
Predicting User Error for Ambient Systems by Integrating
Model-based UI Development and Cognitive Modeling

Marc Halbrügge1

marc.halbruegge@tu-berlin.de
Michael Quade2

michael.quade@dai-labor.de
Klaus-Peter Engelbrecht1

klaus-peter.engelbrecht
@alumni.tu-berlin.de

Sebastian Möller1

sebastian.moeller
@tu-berlin.de

Sahin Albayrak2

sahin.albayrak@dai-labor.de

1Quality and Usability Lab 2DAI-Labor
Technische Universität Berlin Technische Universität Berlin

Ernst-Reuter-Platz 7, 10587, Berlin Ernst-Reuter-Platz 7, 10587, Berlin

ABSTRACT
With the move to ubiquitous computing, user interfaces (UI)
are no longer bound to specific devices. While this prob-
lem can be tackled using the model-based UI development
(MBUID) process, the usability of the device-specific inter-
faces is still an open question. We are presenting a combined
system that integrates MBUID with a cognitive modeling
framework in order to provide usability predictions at develop-
ment time. Because of their potential impact, our focus within
usability problems lies on user errors. These are captured in a
cognitive model that capitalizes on meta-information provided
by the MBUID system such as the abstract role of a UI ele-
ment within a task sequence (e.g., input, output, command).
The free parameters of the cognitive model were constrained
using data from two previous studies. A validation experiment
featuring a new application and UI yielded an unexpected
error pattern that was nonetheless consistent with the model
predictions.

Author Keywords
Automated Usability Evaluation; Human Error; Model-Based
Engineering; Smart Home; Cognitive User Model

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g. HCI):
User Interfaces; H.1.2 Models and Principles: User/Machine
Systems

INTRODUCTION AND RELATED WORK
Have you ever forgotten to take your credit card after paying at
a vending machine? Human errors like this happen regularly
when we interact with software applications. Although the
consequences are not always disastrous, they usually make

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
UbiComp ’16, September 12-16, 2016, Heidelberg, Germany
© 2016 ACM. ISBN 978-1-4503-4461-6/16/09...$15.00
DOI: http://dx.doi.org/10.1145/2971648.2971667

further interaction more unpleasant and lengthy. Thus, UIs
should be designed to minimize human error.

This goal is already hard to achieve in classic development con-
texts, but nearly unattainable in ambient environments where
an application is distributed to a large number of devices with
varying interaction concepts and form factors. Here, the goal is
to develop plastic UIs [12], which adapt to different interaction
contexts while preserving certain usability properties.

Unfortunately, designing for human error is not easy. One
reason for this is that errors are hard to predict. Research on
human error is fragmented, and predictive models exist only
for small, well-defined areas (e.g., post-completion error; [9]).
A second reason is that changing the UI to avoid one error can
result in the introduction of new sources of errors of a different
kind [51]. And thirdly, while consequences like these could
be revealed during user studies, the scarcity of errors makes
user studies on human error complicated and expensive.

Thus, for safety-critical systems, several methods exist which
allow to consider appearance and consequences of errors in a
systematic way [47]. For example, HAMSTERS [14] allows to
include potential user errors in a task model representation of
the UI to assess the effect of the errors and of design changes.
NGOMSL allows to compute the working memory load for a
task and estimate errors based on this [25]. GLEAN [53] can
be used to asses consequences of errors by simulating error
prone sequences of task steps. Using such methods requires
extensive expertise in error analysis and the respective tools
and is thus too costly for non safety-critical applications. This
is even more so as many applications are developed for a
multitude of different devices, with potentially different types
of user errors.

Thus, automation of error prediction is desirable to simplify
error analysis in terms of expertise and time spent. Work on
CogTool showed that a cognitive model can be created auto-
matically from a UI mock-up and a demonstrated sequence of
task steps [24]. However, the model predicts execution times
for the task sequence specified by the analyst and does not
predict errors. An extension of CogTool, CogTool Explorer
[49], allows to predict website navigation problems; however,

1028

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

this method only applies to exploratory search for information
on a website by browsing lists of links.

Thus, more work on automatic error prediction is needed.
Error types addressed in such work should be generally appli-
cable to different types of UIs. Furthermore, error probabilities
should depend on UI characteristics in such a way that they
can be avoided with a better UI design.

In this paper, we present an integrated system which allows
to predict erroneous omissions of task steps depending on
UI element characteristics. The system combines a cognitive
model that is based on the Memory for Goals theory [1] with
a model-based user interface development framework. Model-
based user interfaces address the problem of high diversity of
devices an application may run on by providing the interaction
logic and UI characteristics as models. These models encode
high-level semantic information. We will show that this in-
formation can be employed to distinguish UI elements into
classes with differing probabilities of user errors. Thus, accu-
rate error predictions are possible without further intervention
by the analyst. Furthermore, in our system the user model
interacts with the application model directly, i.e., no additional
tool-specific mock-up of the application is required. Thus,
one of the most important bottlenecks of model-based usabil-
ity evaluation, the cumbersome creation of a UI mock-up, is
avoided.

The rest of this paper is organized as follows. We first give
an overview on MBUID and the theory of human error that
forms the basis of our cognitive user model. Next, we present
data that allows to elaborate on the assumptions underlying
our error model, and we explain how the model was integrated
with the MBUID system. A validation experiment provides
evidence that the whole approach generalizes to other UIs. We
show that the model predicts the probability of errors very well
despite unexpected results in the user study. We conclude with
a discussion of the strengths and limitations of our system and
a summary of our contributions.

MODELS FOR UI DEVELOPMENT AND EVALUATION
Providing UIs that are not just adaptive but also follow usabil-
ity criteria remains an important research question. The ability
of user interfaces to adapt to different variations within the
context of use (i.e., different situations) and thereby being able
to preserve certain usability aspects (e.g., observability and
predictability; [16]) within a predefined range of properties
is defined as plasticity [12]. Striving for plasticity produces
additional requirements on the development processes of user
interfaces. A conceptual model of a development process for
plastic user interfaces is the CAMELEON reference frame-
work [10], which is based on the development process of
Model Driven Architecture [29]. Examples of implementa-
tions of the framework are UsiXML [28] and TERESA [30].

Model-based UI development specifies information about the
UI and interaction logic within several models that are de-
fined by the designer [52]. The model types that are part
of the CAMELEON framework belong to different levels of
abstraction. The process starts with a highly abstract task
model, e.g., using ConcurTaskTree (CTT) notation [33]. In

contrast to other task analysis techniques, the CTT models
contain both user tasks (e.g., data input) and system tasks (e.g.,
database query). On the next level, an Abstract User Interface
(AUI) model is created that specifies platform-independent and
modality-independent interactors (e.g., ‘choice’, ‘command’,
‘output’). At this level, it is still open whether a ‘command’
interactor will be implemented as a button in a graphical UI or
as a voice command. In the following Concrete User Interface
(CUI) model, the platform and modality to be used is speci-
fied, e.g., a mock-up of a graphical UI. On the last level, the
Final User Interface (FUI) is the UI that users actually interact
with, e.g., a web page with text input fields for data input and
buttons for triggering system actions.

This conceptual approach has also been applied in runtime
architectures for model-based applications (e.g., [11, 44, 6]).
These runtime architectures derive the FUI from current in-
formation in the models and thus are able to adapt the UI to
changes in the models, thereby reducing complexity during
development.

