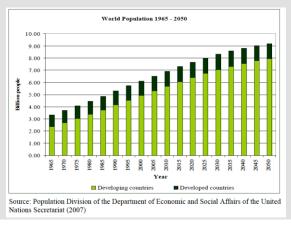

Society for Invertebrate Pathology 28.06 – 02.07.2021

BioProtect


Target-specific bioprotectants for sustainable crop production in a changing climate

Anant V. Patel¹, Desiree Jakobs-Schönwandt¹, Benjamin W. Moorlach¹, Minna Poranen², Karl-Heinz Kogel³, Manfred Heinlein⁴

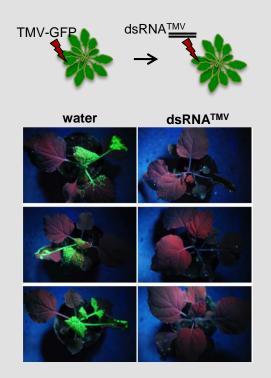
¹Bielefeld University of Applied Sciences, Germany ²University of Helsinki, Finland ³Justus Liebig University, Germany ⁴Centre National de la Recherche Scientifique, France

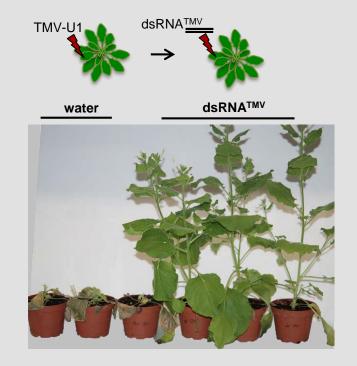
Objectives of *BioProtect*

Tomato late blight (Phytophthora infestans) in India

- Rapidly accelerating population growth (reaching 10 billion by 2050) \rightarrow increase in 60% food production needed
- Climate change challenges the capacity to produce enough food
- Crops are threatened by pathogens (alone viruses have an impact of > \$30 billion annually)
- Environmental health and safety calls for a reduction in chemical pesticides (e.g. ECOPHYTO national action)

Replace contentious pesticides with safe, efficient, and cost-effective alternatives to ensure sustainable food production


BioProtect aims to develop the production, formulation, and application of **dsRNA** as a nature-derived and environmentally friendly bioprotectant **against viruses, fungi, and insects**

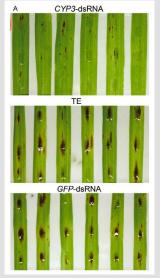

- dsRNA occurs in all organisms and in food (no toxic effects if incorporated)
- dsRNA is a natural molecule that activates naturally occurring plant defense mechanisms and thus allows plants to defend themselves using their own cellular mechanisms
- dsRNA is target-specific: It acts in manner dependent on its nucleotide sequence → can be tailored to target specific pathogens
- dsRNA does not accumulate within organisms. Outside cells, dsRNA is rapidly degraded. Within cells, dsRNA is rapidly used and then degraded.

FH Bielefeld University of

Applied Sciences

dsRNA treatment protects against plant virus

Niehl et al Plant Biotechnol J, 2018

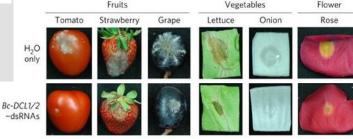

FH Bielefeld University of Applied Sciences

Topical applications of dsRNA to control pathogenic fungi

RESEARCH ARTICLE

An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery

Aline Koch¹, Dagmar Biedenkopf¹, Alexandra Furch², Lennart Weber³, Oliver Rossbach⁴, Eltayb Abdellatef¹, Lukas Linicus¹, Jan Johannsmeier¹, Lukas Jelonek⁵, Alexander Goesmann⁵, Vinitha Cardoza⁶, John McMillan⁶, Tobias Mentzel⁷, Karl-Heinz Kogel¹*



Koch et al., Plos Pathogens, 2016

Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection

Ming Wang, Arne Weiberg, Feng-Mao Lin, Bart P. H. J. Thomma, Hsien-Da Huang & Hailing Jin 🖂

dsRNA-mediated protection against B. cinerea

SCIENTIFIC REPORTS

FH Bielefeld University of

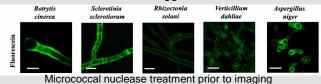
Applied Sciences

Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea Published online: 09 May 201 Austein G. McLoughlin¹, Nick Wytinck¹, Philip L. Walke¹, Ian J. Girard¹, Khalid Y. Rashid², Teresa de Kievit³, W. G. Dilantha Fernando⁴, Steve Whyard¹ & Mark F. Belmonte¹

