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Abstract—Due to their high costs and time requirements,
companies are interested in minimizing their laboratory exper-
iments during process or product design. For this, machine
learning can be used to extract knowledge from the process or
product to predict future designs. Due to the high costs and time
requirements, data from laboratory experiments are scarce, so
only machine learning algorithms with small hypothesis spaces
are suitable to predict such data. In this paper, the performance
of Linear and Logistic Regression, Decision Trees, Gaussian
Processes and Support Vector Machines on respectively five real
world datasets for classification and regression is compared.
The Decision Trees have the best and Gaussian Processes the
worst overall performance, but the Gaussian Processes show a
great potential if adequate hyperparameters are selected. For the
analyzed data and the chosen hyperparameters, the Gaussian
Processes tend to overfit, whereas the Support Vector Machines
tend to underfit. Linear and Logistic Regression offer a good
tradeoff between complexity and performance, producing results
comparable to Decision Trees.

Index Terms—tabular scarce data, industrial design, super-
vised machine learning models

I. INTRODUCTION

For the industrial design of processes or products, compa-
nies often carry out laboratory experiments. These experiments
generate high-quality data enriched by domain-specific knowl-
edge, making it profitable to use the knowledge in the data for
future assistance in process or product design [1]. This can
be done using machine learning [2], where the knowledge
in the data is algorithmically aggregated into a data-based
model, also called a machine learning (ML) model. As a result,
future laboratory experiments can be reduced and domain-
specific knowledge is preserved. While many ML algorithms
nowadays require a large amount of labeled data, there are
some applications where data collection is very expensive or
time-consuming, e.g. laboratory experiments [3]. Data from
laboratory experiments are therefore rather scarce, and proper
ML models that can handle scarce data need to be identified. In
order to expand knowledge about the process or product being
designed, the ML model can be further trained using active
learning, which additionally reduces further experiments while
improving the aggregated knowledge within the ML model [4].
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In this paper, potentially suitable ML models for tabular
scarce data on real world datasets are benchmarked so that the
best-performing ML models for an application to laboratory-
collected data of a real industrial process can be identified.
This is done for both regression and classification. Further-
more, since it is intend to use the results of this paper to
develop new model-specific approaches to select the query
in active learning, only ML algorithms that basically can
be used for both regression and classification are compared.
While many scientific papers on scarce data deal with semi-
supervised and unsupervised ML methods [5], this paper only
focuses on supervised ML methods.

II. RELATED WORK AND FUNDAMENTALS

In order to select potentially suitable ML models for ap-
plications with scarce data, it is necessary to consider the
cause and composition of errors that models make and what
influence the size of a dataset has on them (Section II-A). With
this knowledge and results of previous work with scarce data,
appropriate ML models can be selected for our benchmarking,
which is described in Section II-B.

A. Bias-Variance Tradeoff with Scarce Data

In supervised learning, ML models aim to achieve sufficient
generalization from training data so that unknown data with
a comparable data distribution can be predicted with high
accuracy. If there is no sufficient generalization, the models
deal with over- and underfitting. In the case of overfitting,
the hypothesis assumed about the data is too complex (e.g.
too high polynomial degree). As a consequence, the model
tends to learn not only the relationships of the data but also
their noise [6]–[8]. Underfitting appears if the model poorly
fits training data due to an oversimplified or inappropriate
hypothesis. In this case, the model is not able to learn the
relationships nor the noise in the data. The overall prediction
error can be split into bias and variance error, which calls
the arrangement between over- and underfitting bias-variance
tradeoff. Bias appears with a mismatch between the given
data with the model structure, while variance is a measure
for the sensibility to variations in the training data [9]. The



bias and variance composition on an error can be received
from a decomposition of the mean-squared-error

E
[(
h(x)− E[y |x]

)2 ]
=(

E[h(x)]− E[y |x]
)2︸ ︷︷ ︸

squared bias

+ E
[(
h(x)− E[h(x)]

)2]︸ ︷︷ ︸
variance

(1)

where h(x) is the prediction of a ML model for a sample
x = (x1 ... xM ) containing M features with the corresponding
label y. As the complexity of a model continues to increase
above a certain complexity level, the bias is typically not in-
creasing or decreasing, while the variance is instead increasing
[10]. It can be inferred that simple model hypotheses tend to
have higher bias and complex models have higher variance
due to their more flexible predictions [11].