Using Development Models for Evaluation
While the main focus of MBUID is on how adaptable UIs can
be developed efficiently, the MBUID approach can also help to
evaluate the usability of plastic user interfaces [46]. By having
a defined syntax and semantics, the models provide computer-
processable information about interaction flow, layout, and
design decisions. Consequently, valuable information can
be accessed from these development models if they are still
available during usability evaluation. This allows for a far
deeper analysis than evaluating the surface of the UI only.

Combining approaches for model-based usability evaluation
with MBUID have proven to predict valuable results, e.g.,
simulations of task models [34] or predictions using cognitive
architectures in conjunction with UsiXML [15]. Yet, none of
these approaches has addressed an automated extraction of
information required for simulating human error. In previous
work, we described an integrated system for automated us-
ability evaluation of model-based applications that accesses
required information from relevant UI development models
[39, 38]. This system is based on the MeMo workbench for
usability testing [13]. MeMo’s user simulation progresses to-
wards a given goal state by utilizing a combination of breadth-
first and depth-first search on the state graph of the application
under evaluation. By integrating MeMo with the Multi Access
Service Platform (MASP; [6]), a CAMELEON-conformant
runtime framework, this state graph can be extracted directly
from the application (see Figure 1), thereby saving the analyst
from creating a mock-up UI with MeMo [37].

ACTION CONTROL AND PROCEDURAL ERROR
Human interaction with software systems is mainly controlled
based on stored rules and procedures that have been formed
during earlier encounters and/or training [40]. Errors during
the application of such rules are called procedural errors.
They differ from knowledge-based mistakes [31] in that the
intentions behind the actions are correct, only their execution
went wrong. The latter is also true for sensory-motor slips

1029

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

Task Model
(CTT)

Abstract UI
Model (AUI)

Concrete UI
Model (CUI)

Final UI
(FUI)

User Task
Knowledge

State Transi-
tion Graph

Simulation Interaction
Trace

Multi Access
Service Platform

MeMo
Workbench

Figure 1. Structure of the integrated system. Information flow is denoted
by solid arrows. The MeMo simulation engine applies simulated user
interactions on the AUI level (dashed arrow) and the MASP propagates
their effects to the other levels of the runtime framework.

[31], but contrary to slips, procedural errors are memory-based
(e.g., forgetting a subtask).

More formally, procedural error can be defined as the violation
of the (optimal) path to the current goal by a non-optimal ac-
tion. This can either be the addition of an unnecessary or even
hindering action, which is called an intrusion. Or a necessary
step can be left out, constituting an omission. In this paper
we focus on omissions, only. This is done for several reasons.
First, especially in applied contexts, omissions are far more
frequent than intrusions (e.g., [17, 26, 5]). Second, omissions
are better researched than intrusions, e.g. omissions after com-
pletion of the main goal [9] or omissions of initialization steps
[22]. And finally, omissions are rather a function of the UI
design, while intrusions are more dependent on interactions
between several user tasks [17]. The focus on omissions there-
fore fits best to the main goal of this work, i.e., to provide
usability predictions to UI designers at development time.

Memory for Goals Theory
An explanation of procedural error must incorporate the gener-
ation of correct behavior as well. A very promising theoretical
model of sequential action is the Memory for Goals (MFG)
theory [1]. The MFG proposes that subgoals, i.e., atomic steps
towards a goal, are represented in human memory, thereby
underlying memory effects like time-dependent and noisy acti-
vation, interference, and associative priming. Within the MFG
theory, errors arise when the activation of a goal is not high
enough to surpass interfering goals or even falls below a gen-
eral retrieval threshold. Cognitive models based on the MFG
assumptions have been shown to explain procedural errors in
the HCI domain, namely omissions, very well [50, 51, 21, 19,
27].

The Role of the Environment

The MFG theory is clearly focused on how humans manage
task sequences in memory, i.e., within their head. This has
been criticized for neglecting the role of the environment [43].
As embodied beings, humans strive to reduce cognitive com-
plexity by exploiting the content and structure of the external
world. In our own research, we have shown that by extending
the MFG with an activation process relying on external cues,
better predictions can be achieved and new error domains can
be covered [19]. In the following, this will be referred to
as the knowledge-in-the-world assumption [31]. It proposes
that when a user cannot retrieve the next goal, they revert to
an externalization strategy. The visual scene (i.e., the UI) is

searched1 for interactive elements. Whenever an element is
found, the user tries to retrieve a goal that relates to this UI
element. Because visually attending the element increases
the activation of related goals through priming, a goal that
had previously been forgotten may now surpass the retrieval
threshold. As a consequence, the planned sequence of actions
can be resumed.

Task- and Device-Orientation
The best known examples of procedural error during system
use are post-completion errors [9], e.g., forgetting the origi-
nals in the copy machine, and initialization errors [17], e.g.,
forgetting to reset Caps Lock before typing a password.

Common to both of them is that these errors happen during
procedural steps that do not directly contribute to the users’
actual goals (i.e., making copies; logging into a system). This
common property of goal-irrelevance of a sub-task has been
coined device-orientation [2, 17], its opposite is analogously
called task-orientation. The concept of device-orientation
builds upon the MFG by assuming that device-oriented tasks
are “more weakly represented in memory”. While Ament et al.
[2] discuss different encoding or lack of rehearsal as possible
reasons for lower activation of device-oriented tasks, we are
assuming lack of priming in this case. We will call this the
task priming assumption in the following.

The elimination of device-oriented tasks is a reasonable design
strategy for error reduction. It can also serve as heuristic for
usability experts, but no automatic tool exists that evaluates a
UI design based on device-orientation. Why is this the case?
Evaluation tools like CogTool Explorer [49] can only work on
what is visible on the surface of an interface, e.g., textual labels
on the UI’s interactive elements. While it is relatively easy for
a human to sort UI elements into the task- vs. device-oriented
categories, automatic tools lack the necessary information
about the relationship between users’ goals, the chains of sub-
tasks towards goals, and the corresponding UI elements. How
can we provide information that goes beyond the surface of
the UI to automatic tools?

AUTOMATING MODEL-BASED USABILITY EVALUATION
Our integrated architecture is implemented using application
models from the MASP runtime framework [6]. Interaction
with application models from the MASP is provided through
integration with the MeMo workbench for user simulation.
In [38] we described the generic architecture and processes for
extracting relevant UI information and performing interaction
between all models. An overview of the structure is shown in
Figure 1. Based on the additional information from the AUI
and CTT models, the system can distinguish between more
types of user interactions than what could be derived from
the FUI alone, e.g., a button on the FUI level can be of AUI
type ‘choice’ as part of an input task, but it can also be of AUI
type ‘command’, subsequently enabling a system task. This
distinction may seem trivial, but it provides substantially better
1Note: We currently do not make specific assumptions about the
nature of the search process apart from that it is at least partially
stochastic [8]. This is not a strong theoretical assumption, but rather
a means of keeping the theory simple (Occam’s razor).

1030

SESSION: PREDICTIVE ANALYTICS

predictions (explained variance increased from R2 = .735 to
R2 = .965 in the validation experiment; [38]). Furthermore,
the system can automatically derive semantic relationships
between FUI elements (e.g., buttons) from their grouping on
the AUI level. This knowledge is exploited for additional
improvements of the time predictions that would otherwise
need human intervention by a usability expert [38].