Received: 3 October 2017

Accepted: 16 April 2018

McLoughlin et al., Scientific Rep, 2018


dsRNA targeted against an essential gene of the fungus sprayed on plants

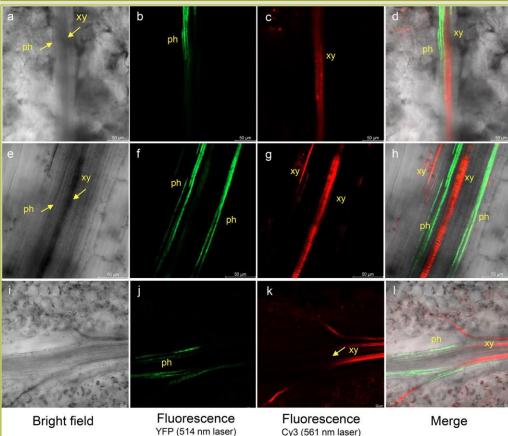
 \rightarrow uptake by the plant \rightarrow uptake by the fungus \rightarrow enters silencing machinery of the fungus \rightarrow silences the essential gene \rightarrow causes growth inhibition of the

fungus

Many fungi can take up RNAs from the environment

Fluorescein-tagged YFP-mRNA

From: Qiao et al., Plant Biotechnol J, 2021


Wang et al., Nat Plants, 2016

Aphid control with dsRNA

Evaluation of dsRNA delivery methods for targeting macrophage migration inhibitory factor MIF in RNAi-based aphid control

Shaoshuai Liu¹ · Maria Jose Ladera-Carmona² · Minna M. Poranen³ · Aart J. E. van Bel² · Karl-Heinz Kogel² · Jafargholi Imani²

Received: 23 December 2020 / Accepted: 9 April 2021 © The Author(s) 2021

Experiment

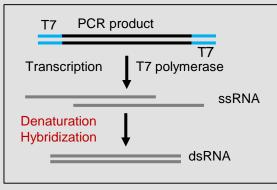
YFP-labeled Arabidopsis was sprayed with cy3-labeled 21 nt dsRNA (naked dsRNA)

Results

cy3-labeled 21 nt dsRNA is localized only in the xylem - not in the phloem (where aphids feed)

> dsRNA formulations which enable dsRNA to enter phloem are needed

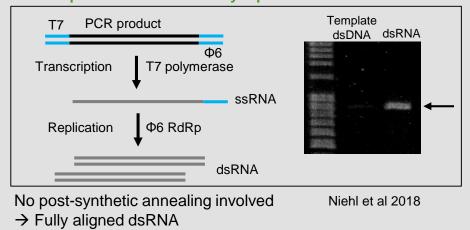
Anant V. Patel: BioProtect Society for Invertebrate Pathology, 2021 FH Bielefeld University of

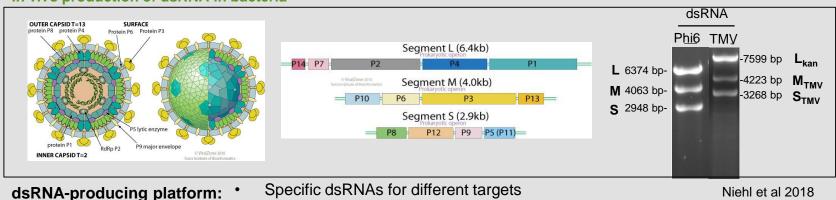

Applied Sciences

Production of dsRNA

Challenge

reliable, scalable, and cost-effective dsRNA production


In vitro production of dsRNA by transcription



Post-synthetic annealing required \rightarrow Partially aligned dsRNA (?)

In vivo production of dsRNA in bacteria

In vitro production of dsRNA by replication

Different purification protocols (purity, purification pipeline, costs)
 upscaling

25.06.2021

Anant V. Patel: BioProtect

Society for Invertebrate Pathology, 2021

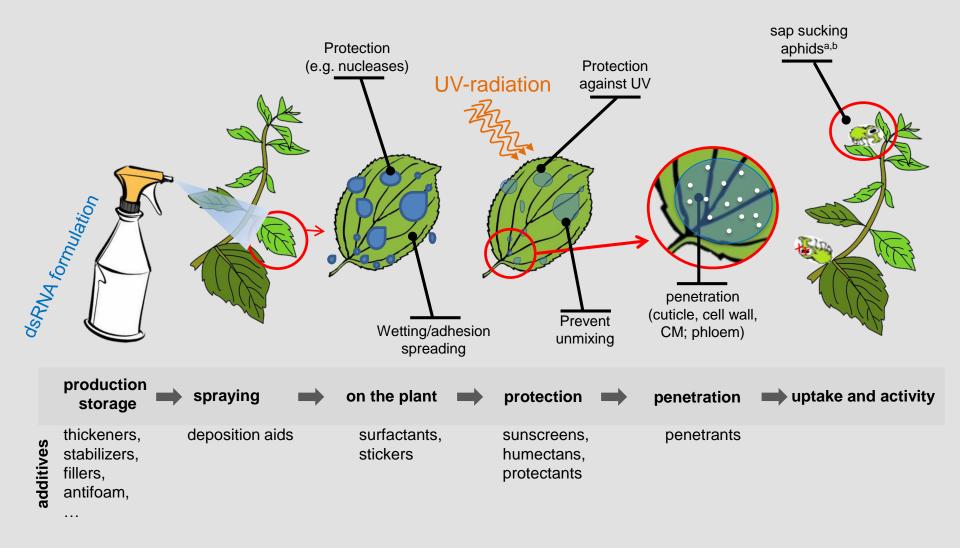
State of the Art

- Recent advances in nano-formulation of RNA towards targeted delivery¹
- However, only few attempts in agriculture have been undertaken²
- All approaches mask negative charge of naked dsRNA to facilitate cell uptake: guanylate polymers³, "BioClay" nanosheets^{4,5}, cationic oligopeptide⁶, cationic oligopeptide bound to a cell-penetrating peptide⁷, cationic fluorescent nanoparticle⁸, complex DNA origami nanostructure⁹, encapsulation in liposome complexes¹⁰