Previous studies [12], [13] on classification with Decision
Trees for large datasets have shown that both the bias- and
variance-error decrease with increasing training data size,
which lowers the general prediction error. They analyzed
the composition of the bias- and variance-error for different
training dataset sizes ranging from N = 32 to over N = 30000
samples on 7 different datasets. The proportion of variance on
the overall prediction error is at the maximum for smallest
datasets. Depending on the analyzed datasets, the variance
has a higher influence on the overall error than the bias if
the amount of training data is small [13].

Combining the facts that

• the variance-error increases with higher model complex-
ity [11] and

• the variance-error has a major influence on the error for
small datasets [13]

shows, that models with low complexities should be used
for predictions based on scarce data. Next, some potentially
appropriate ML models for applications on scarce data are
discussed.

B. ML Models for Scarce Data

There are only a few articles [14]–[17] that apply ML
models to tabular scarce data. The articles [14] and [15] deal
with regression tasks while [16] focusses on classification
tasks. In [17], one classification and one regression task
are mentioned respectively. Used ML models for regression
are Linear Regression, Gaussian Process Regression, Lasso-
Regression, Ridge-Regression, Support Vector Machines and
Neural Networks. The classification tasks are solved with Spa-
tial Poisson Regression and Decision Trees. Except Support
Vector Machines and Neural Networks, these are simple mod-
els with low complex hypothesis spaces which corresponds
to the results of Section II-A. Based on these results, the
following four different types of ML models applicable to both
classification and regression are selected for the benchmarking.

1) Linear and Logistic Regression: Both Linear and Logis-
tic Regression are parametric models. In Linear Regression,
the model ŷ(x) is defined by a linear combination

ŷ(x) = β0 +

M∑
m=1

xmβm (2)

with the offset β0 and the M slopes βm to weight each
feature xm of the sample x. The M + 1 coefficients β0 and
β = (β1 . . . βM )T are estimated by Least Squares, a linear
optimization, which minimizes the residual sum of squares

RSS(β0,β) =

N∑
i=1

(yi − xiβ− β0)
2 (3)

of the Linear Regression model [18]. The Logistic Regression
model is a generalization of Linear Regression by a logistic
discrimination function

ŷ(x) = P (c1|x) =
1

1 + exp(−xiβ− β0)
(4)

to separate two different classes c1 and c2 by the conditional
probability P (c1|x). Using multiple models of (4) and the Soft-
max function, Logistic Regression can be extended to multi-
class predictions. Since a direct solution for the coefficients β0

and β is not possible by Least Squares, the Logistic Regression
model is iteratively fitted by a gradient descent algorithm
maximizing the likelihood or log likelihood [19].

2) Gaussian Processes: Gaussian Processes [20] are
Bayesian models and thus use conditional probabilities to
describe process behavior. The main idea is to measure the
similarity between data points using a kernel function. If two
data points in the input space are very similar in the sense
of this kernel, it follows that the corresponding output values
are also very similar. The model behavior is influenced by
hyperparameters such as the bandwidth of the kernel functions
and the estimated noise level in the training data. While the
hyperparameters for the kernel functions are determined by
an optimizer that maximizes the marginal likelihood function,
the noise level must be estimated in advance independently of
the optimizer. As non-parametric models, Gaussian Processes
offer a high degree of flexibility and at the same time allow
to specify confidence intervals for the model predictions due
to the underlying probability distributions. In their basic form,
they can only be used for regression, but can be extended to
classification using a logistic function similar to (3). In this
case, the model output of the Gaussian Processes is incor-
porated into the exponential function of the logistic function
as a latent variable. However, to model the probability that x
belongs to a certain class, integrals must be approximated by
Laplace approximation [20].