The actual simulation is driven by the tasks of the user. A
single task is defined by its start state (e.g., the home screen
of the UI), its goal state, and an arbitrary number of user task
knowledge items. The task knowledge is the set of information
items that the user has to transmit to the software application
in order to attain their goal. The individual items in the user
task knowledge are applied on the path from start state to
goal state by comparing them to the captions of the currently
visible elements of the UI. If an element matches, a corre-
sponding interaction is performed by the simulation (dashed
arrow in Figure 1). Such interactions usually correspond to
task-oriented user goals.

Additional steps may be necessary to proceed towards the goal
state, e.g., navigation to subsequent UI screens. These are
found by the MeMo based on path search on a state transition
graph that it derives from the task model, AUI model, and
FUI of the MASP application (see Figure 1). Interactions
without corresponding user task knowledge items correspond
to device-oriented user goals.

An example of how the system works is visualized in Fig-
ure 2. It is based on the task “Search for German main dishes
and select lamb chops” from the user studies presented in
the following section (see UI in Figure 3). The verbal task
description is first divided into three items: ‘German’, ‘main
dish’, and ‘lamb chops’. The start state is the home screen of
the UI, the goal state is a screen that gives recipe information
like preparation time and calorie content.

Home
Screen Search0

Search1

Search1

Search1

RecipeList0

RecipeList1

RecipeList2

RecipeInfo0

RecipeInfo1

RecipeInfo2

Start State Goal State
Recipe

Search

German

Main

Course

S

t

a

r

t

S

e

a

r

c

h

Lamb

Chops

Start

Search

Main

Course

German

Start

Search

Lamb

Chops

C

h

i

c

k

e

n

Lamb

Chops

b

a

c

k

b

a

c

k

Figure 2. MeMo state transition graph (detail) of a recipe search. Nodes
denote states, arrows denote transitions. Transitions are labeled with the
caption of the corresponding UI element. Thick lines represent an inter-
action path simulated by MeMo for the user task knowledge {‘German’,
‘Main Course’, ‘Lamb Chops’}. Solid arrows are task-oriented interac-
tions that are selected based on the user task knowledge, dashed arrows
are device-oriented interactions that MeMo derives from the MBUID
models. State ‘RecipeList2’ corresponds to the screenshot in Figure 3.

For a more comprehensive evaluation of an application, several
user tasks are integrated within a dedicated task description
file. This file needs to be prepared manually and allows to

structure the tasks hierarchically. Omitting device-oriented
steps (e.g., page navigation) from the task description file is
not only done for convenience, it is also an important prereq-
uisite for evaluating the plasticity of an adaptable multi-target
application. As the target-specific FUIs usually differ, e.g., in
how the steps within a task sequence are spread over several
pages of the interface, so would the task descriptions if they
would contain all user actions. Therefore, task descriptions
that can be applied across different FUIs of an application
need to abstract from the characteristics of a specific FUI.

EXPERIMENTS
Before we show how the integrated architecture can be ex-
tended for error prediction, we need to make sure that our
theoretical assumptions are appropriate approximations of
omission errors. For this reason, we have conducted two user
studies that shed light on the relationship between device-
orientation and omissions.

We selected a MASP-based kitchen assistance system for the
experiments. It aims at helping with the preparation of meals
by suggesting recipes, calculating ingredient amounts and
maintaining shopping lists. A screenshot of the recipe search
screen of the kitchen assistant is displayed in Figure 3. Both
studies have been analyzed with a different focus, before [19,
20]. We are therefore just giving an overview over the methods
and combined results that were used for the training of the
integrated system.

Previous analyses have shown that the concept of device-
orientation is not sufficient to explain omission errors [19,
20]. A common strategy to facilitate device-oriented tasks is
to make them obligatory, e.g., most current teller machines
only hand out cash (the overall goal) after the card has been
taken (a device-oriented step that is omission-prone otherwise).
We call this property task necessity and analyze its impact on
omissions below.

Methods
Participants

The first experiment was conducted in July and August 2014,
the second one in January 2015. A total of 44 members of
the Technische Universität Berlin paid participant pool took
part. There were 14 men and 30 women, aged between 18
and 59 (M=30.7, SD=10.6). As the instructions were given in
German, only fluent German speakers were allowed. Informed
consent was obtained from all participants.

Materials

A personal computer with 27” (68.6 cm) touch screen and
a 10” (25.7 cm) tablet were used to display the interface of
the MASP-based kitchen assistant during experiment 1. In
the follow-up experiment, we chose a 23” (58.4 cm) monitor
with optical sensor ‘touch’ technology instead of the personal
computer of experiment 1. While the large screens operated
in landscape mode, portrait mode was used for the tablet. We
created two variations of the UI of the kitchen assistant that
were targeted at the large screen and the tablet, respectively.
All user actions were recorded by the computer system. The
subjects’ performance was additionally recorded on videotape
for subsequent error identification. While experiment 1 was

1031

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

Figure 3. Screenshot of the English version kitchen assistant used for experiments 1 and 2.

conducted in a real kitchen in our lab space, the additional
application of eye-tracking during experiment 2 required fixed
lighting conditions that could only be achieved in a neutral
environment.

Design

We used a four-factor within-subject design, the factors being
the physical device used, the UI variant, task necessity (oblig-
atory vs. non-obligatory), and whether it was device-oriented
as opposed to task-oriented. We collected all user errors and
task completion times, but will only present an analysis of
omission errors, here. The participants completed a total of
46 tasks grouped into 4 blocks. Physical device, UI variant,
and block sequence were varied randomly, but counterbal-
anced across each experiment. Experiment 2 contained some
additional tasks that were introduced to shed more light on
non-obligatory device-oriented tasks. We are only reporting
the sub-set of tasks that were shared between both experiments,
here.

Procedure

After having played a simple game on each of the two devices
to get accustomed with the respective touch technology, the
participants received training on the kitchen assistant. The
training covered all parts of the application that were used
during the actual experiment. Each block of tasks began with
relatively simple tasks like “Search for German main dishes
and select lamb chops”. Afterwards, the ingredients to a recipe
were collected (e.g., “How much meat is needed for four
servings”) and some of them were added to a shopping list
that is part of the kitchen assistant (“How many items are on

your shopping list”). The complete procedure lasted less than
60 minutes for both experiments.2

Results
We collected a total of 11124 clicks, 92 (0.83%) thereof were
omissions. A mixed logit model with subject and block as
random factor [4] yielded no effects of physical device, UI
version, or experiment (all p > .4). There is a significant
main effect of device-orientation, but it points into the oppo-
site direction with device-oriented subtasks showing lower
error rates (z = 2.91, p = .004). Obligatory subtasks were less
prone to omissions (z =�2.11, p = .035), and there is a signif-
icant interaction between task necessity and device-orientation
(z =�3.57, p < .001). Omission rates along with confidence
intervals are presented in Figure 4.

●

●

●

●

Device−Oriented Task−Oriented

0.00

0.02

0.04

0.06

non−obligatory obligatory non−obligatory obligatory
UI Element Type

O
m

is
si

on
 ra

te
 [0

..1
]

Figure 4. Omission rate for different types of tasks for the aggregated
data of the first and second experiment. Error bars denote 95% con-
fidence intervals of the empirical omission rates based on the Agresti-
Coull method.

