low energy density and poor
mechanical properties deter their widespread implementation in high-performance biofuel
applications [214]. Algae-based biopolymers are more suitable for battery applications
with their unique properties, whereas bacterial biopolymers are more suitable for biofuel
production, each presenting distinct advantages and challenges.

8.2. Environmental Suitability of Algae-Based and Bacterial Biopolymers

The sustainability and ecological impact of using algae-based and bacterial biopoly-
mers are crucial considerations in evaluating their environmental suitability. Life cycle
assessments (LCAs) provide valuable insights into the carbon footprint of the biopolymers
across their entire life cycle, i.e., from production to disposal. Algae-based biopolymers
are promising candidates due to their renewable, biodegradable nature and their carbon
sequestration potential during cultivation.

Microalgae utilize carbon dioxide during photosynthesis and mitigate greenhouse
gas emissions [215]. Algal cultivation can utilize non-arable land and wastewater, thus
minimizing competition with food production [216]. However, LCAs have exposed prob-
lems such as high energy consumption and high water usage in algal cultivation and
processing [217].

On the other hand, bacterial biopolymers like PHAs offer sustainability advantages
through their production from renewable resources and biodegradability. PHAs are syn-
thesized by bacteria that utilize various carbon sources, including agricultural waste and
industrial by-products, reducing our dependence on fossil fuels [218]. These resources
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minimize environmental impacts linked to conventional plastics derived from petroleum.
PHAs are biodegradable under natural conditions, potentially reducing plastic pollution
and ecosystem damage [219]. However, LCAs have revealed energy-intensive fermentation
processes and limited end-of-life options for PHAs, such as industrial composting facilities,
which may not be commonly accessible [220].

Despite these challenges, both algae-based and bacterial biopolymers provide envi-
ronmental benefits than conventional plastics. Research in the optimization of production
processes and sustainable end-of-life solutions can enhance their ecological performance.

9. Conclusions

It is evident from this review that there are numerous possibilities for using algae
or bacteria for the production of biopolymers that can be utilized in different parts of
batteries or can be used as the base for biofuels, as well as for the simultaneous production
of biopolymers and biofuel. Biological production methods are advantageous due to their
increased sustainability. On the other hand, several problems still reduce the usability
of algae-based and bacterial biopolymers. Low scalability and cost-effectiveness impede
the broader use of algal biopolymers, while bacterial polymers exhibit slow growth rates,
slow bacterial polymer accumulation, and non-optimal fermentation processes. On the
application side, bacterial biopolymers often show low energy density in biofuels and low
mechanical properties. These disadvantages can be overcome by optimizing production and
harvesting methods as well as blending algae-based and bacterial biopolymers with other
sustainable materials to improve their performance in battery and biofuel applications.

To further make the production methods economically feasible, two possibilities for ad-
dressing these economic challenges have been suggested and investigated: the co-production
of biofuel with high-value products and the transformation of the production process to
metabolize waste, CO2, or other undesired resources within a waste-to-wealth process.
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