3) Decision Trees: Decision Trees are non-parametric su-
pervised ML models that use a recursive partitioning of the
data space performed by a divide and conquer algorithm
[21]. They consist of nodes connected to their successors by
edges, resulting in a top-down directional acyclic graph. The
graph starts with the root node, which has following internal



nodes and leaf nodes. In every root node or internal node, the
partitioning of the data is performed on an feature to smaller
subsets. The leaf nodes contain local models that approximate
the relationship of the data within the corresponding subset,
and have no child nodes. The performance of a tree depends
on the partitioning or splitting quality in the respective nodes,
typically defined by a selected feature xm and a threshold
αm at which the input space is axis-diagonally split within
the subspace of xm [24]. There are many popular algorithms
to generate Decision Trees like CART [25], CHAID [26],
ID3 [27], C4.5 [28] and GUIDE [29]. A problem that occurs
in many tree algorithms and is only solved by GUIDE is
the biased feature selection for splitting due to the amount
of expressions of the features. The GUIDE algorithm also
increases the performance by analyzing interactions between
different features, is able to solve regression and classification
tasks with using both numerical and categorical features si-
multaneously, and can estimate many different complex local
models [29]. Therefore GUIDE is used in this benchmarking.

4) Support Vector Machines: Support Vector Machines are
decision machines which do not provide posterior probabili-
ties. They are used to solve regression and classification tasks.
The aim of Support Vector Machines for classification is to
create a decision boundary that separates binary classes. For
multi-class classification, they work with an one-vs-one ap-
proach. The decision boundary is chosen through maximizing
the margin which defines the smallest distance between the
decision boundary and any samples. Therefore the so-called
kernel trick is used, which applies kernels to the input data to
map the Support Vector Machine inputs to a high-dimensional
feature space in which a linear separation of the two classes
is searched for. For the regression tasks, a Support Vector
Machine searches for a best fitting line within a predefined
threshold [30].

III. EXPERIMENTAL ANALYSIS

To compare the performance of the four selected model
types in both classification and regression, an extensive bench-
marking on real world datasets is performed, whose setup
is described in more detail in Section III-A. The results are
presented in Section III-B, which are further discussed in more
detail in Section III-C.

A. Experimental Set Up

In this benchmarking, ten open access datasets for respec-
tively five classification and regression tasks are used. A
description of the datasets according to size and amount of
features is shown in Table I. Expect the Titanic dataset with
N = 712, all datasets contain a small number of samples
between N = 103 and N = 308. The number of features
varies from M = 4 to M = 24 where only the datasets Titanic
and Automobile containing categorical features in addition to
the numerical features. The categorical features of these two
datasets are one-hot encoded so that the categorical features
can be used for each ML model, even if it would not be
necessary for each model (e.g. for the GUIDE Decision Trees).

The advantage of one-hot encoding is that weight based
models can simply learn a weight for every categorical unique
value. However, this also increases the dimensionality of the
two datasets (up to M = 32 for the Automobile dataset) which
leads to sparse matrices.

For every dataset 25 independent random train-test splits
are created with a training size of Ntrain = 0.8N . Except
the Decision Trees, all ML models are trained by the scikit-
learn v. 1.2.0 package for Python [22]. For classification
GaussianProcessClassifier (GPC), LogisticRegression (LogR)
and SVC and for regression GaussianProcessRegressor (GPR),
LinearRegression (LinR) and SVR are used. The models are
mostly trained and optimized with their default settings, which
can be taken from the individual manuals. All kernel meth-
ods are using Radial Basis Function Kernels and only the
maximum number of iterations for logR and the noise level
of GPR are increased to 10000 and 1 respectively. The noise
level adjustment is necessary due to the high noise level of the
datasets and the fact that the implementation in Python only
optimizes the kernel parameters and not estimate the noise
level. The GUIDE Decision Trees for classification (DTC) and
regression (DTR) are estimated by a compiled binary (version
37.3) from [23]. For prediction, the trees are using the most
frequently occurring class in a leaf (classification) and multiple
linear models (regression). Moreover, they are post-pruned by
a 10-fold crossvalidation with a 0.25-SE-rule.