2The full instructions are available for download at http://www.tu-
berlin.de/?id=135088

1032

SESSION: PREDICTIVE ANALYTICS

Discussion
Several results are noteworthy on the background of the theo-
retical assumptions laid out before. First of all, the direction
of the device-orientation effect contradicts our expectations
based on the task priming assumption. Why is this the case?
The general inconvenience of device-oriented tasks is often
counteracted by making them obligatory. In case of the kitchen
assistant, 86% of the device-oriented steps were also obliga-
tory, while 74% of the task-oriented steps were non-obligatory.
Together with the interaction between device-orientation and
task necessity being significant, this does not mean that the
main effect of device-orientation contradicts the task priming
assumption, but that both main effects should be interpreted
with care. Device-orientation cannot be used in isolation; task
necessity is at least of equal importance. Only if the inter-
action of both factors is taken into account, we can explain
why some steps are more often forgotten than others. This
result feeds back to our theory by demanding that a predictive
model of user error must incorporate knowledge about the
control flow of the application as well (operationalized here
as task necessity). The importance of the application logic is
often underestimated in error research because such research
is mainly conducted in specific laboratory settings that favor
high error rates over generalizability to the world outside the
laboratory (e.g., [50, 2, 27]).

With regard to the model-based design of plastic user inter-
faces, it is worth noting that the property whether a user task is
obligatory or not is only represented on the least abstract FUI
level. As a result, valid error predictions for a MBUID system
are not possible if the FUI level is not being considered. We
will return to this point in the General Discussion below.

Finally, the data questions our assumptions in a second way. If
the task priming assumption is correct, the activation of tasks
like moving to the next screen should be relatively low, i.e.,
they should be prone to retrieval errors. But if the participants
cannot remember them, how do they manage to complete
them at all? Obligatory device-oriented tasks showed the
lowest omission rate in our experiments. The knowledge-in-
the-world assumption provides an answer to this question:
While searching the UI for ‘inviting’ elements, the currently
attended element receives additional visual priming. This
increases the activation of the corresponding subgoal so that
the user is able to retrieve it.

INTEGRATED SYSTEM FOR ERROR PREDICTION
Our theoretical assumptions have been modeled within the
cognitive architecture ACT-R [3] and have been compared
to the data presented above to ensure their validity [19, 20].
While this approach is helpful to advance psychological theory,
it does not scale well to applied scenarios. We therefore chose
to replicate the core components of the ACT-R model within
the MeMo system that had already been integrated with the
MASP framework that has been used for the experiments [38].

In order to make this integrated evaluation system capable of
errors, its until then optimally behaving (path search based)
user simulation had to be modified in a reasonable manner.
This was done based on the MFG theory as introduced above.
While path search on the state graph of the application is still

used to find an optimal sequence of interactions to attain a goal,
the individual interactions (i.e., arrows in Figures 2 and 5) in
the resulting sequence are now subject to memory activation.

Goal Activation Computation
Each element of the task description that the model is follow-
ing (i.e., the goals) was extended by a numerical activation
value. For reasons of simplicity, these activation values are
not computed using ACT-R’s sophisticated activation formu-
lae, but are drawn from a standard Gaussian random variable
instead (see Figure 6). Omissions occur when the activation
of a goal (i.e., element of the task description) happens to
fall below a fixed retrieval threshold rt. Visual priming while
searching the screen when using the knowledge-in-the-world
strategy is achieved by adding a fixed visual priming constant
vp.

Task Priming is modeled as a positive numerical value that is
added to the goal’s activation, thereby reducing the probability
of retrieval failure. It represents activation spreading from the
overall goal (e.g., looking up the ‘lamb chops’ recipe) to a
subgoal leading to it (e.g., using a ‘main dish’ search attribute).
We are using LTMC [45], a dedicated long term memory
module with sophisticated activation spreading to compute the
amount of task priming. LMTC’s main purpose is to represent
knowledge about the world as semantic networks [18]. The
integrated system as presented here uses it to represent the user
knowledge about the current system, only. This was achieved
by adding all recipes contained within the kitchen assistant to
LTMC together with their attribute mapping, i.e., the semantic
network was built up from facts like ‘Panna Cotta is a dessert’
or ‘Sauerbraten is a main dish’.

Main Dish

Dessert

Lamb Chops

Sauerbraten

Panna Cotta

German

Italian

S2S1S0 S3 S4
German Main Dish

Start Search

Lamb Chops

MeMo

LTMC

Figure 5. Knowledge representation and application of spreading acti-
vation within LTMC and application to MeMo simulation. Activation
is visualized as node border thickness in LTMC and as arrow thickness
in MeMo. By highly activation the overall goal of the sequence (‘Lamb
Chops’), semantically connected nodes (‘German’, ‘Main Dish’) receive
priming. The resulting activation values are applied during MeMo’s
interaction simulation. Note that the device-oriented subgoal ‘Start
Search’ does not receive any priming at all.

Within the network, a specific dish (e.g., ‘Lamb Chops’)
spreads activation to its attributes (‘German’ and ‘main dish’)
but not to the other nationalities or types of dish. Search at-
tributes accordingly spread activation to recipes, but as more
recipes belong to a single search attribute than attributes to
recipes, the amount of spreading is smaller in this direction.
For each action of the user model, the LTMC module is run
to compute the amount of priming that the goal that corre-
sponds to the step receives. The result of the computation
within LTMC is applied after rescaling it by the maximum
task priming constant tp. The process is visualized in Figure 5.

1033

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

Fitting Procedure
We are using the combined results of both experiment 1 and 2
as empirical basis of the user model. The model has three free
parameters, the value of each can be directly estimated from
the data.

• The retrieval threshold rt below which a task is forgotten is
estimated from the data using the omission probability of
device-oriented non-obligatory tasks (p = .037,z =�1.78,
see Figure 6). This task category does neither receive task
priming, nor is it enforced by the application logic. As the
users must completely rely on their memory in this case,
the empirical omission rate should be a good estimator of
the retrieval threshold.

• The amount of task priming tp is estimated as the difference
in omission rates between task-oriented and device-oriented
non-obligatory steps (Dz = 0.48).

• Visual priming vp is estimated using the difference between
obligatory and non-obligatory device-oriented tasks (Dz =
1.02).

We assessed the fit of the resulting model by performing 100
model runs with the task set used for experiment 1. The fit
to the training data is very good, R2=.99, RMSE=.0038. The
Maximum Likely Scaled Difference (MLSD; [48]), that takes
the variability of the data into account, is 1.94. Being so close
to its theoretical minimum of 1 means that the model should
not be refined without the danger of overfitting.

rttpvp Goal Activation

Figure 6. Mapping of empirical omission rates to the parameters of the
cognitive user model. Activation is assumed to be a normally distributed
random variable. The area under the curve left of one of the lines indi-
cates the omission probability of a corresponding goal.

VALIDATION EXPERIMENT
In order to test the generalizability of the user model, we de-
signed a new experiment using a different application from a
similar domain and new types of user tasks. The new applica-
tion is a MASP-based health assistant that has been developed
as part of a health information system for migrants [36].

The health assistant contains a recipe search similar to the
kitchen assistant used in the previous experiments. In contrast
to the kitchen assistant, the health assistant’s UI is built around
the health conditions of its users. It also features a finer grained
shopping list generator that can handle several personalized
lists at a time.

Methods
Participants

The experiment was conducted in July and August 2015. 30
participants, 15 men and 15 women, aged between 19 and 56
(M=33.7, SD=8.7), were recruited from the paid participant
pool of Technische Universität Berlin.

Materials

The health assistant was displayed on a 23” (58.4 cm) monitor
with optical sensor ‘touch’ technology similar to the one used
during experiment 2 and on the 10” (25.7 cm) tablet used
before. All devices operated in landscape mode. User actions
were again recorded by the computer system and additionally
videotaped for error classification.

Design

Dropping the comparison of different UI versions, we could
reduce our experiment to a three-factor within-subjects design.
The remaining independent variables were physical device
(screen vs. tablet), device-orientation and task necessity. We
had a new set of tasks generated by a different researcher to
reduce implicit bias towards simple paraphrase of the task
instructions used during experiment 1 and 2. The resulting 35
user tasks were grouped into four trial blocks consisting of 8
to 10 trials.

Procedure

After a quick warm-up game, the participants received about
10 minutes of training with the system. Four personas, three
of them with the health conditions diabetes, pregnancy, and
lactose intolerance, were introduced to them. The experimen-
tal blocks started with simpler tasks like counting the number
of lactose-free recipes available in the system, or comparing
health-related nutritional information. The participants were
then walked through a background story (e.g., planning din-
ner for one of the personas) that comprised selecting which
recipes to prepare and creating individualized shopping lists.
The whole procedure took a little less than one hour.

Results
We recorded 7699 clicks in total, 297 (3.9%) thereof were
omissions. There was no effect of device (mixed logit model
with subject and trial block as random factors [4], z = .28, p =
.78), but both task necessity (z =�3.79, p < .001) and device-
orientation (z =�2.46, p = .014) had significant influence on
the omission rate. The interaction between both was significant
as well (z = 2.06, p = .039).

Discussion
The overall error rate is higher than in the previous experi-
ments, but still within the usual range of 5% for procedural
error [41]. The biggest difference is the high omission rate for
non-obligatory task-oriented goals that even exceeds the omis-
sion rate of their device-oriented counterpart. This result is
rather unexpected because the previous experiments produced
the opposite pattern in line with the task-priming assumption
(compare Figures 7 and 4).

The user tasks connected to this category are a) selecting
ingredients and b) toggling search attributes. We speculate
that the use of rather uncommon ingredients (e.g., soy-drink,
quince purée) and search attributes (e.g., lactose intolerance)
caused this high omission rate.

Model Fit
In order to assess the generality of the model, we used the
model parameters as they had been fit to the previous data

1034

SESSION: PREDICTIVE ANALYTICS

(see above and Figure 6). The model completed the health
assistant trials 100 times, the fit to the new data is good with
R2=.70. While the rather high RMSE of .021 indicates the
model missing the generally higher omission rate in the val-
idation experiment, the MLSD [48] value of 2.6 indicates a
reasonable fit given the uncertainty in the empirical data (see
Figure 7). Despite not anticipating the overall increased omis-
sion rate, we see that the higher omission rate of task-oriented
non-obligatory tasks is well captured by the model.

●

●

●

●

Device−Oriented Task−Oriented

0.00

0.02

0.04

0.06

non−obligatory obligatory non−obligatory obligatory
UI Element Type

O
m

is
si

on
 P

ro
ba

bi
lit

y
[0

..1
]

Figure 7. Fit of the cognitive user model to the validation experiment.
Error bars denote 95% confidence intervals of the empirical omission
rates; ⌅ denote model predictions.

More important than the quantitative fit is the qualitative use-
fulness of the model: Can it facilitate the UI design process,
i.e., does the model identify UI elements that are especially
prone to errors? We approached this question by comparing
the omission rates for different types of UI elements on a
rank basis. As presented in Table 1, most ranks are matched
between data and model. The biggest difference occurs for
search attribute buttons, which were empirically the 2nd most
forgotten type while the model predicted them being ranked
5th.

UI element type device-
ori-

ented

rank
(data)

rank
(model)

Select ingredient – 1st 1st

Toggle search attribute – 2nd 5th

Move ingredient to shopping list yes 3rd 2nd

Select persona – 4th 4th

Assign ingredient to persona yes 5th 3rd

Continue on next screen yes 6th 6th

Select recipe – 7th 7th

Table 1. Ranks of the empirical and predicted omission rates.

Especially noteworthy is that both model and empirical data
show the highest omission rates for the select ingredients type
of element. An exemplary screenshot of the health assistant’s
ingredients list is shown in Figure 8. This element falls into
the task-oriented category, i.e., it should be rather resilient to
omissions following the task priming assumption. How does
the model produce this prediction?

Three factors contribute to the high omission rate of ingredi-
ents: First, the ingredients appeared unusual to some of the
participants and were only loosely connected to the recipes
(e.g., tofu and teriyaki sauce for a pepper skewers recipe). The
amount of task priming was therefore practically zero. Second,

the trials concerning ingredients were rather long and often
contained several ingredients. With every ingredient added
to the list, the probability that (at least) one ingredient in a
trial is forgotten becomes much higher. And finally, once a
goal retrieval fails, the visual search for suitable elements as
proposed in the knowledge-in-the-world assumption is a (par-
tially) unsystematic process. In case of long ingredients lists,
a distracting list entry can take over control and the forgotten
goal never gets a chance to come into action.3

Figure 8. Ingredients list of the health assistant.

GENERAL DISCUSSION
In the following, we are discussing our integrated system from
three perspectives: the validity of the user model, the benefits
and limitations compared to comparable existing approaches,
and the applicability of the integrated system during the model-
based development of plastic UIs.

Validity of the Cognitive User Model
The generalizability of the model was fostered on several ways.
First, our studies have been designed using real world applica-
tions and usage scenarios and have drawn participants mainly
from non-student populations. The generality of the model
was examined in a validation experiment using a different
application and new set of tasks. Although this led to an un-
expected error pattern, the model fits the new data very well.
Second, by basing the user model on psychological theory, we
can build our model on the results of many other researchers
instead just our own studies.

The model extends on the activation-based Memory for Goals
theory [1] by highlighting the importance of external cues
during sequential action. Internal cues are divided into task-
oriented, i.e., steps that directly contribute to the users’ goals,
and device-oriented ones [2]. Together with the assumption
that only task-oriented steps receive additional priming from
the user’s overall goal, this allows not only to explain our data,
but also provides an acceptable explanation of how device-
orientation actually affects sequential behavior.
3 Note that the first and the last factor are of general nature, only the
co-occurrence of all three has led to the specific error pattern of the
validation experiment.