The models are tested against a specific metric in each run
and averaged over the 25 independent runs. However, in order
to analyze the models in therms of over- and underfitting,
the metric is evaluated with both training and test data. The
performance for classification is measured by the (multi-class)
F1-score, which is a harmonic mean from the confusion matrix
and not heavily influenced by unbalanced datasets. The F1-
score is calculated by

F1 =
2TP

2TP + FN + FP
(5)

where TP are the true positive, FN the false negative and
FP the false positive classifications. The F1-score takes values
between [0, 1] [24]. To calculate the multi-class F1-score, (5) is
calculated separately for each class in a dataset and averaged.
The performance of the regression models is compared by a
normalized version of the mean absolute error

nMAE(·)
c,d =

MAE(·)
c,d

max
C

(MAEtest
b,d)

. (6)

The mean absolute error MAE(·)
c,d for model c ∈ C with C =

{GPR,DTR,LinR,SVR} of dataset d ∈ {DS 6, . . . ,DS 10}
is normalized for both training and test data by the maximum
mean absolute error MAEtest

b,d across all four models b ∈ C,
so that nMAE(·)

c,d also takes values in an interval [0, 1]. The
dummy (·) is replaced by either train or test.

B. Results

The results of the benchmarking are shown in Figure 1.
There are two bar plots which display the respective prediction



TABLE I: Description of benchmarking datasets

dataset ID dataset name # numerical variables # categorical variables # target classes # datapoints source
Classification

DS 1 Wine 13 0 3a 178 [31]
DS 2 Titanic 4 3 2a 712 [32]
DS 3 Iris 4 0 3b 150 [33]
DS 4 Heart Disease 13 0 5a 297 [34]
DS 5 Wheat Seeds 7 0 3b 199 [35]

Regression
DS 6 Body Fat 14 0 - 200 [36]
DS 7 Automobile 13 6 - 159 [37]
DS 8 Concrete Strength 7 0 - 103 [38]
DS 9 Yacht Hydrodynamics 6 0 - 308 [39]
DS 10 Tecator 24 0 - 240 [40]

a Unbalanced dataset.

b Balanced dataset.
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(a) Results for the classification task. High values indicate good results.
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(b) Results for the regression task. Low values indicate good results.

Fig. 1: Prediction quality of benchmarked ML models for the different datasets

scores for the ML models on the different datasets, where the
light bars show the score for training data and the dark bars for
test data. Due to the different scaling of the score for training
and test data, the results of training data for classification
are displayed in the background and for regression in the
foreground.

Analyzing the classification results from Figure 1 (a), it can
be recognized that each classifier on DS 3 and DS 5 achieves
good generalization with comparable scores, which is defined
by similar F1-scores of both training and test data close to 1.
On DS 1, the DTC and LogR classifiers perform well, while
the GPC has issues with overfitting which can be recognized
from a much higher training score than the test score. In
contrast, the SVC has comparable but low scores near 0.6 for
both training and test data. A similar behavior is observed at
DS 2. DTC and LogR perform best at a F1-score of about 0.8,
but not as well as in DS 1 (F1-score ≈ 0.95). GPC is again
overfitting and SVC is not able to capture the relationships in
the data well. On DS 4, all ML models perform poorly. The
GPC has a high score for training data but a much lower score

for test data and thus overfits dramatically.
The results in Figure 1 (b) describe the performance of the

ML models for the regression tasks. In contrast to the F1-
score, the models perform best when the nMAE is minimal.
Therefore, the GPR has poor performance at DS 6, DS 7, and
DS 9 where it is purely based on overfitting, but it performs
well at DS 10 and has a small error at DS 8 with a little
overfitting. DTR and LinR also have a small error at DS
8 and DS 10 and even at DS 6 and DS 7. SVR is again
unable to capture the relationships in the data well, resulting in
more than twice the errors of DTR and LinR for all datasets.
However, at DS 6, DS 7, and DS 9 SVR achieves smaller
errors than GPR. DS 9 is most noticeable, where the LinR,
along with SVM and GPR, has a high error compared to the
DTR. After presenting the results in this section, the reasons
will be addressed in the following section.