1035

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

The original MFG model is based on the ACT-R theory [3]
which provides a psychologically plausible framework for the
computation of activation values. In this paper, we traded
the cognitive plausibility provided by ACT-R for the practical
applicability of the model to design questions in HCI. By re-
ducing a previously validated ACT-R model [19] to a simple
probabilistic model with few parameters, it was possible to
integrate the model into the MASP system, a runtime archi-
tecture for model-based applications. Thereby, no mock-up
of the application is necessary to perform the evaluation, and
the automatic identification of device-oriented (i.e., potentially
error-prone) task steps is possible through inspection of UI
meta-information (i.e., AUI and CTT model) provided by the
MASP

The error model has several limitations. First, the model
only covers expert behavior. The initial formation of the task
sequence by novice human users is beyond its capabilities. The
model also does not have any general knowledge and therefore
cannot account for errors caused by the UI design violating
general expectations of its users towards computer systems
(e.g., about the functionality of a ‘home’ or a ‘back’ option).
Second, the connection to a specific MBUID system limits the
applicability of the model to applications that are developed
within that system. Third, the domain knowledge of the user
model within LTMC is currently restricted to the information
that is used and provided by the application. Thereby, it is not
possible to spot inconsistencies with user expectations.4

Comparison to other Approaches
While the system presented here is the first to combine MBUID
with psychologically plausible user models, the prevention of
user error based on UI meta-information has been proposed
before.

Paternò and Santoro have proposed an inspection-based evalu-
ation of safety-critical systems based on the task model of such
a system which also forms the central part of the MBUID pro-
cess [35]. This early approach still lacks both the automation
and the predictive value.

In a follow-up paper, Mori and colleagues presented the
TERESA tool that uses the task model to deduce problem-
atic states like dead ends or unreachable states within a UI
[30]. As this approach is not grounded in psychological theory,
it fails to incorporate the human aspect of error and can not
account for typical user errors as discussed in the literature
(e.g., [9, 22, 17]) or the specific error patterns presented in this
paper. TERESA rather targets errors during the formation of
the task model as part of the requirements engineering process
than errors actual users would make after the release of the
product.

Palanque and Basnyat [32] build upon the task model of an
application to predict the tolerance of a system towards user er-
rors. But similarly to Paternò and Santoro [35], their approach
consists only of a systematic inspection of the task model
4Example: The kitchen assistant contains a recipe for Ratatouille
(French vegetable stew) and files it under main dish. During the
usability studies, two participants voiced objections because they
regarded Ratatouille as being a side dish, only.

while adding a multitude of possible types of errors based on
the work of Reason [41], Rasmussen [40] and Hollnagel [23].
The inclusion of error theories represents an improvement over
[35], but the approach still lacks automation and prediction.
Also, our data show that the information on the level of the task
model is not sufficient for the prediction of omission errors.
Many device-oriented tasks, e.g., navigation to a subsequent
page, are not even represented on the AUI model level but
introduced later when the actual FUI is developed.

In recent years, formal verification has been proposed to en-
sure error tolerant systems [7, 42]. Due to the formal nature
of the approach, its application requires highly specific knowl-
edge during the modeling of the system under evaluation.
The software used for the verification task is computationally
heavy and does not provide the automation that is possible by
the integration with an MBUID system. The approach may
nonetheless be worth the effort in safety-critical scenarios, e.g.,
as part of the general approval process in the medical domain.
In contrast, our approach is meant to provide early predictions
of usability issues during ongoing development processes that
are applied regularly, e.g., as part of a continuous integration
system. It is therefore designed to be easy to use and meant
to provide first hints about which part of an UI should be
redesigned.

Common to all approaches discussed above is that they can
not account for the problem of plasticity [12] of adapted UIs
as they are needed for ubiquitous systems. The sheer number
of possible devices and form factors renders inspection-based
or verification-based approaches impossible if all UI varia-
tions are meant to be evaluated. The automation provided by
integrated systems like the one presented in this paper solves
this problem.

Applicability in the Development Process
The usefulness of the integrated system can be assessed by
comparing the time and money spent on the validation experi-
ment to the time that the simulation needed. Both approaches
share the initial task of planning the evaluation (3 days). Run-
ning the validation experiment with 30 participants took six
days, manually annotating the videos took another five days,
and the statistical analysis another two days. The work was
evenly shared between a researcher and a student worker,
which leads to a conservatively estimated daily rate of 150C.
The participants of the study were paid a total of 300C. Ne-
glecting additional costs for equipment and room rent, this
sums up to a total of 2700C for the experiment, compared to
450C for the simulation. Furthermore, simulating 100 users
took two days on a standard consumer laptop, which is much
faster than the 11 days of empirical data collection and video
annotation.

When it comes to evaluating the plasticity of adaptable UIs,
the scalability of the empirical and the simulation approach
becomes of highest importance. In the empirical case, money
and time costs for conducting experiments and annotating
videos multiply with the number of UI adaptations that need to
be covered. The simulation on the other hand only needs more
computational processing time for each new version of the
FUI, making it possible to evaluate the usability of arbitrary

1036

SESSION: PREDICTIVE ANALYTICS

numbers of different UIs at stable costs as long as the AUI and
CTT models remain unchanged.

Finally, the UI of the health assistant needed to receive some
polishing before the user tests could start which led to extra
costs and time delay. The automated system on the other
hand does not get distracted by broken images or skewed
layouts that quickly grab the participants’ attention during
user studies. The last point is especially important during
early design stages when no presentable UI is available.

CONCLUSIONS AND FUTURE WORK
We have presented a UI development framework for ambient
applications integrated with a user modeling system. This
combination can provide usability predictions during early de-
velopment stages, with the intention to improve the quality of
the application while reducing costs that would arise from late
redesigns of the UI (due to usability issues). Major benefits
of the integrated system are the improved error predictions
due to the exploitation of meta-information provided by the
MBUID system and the high grade of automation. The us-
ability predictions of the integrated system are drawn from a
model of human error grounded in cognitive science theory. A
validation experiment using a new application and new set of
user tasks confirms both the assumptions of the model and the
general suitability of the approach.

Future work will explore the applicability of the integrated
system in other domains and/or interaction paradigms (e.g.,
speech). The current limitations of the error model will be
approached by incorporating information on how users con-
struct the application logic and content from ontologies that
are external to the application. This way, usability problems
like ambiguous captions of UI elements could be spotted by
the integrated evaluation system as well.

ACKNOWLEDGMENTS
This work was supported by DFG grant MO 1038/18-1 (“Au-
tomatische Usability-Evaluierung modellbasierter Interaktion-
ssysteme für Ambient Assisted Living”).

REFERENCES
1. Erik M Altmann and J Gregory Trafton. 2002. Memory

for goals: An activation-based model. Cognitive science
26, 1 (2002), 39–83. DOI:
http://dx.doi.org/10.1207/s15516709cog2601_2

2. Maartje GA Ament, Anna L Cox, Ann Blandford, and
Duncan P Brumby. 2013. Making a task difficult:
Evidence that device-oriented steps are effortful and
error-prone. Journal of experimental psychology: applied
19, 3 (2013), 195. DOI:
http://dx.doi.org/10.1037/a0034397

3. John R Anderson, Daniel Bothell, Michael D Byrne,
Scott Douglass, Christian Lebiere, and Yulin Qin. 2004.
An integrated theory of the mind. Psychological review
111, 4 (2004), 1036–1060. DOI:
http://dx.doi.org/10.1037/0033-295X.111.4.1036

4. Douglas Bates, Martin Maechler, Ben Bolker, and Steven
Walker. 2013. lme4: Linear mixed-effects models using
Eigen and S4. R package version 1.0-5.

5. Arthur N Beare and RE Dorris. 1983. A simulator-based
study of human errors in nuclear power plant control
room tasks. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, Vol. 27. Sage
Publications, 170–174. DOI:
http://dx.doi.org/10.1177/154193128302700213

6. Marco Blumendorf, Grzegorz Lehmann, and Sahin
Albayrak. 2010. Bridging Models and Systems at
Runtime to Build Adaptive User Interfaces. In
Proceedings of the 2Nd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS ’10).
ACM, New York, NY, USA, 9–18. DOI:
http://dx.doi.org/10.1145/1822018.1822022

7. Matthew L Bolton, Ellen J Bass, and Radu I Siminiceanu.
2012. Generating phenotypical erroneous human
behavior to evaluate human–automation interaction using
model checking. International journal of
human-computer studies 70, 11 (2012), 888–906. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2012.05.010

8. Michael D Byrne. 2001. ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI. International
Journal of Human-Computer Studies 55, 1 (2001), 41–84.
DOI:http://dx.doi.org/10.1006/ijhc.2001.0469

9. Michael D Byrne and Elizabeth M Davis. 2006. Task
structure and postcompletion error in the execution of a
routine procedure. Human Factors: The Journal of the
Human Factors and Ergonomics Society 48, 4 (2006),
627–638. DOI:
http://dx.doi.org/10.1518/001872006779166398

10. Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin
Limbourg, Laurent Bouillon, and Jean Vanderdonckt.
2003. A Unifying Reference Framework for Multi-Target
User Interfaces. Interacting with Computers 15, 3 (2003),
289–308. DOI:
http://dx.doi.org/10.1016/S0953-5438(03)00010-9

11. Tim Clerckx, Kris Luyten, and Karin Coninx. 2004.
DynaMo-AID: A Design Process and a Runtime
Architecture for Dynamic Model-Based User Interface
Development.. In Engineering Human Computer
Interaction and Interactive Systems. 77–95. DOI:
http://dx.doi.org/10.1007/11431879_5

12. Joëlle Coutaz and Gaëlle Calvary. 2012. HCI and
software engineering for user interface plasticity. In
Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies, and Emerging Applications (3rd
ed.), Julie A Jacko (Ed.). CRC Press, Chapter 52,
1195–1220.

13. Klaus-Peter Engelbrecht, Michael Kruppa, Sebastian
Möller, and Michael Quade. 2008. MeMo workbench for
semi-automated usability testing. In INTERSPEECH.
1662–1665.

14. Racim Fahssi, Célia Martinie, and Philippe Palanque.
2015. Enhanced Task Modelling for Systematic
Identification and Explicit Representation of Human
Errors. In Human-Computer Interaction – INTERACT

1037

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

2015, Julio Abascal, Simone Barbosa, Mirko Fetter, Tom
Gross, Philippe Palanque, and Marco Winckler (Eds.).
Springer, 192–212. DOI:
http://dx.doi.org/10.1007/978-3-319-22723-8_16

15. Juan Manuel González-Calleros, Jan Patrick Osterloh,
Rene Feil, and Andreas Lüdtke. 2014. Automated UI
evaluation based on a cognitive architecture and UsiXML.
Science of Computer Programming Journal 86 (2014),
43–57. DOI:
http://dx.doi.org/10.1016/j.scico.2013.04.004

16. Christian Gram and Gilbert Cockton (Eds.). 1997. Design
principles for interactive software. Chapman & Hall, Ltd.,
London, UK.

17. Wayne D. Gray. 2000. The Nature and Processing of
Errors in Interactive Behavior. Cognitive Science 24, 2
(2000), 205–248. DOI:
http://dx.doi.org/10.1207/s15516709cog2402_2

18. Marc Halbrügge, Michael Quade, and Klaus-Peter
Engelbrecht. 2015a. How can Cognitive Modeling
Benefit from Ontologies? Evidence from the HCI
Domain. In AGI 2015, Jordi Bieger, Ben Goertzel, and
Alexey Potapov (Eds.). LNAI, Vol. 9205. Springer,
Berlin, 261–271. DOI:
http://dx.doi.org/10.1007/978-3-319-21365-1_27

19. Marc Halbrügge, Michael Quade, and Klaus-Peter
Engelbrecht. 2015b. A Predictive Model of Human Error
based on User Interface Development Models and a
Cognitive Architecture. In Proceedings of the 13th
International Conference on Cognitive Modeling, Niels A
Taatgen, Marieke K van Vugt, Jelmer P Borst, and Katja
Mehlhorn (Eds.). University of Groningen, Groningen,
the Netherlands, 238–243.

20. Marc Halbrügge, Michael Quade, and Klaus-Peter
Engelbrecht. 2016. Cognitive Strategies in HCI and Their
Implications on User Error. In Proceedings of the 38th
Annual Meeting of the Cognitive Science Society. in press.

21. Laura M Hiatt and J Gregory Trafton. 2015. An
Activation-Based Model of Routine Sequence Errors. In
Proceedings of the 13th International Conference on
Cognitive Modeling, Niels A Taatgen, Marieke K van
Vugt, Jelmer P Borst, and Katja Mehlhorn (Eds.).
University of Groningen, Groningen, the Netherlands,
244–249.

22. Kimberley Hiltz, Jonathan Back, and Ann Blandford.
2010. The roles of conceptual device models and user
goals in avoiding device initialization errors. Interacting
with Computers 22, 5 (2010), 363–374. DOI:
http://dx.doi.org/10.1016/j.intcom.2010.01.001

23. Erik Hollnagel. 1998. Cognitive reliability and error
analysis method (CREAM). Elsevier, Oxford, UK.

24. Bonnie E John, Evan W Patton, Wayne D Gray, and
Donald F Morrison. 2012. Tools for Predicting the
Duration and Variability of Skilled Performance without
Skilled Performers. In Proceedings of the Human Factors

and Ergonomics Society Annual Meeting, Vol. 56. SAGE
Publications, 985–989. DOI:
http://dx.doi.org/10.1177/1071181312561206

25. David Kieras. 1997. A Guide to GOMS Model Usability
Evaluation using NGOMSL. In Handbook of
Human-Computer Interaction (2nd ed.), Marting G
Helander, Thomas K Landauer, and Prasad V Prabhu
(Eds.). North-Holland, Amsterdam, Chapter 31, 733 –
766. DOI:
http://dx.doi.org/10.1016/B978-044481862-1.50097-2

26. Barry Kirwan. 1997. Validation of human reliability
assessment techniques: Part 2 – Validation results. Safety
Science 27, 1 (1997), 43–75. DOI:
http://dx.doi.org/10.1016/S0925-7535(97)00050-7

27. Simon YW Li, Ann Blandford, Paul Cairns, and
Richard M Young. 2008. The effect of interruptions on
postcompletion and other procedural errors: an account
based on the activation-based goal memory model.
Journal of Experimental Psychology: Applied 14, 4
(2008), 314. DOI:http://dx.doi.org/10.1037/a0014397

28. Quentin Limbourg, Jean Vanderdonckt, Benjamin
Michotte, Laurent Bouillon, and Victor Lopez-Jaquero.
2005. USIXML: A Language Supporting Multi-path
Development of User Interfaces. In Engineering Human
Computer Interaction and Interactive Systems, Remi
Bastide, Philippe Palanque, and Joerg Roth (Eds.). LNCS,
Vol. 3425. Springer, Berlin, 200–220. DOI:
http://dx.doi.org/10.1007/11431879_12