C. Discussion

As noted in the previous Section, the performance of all
models is worst on DS 4. This can be caused by 5 different



target classes which are also unbalanced. These results are
strengthened by a comparison with the scores achieved on
the balanced datasets DS 3 and DS 5 with fewer classes.
Despite DS 2 contains only two balanced classes and many
samples, the ML models achieve comparably lower results.
These results are suspected to be caused by one-hot encoding,
generating 8 additional sparse features. The better results of
DTC and LogR on the comparatively higher dimensional
datasets DS 1, DS 2 and DS 4 can be explained by the
naturally given feature selection of Decision Trees and the L2
regularization used in the Python implementation of LogR. It is
surprising that LogR performs slightly better than DTC, which
can be justified by the trivial local models of DTC. However,
GUIDE can also train Decision Trees with more complex local
models, e.g. local Nearest-Neighbor models [41]. Moreover,
with GUIDE the one-hot encoding is not even necessary which
could increase the performance on DS 2. The kernel models
GPC and SVC don’t perform on these datasets as expected. For
SVC, performance might be improved by some adjustments of
the kernel parameters, which, unlike GPC, are not optimized
during training. In therms of GPC, the noise level incorporated
into the kernel matrix could be responsible for the poor results.
If the assumed noise level is too low, the model overfitts [18],
which can be clearly recognized in the scores for DS 1 and
DS 4. As far as we know, the noise level can only be adjusted
for GPR and not for GPC.

The results for the regression tasks are similar to those for
the classification tasks. Although the noise level was increased
by a magnitude of ten, dramatic overfitting of the GPR occurs
in three datasets. In contrast, for DS 8 and DS 10 GPR
outperforms the other models, which demonstrates both the
sensitivity of the noise level and the efficiency of GPR if
this hyperparameter is chosen appropriate. Similar results were
obtained in [42]. SVR is in general not compatible with DTR
and LinR, and also not with GPR unless it is overfitted. It is
assumed that the hyperparameter for the scaling of the internal
L2 regularization is too high by default, so that the model is
not flexible enough (underfitting). However, this has not been
verified. DTR and LinR perform very similar except at DS 9,
where one feature has a strong non-linear dependence on the
target that cannot be represented by a linear model.

To sum up, Decision Trees trained with the GUIDE algo-
rithm and Linear/Logistic Regression models perform well on
these small datasets. Gaussian Processes can perform well, but
are strongly affected by the given noise level, which makes
them responsive to overfitting. The Support Vector Machines
behave exactly the opposite way in this benchmarking and
tend to underfit.

IV. CONCLUSION

In this paper, a benchmarking of ML models for clas-
sification and regression on real world scarce datasets was
performed. The objective of the benchmarking was to identify
the best-performing model type for future classification and
regression applications to laboratory-collected data from a

real industrial process. After theoretically deriving the require-
ments for ML models for scarce data from the bias-variance
error decomposition, a literature survey on applications to
tabular scarce data was conducted. Based on these results,
the following ML models suitable for both classification and
regression tasks were selected: (i) Linear/Logistic Regression,
(ii) Decision Trees, (iii) Gaussian Processes and (iv) Support
Vector Machines. The benchmarking was performed with
ten real world datasets, respectively five classification and
regression datasets, including 255 samples on average. For
every prediction task (classification/regression) there is one
dataset that contains one-hot encoded categorical features in
addition to numerical features. In the benchmarking, Decision
Trees trained with the GUIDE algorithm and Linear/Logistic
Regression models achieved the best results for both classi-
fication an regression. Gaussian Processes only achieve good
results if a certain hyperparameter, the noise level, is carefully
adjusted to the data. For this reason, Gaussian Processes have
overfitted to most datasets. The Support Vector Machines
behaved the opposite way and tended to underfit, for which
the cause could not be clearly identified.

Based on the results of the benchmarking, Decision Trees
are taken for the applications to the industrial process. Apart
from the good and robust performance in this benchmarking,
they (i) do not need hyperparameter optimization, (ii) can
incorporate categorical features without any preprocessing,
(iii) are intrinsic interpretable and (iv) offer many advantages
for model-specific active learning strategies due to their local
model structure. Furthermore, the classification by Decision
Trees with more complex local models (e.g. Logistic Regres-
sion models) is investigated and the benchmarking will be
extended with more datasets to analyze the impact of dataset
dimensionality and size on the different ML models. However,
due to the very good performance on some datasets and the
ability to explicitly represent model uncertainties, Gaussian
Processes are also further explored for the application to the
industrial process, especially with respect to the selection of
an appropriate noise level.
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