29. Joaquin Miller and Jishnu Mukerji. 2001. Model Driven
Architecture (MDA). Technical Report ormsc/2001-07-01.
Object Management Group, Architecture Board ORMSC.
http://www.omg.org/cgi-bin/doc?ormsc/01-07-01.pdf

30. Giulio Mori, Fabio Paternò, and Carmen Santoro. 2004.
Design and Development of Multidevice User Interfaces
through Multiple Logical Descriptions. IEEE Trans.
Softw. Eng. 30, 8 (2004), 507–520. DOI:
http://dx.doi.org/10.1109/TSE.2004.40

31. Donald A Norman. 2002. The design of everyday things.
Basic books.

32. Philippe Palanque and Sandra Basnyat. 2004. Task
patterns for taking into account in an efficient and
systematic way both standard and erroneous user
behaviours. In Human Error, Safety and Systems
Development. Springer, 109–130. DOI:
http://dx.doi.org/10.1007/1-4020-8153-7_8

33. Fabio Paternò. 2003. ConcurTaskTrees: An Engineered
Notation for Task Models. In The Handbook of Task
Analysis for Human-Computer Interaction, Dan Diaper
and Neville Stanton (Eds.). Lawrence Erlbaum
Associates, Mahwah, NJ, 483–501.

34. Fabio Paternò. 2005. Model-based Tools for Pervasive
Usability. Interacting with Computers 17, 3 (2005),
291–315.
http://dx.doi.org/10.1016/j.intcom.2004.06.017

1038

SESSION: PREDICTIVE ANALYTICS

35. Fabio Paternò and Carmen Santoro. 2002. Preventing
user errors by systematic analysis of deviations from the
system task model. International Journal of
Human-Computer Studies 56, 2 (2002), 225–245. DOI:
http://dx.doi.org/10.1006/ijhc.2001.0523

36. Till Plumbaum, Sascha Narr, Elif Eryilmaz, Frank
Hopfgartner, Funda Klein-Ellinghaus, Anna Reese, and
Sahin Albayrak. 2014. Providing Multilingual Access to
Health-Related Content. In eHealth – For Continuity of
Care: Proceedings of MIE2014. IOS Press, Amsterdam,
NL, 393–397. DOI:
http://dx.doi.org/10.3233/978-1-61499-432-9-393

37. Michael Quade. 2015. Automation in Model-based
Usability Evaluation of Adaptive User Interfaces by
Simulating User Interaction. Ph.D. Dissertation. Fakultät
IV, Technische Universität Berlin. DOI:
http://dx.doi.org/10.14279/depositonce-4918

38. Michael Quade, Marc Halbrügge, Klaus-Peter
Engelbrecht, Sahin Albayrak, and Sebastian Möller. 2014.
Predicting Task Execution Times by Deriving Enhanced
Cognitive Models from User Interface Development
Models. In Proceedings of the 2014 ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’14). ACM, New York, NY, USA,
139–148. DOI:
http://dx.doi.org/10.1145/2607023.2607033

39. Michael Quade, Grzegorz Lehmann, Klaus-Peter
Engelbrecht, Dirk Roscher, and Sahin Albayrak. 2013.
Automated Usability Evaluation of Model-Based
Adaptive User Interfaces for Users with Special and
Specific Needs by Simulating User Interaction. In User
Modeling and Adaptation for Daily Routines, Estefanıa
Martın, Pablo A Haya, and Rosa M Carro (Eds.).
Springer, 219–247. DOI:
http://dx.doi.org/10.1007/978-1-4471-4778-7_9

40. Jens Rasmussen. 1983. Skills, rules, and knowledge;
signals, signs, and symbols, and other distinctions in
human performance models. Systems, Man and
Cybernetics, IEEE Transactions on 13 (1983), 257–266.
Issue 3. DOI:
http://dx.doi.org/10.1109/TSMC.1983.6313160

41. James Reason. 1990. Human Error. Cambridge
University Press, New York, NY.

42. Rimvydas Rukšėnas, Paul Curzon, Ann Blandford, and
Jonathan Back. 2014. Combining human error
verification and timing analysis: a case study on an
infusion pump. Formal Aspects of Computing (2014).
DOI:http://dx.doi.org/10.1007/s00165-013-0288-1

43. Dario D Salvucci. 2010. On reconstruction of task
context after interruption. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 89–92. DOI:
http://dx.doi.org/10.1145/1753326.1753341

44. Mario Sanchez, Ivan Barrero, Jorge Villalobos, and Dirk
Deridder. 2008. An Execution Platform for Extensible
Runtime Models. In 3rd Int. Workshop on Models at
Runtime at MoDELS’08.

45. Holger Schultheis, Thomas Barkowsky, and Sven Bertel.
2006. LTM C – an improved long-term memory for
cognitive architectures. In Proceedings of the Seventh
International Conference on Cognitive Modeling.
274–279.

46. Jean-Sebastien Sottet, Gaelle Calvary, Joelle Coutaz, and
Jean-Marie Favre. 2008. A Model-Driven Engineering
Approach for the Usability of Plastic User Interfaces. In
Engineering Interactive Systems, Jan Gulliksen,
MortonBorup Harning, Philippe Palanque, GerritC.
van der Veer, and Janet Wesson (Eds.). LNCS, Vol. 4940.
Springer, Berlin, 140–157. DOI:
http://dx.doi.org/10.1007/978-3-540-92698-6_9

47. Neville A. Stanton. 2003. The Human-computer
Interaction Handbook. L. Erlbaum Associates Inc.,
Hillsdale, NJ, USA, Chapter Human Error Identification
in Human-computer Interaction, 371–383.
http://dl.acm.org/citation.cfm?id=772072.772097

48. Terrence C Stewart and Robert L West. 2010. Testing for
equivalence: a methodology for computational cognitive
modelling. Journal of Artificial General Intelligence 2, 2
(2010), 69–87. DOI:
http://dx.doi.org/10.2478/v10229-011-0010-8

49. Leonghwee Teo and Bonnie E John. 2008. Towards a tool
for predicting goal-directed exploratory behavior. In
Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, Vol. 52. SAGE Publications,
950–954. DOI:
http://dx.doi.org/10.1177/154193120805201311

50. J Gregory Trafton, Erik M Altmann, and Raj M Ratwani.
2011. A memory for goals model of sequence errors.
Cognitive Systems Research 12 (2011), 134–143. DOI:
http://dx.doi.org/10.1016/j.cogsys.2010.07.010

51. J Gregory Trafton and Raj M Ratwani. 2014. The law of
unintended consequences: The case of external subgoal
support. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems.
ACM, 1767–1776. DOI:
http://dx.doi.org/10.1145/2556288.2557422

52. Jean Vanderdonckt. 2008. Model-Driven Engineering of
User Interfaces: Promises, Successes, Failures, and
Challenges. In Proc. ROCHI 2008.

53. Scott D. Wood and David E. Kieras. 2002. Modeling
Human Error For Experimentation, Training, And
Error-Tolerant Design. In In Proceedings of the
Interservice/Industry Training, Simulation and Education
Conference.

1039

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