Aim

To develop:

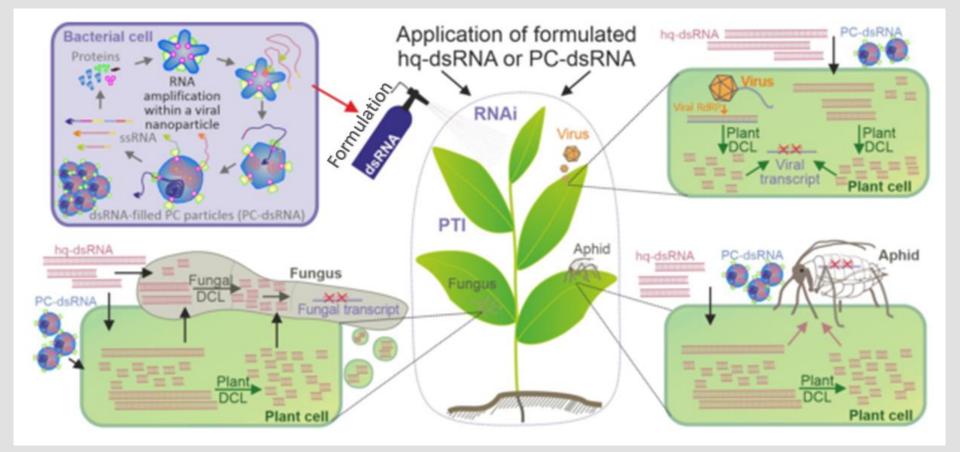
An innovative formulation based on biologically degradable ingredients that:


- 1. delivers the dsRNA to plant leaves
- 2. stabilizes and protects dsRNA on the leaves
- 3. supports long-lasting penetration of dsRNA into the plant cytoplasm

FH Bielefeld University of

Applied Sciences

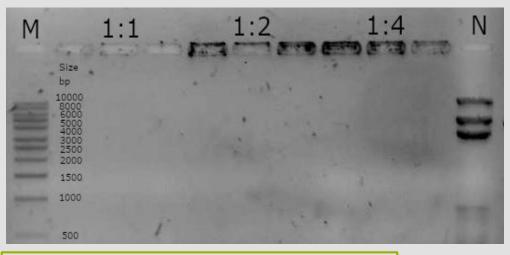
Foliar application of formulated dsRNA


FH Bielefeld University of Applied Sciences

[a] Sitobion avenae [b] Myzus persicae

Foliar application of formulated dsRNA

FH Bielefeld University of Applied Sciences


Preliminary formulation results

FH Bielefeld University of Applied Sciences

Cathode (–)

Aim Create a formulation which masks the negative charge of dsRNA. Hypotheses 1. Positively charged biopolymer chitosan^[a] will electrostatically interact with negatively charged dsRNA and form nanoparticles. O The deDNA shitesen^[a] formulation will be absence on

2. The dsRNA-chitosan^[a] formulation will be chargeless or positively charged.

1 % Agarose M = DNA Ladder (Roth 1 kbp) N = Negative control (naked dsRNA, phi6^[b]) 1:1 = dsRNA : Chitosan (w:w)

[a] Chitosan, Sigma-Aldrich[b] high-quality dsRNA produced by Helsinki University [Niehl et al, 2018]

(replicate, pockets in the centre of agarose gel)

Anode (+)

Results

The formulation does not migrate to the anode.

Project structure and coordination

Dr. Minna Poranen – Molecular Biology of dsRNA Viruses

- Application of *in vivo* dsRNA production platform for dsRNA synthesis
- Different purification protocols
- Upscaling of dsRNA production

Prof. Anant Patel - Fermentation and Formulation Technology

JUSTUS-LIEBIG-

UNIVERSITAT

GIESSEN

- Formulation of dsRNA for enhanced stability and uptake by plants
- Development of a carrier liquid for dsRNA
- Upscaling of dsRNA production

Prof. Karl-Heinz Kogel - Plant Protection and Plant Diseases (fungi and insects)

- Effect of dsRNA formulations against different fungi and aphids
- · Underlying mechanisms of dsRNA uptake and activity
- Effect of temperature (changing climate)

Prof. Manfred Heinlein – Plant Virus Movement (coordinator)

- Effect of dsRNA formulations against viruses (TMV, TuMV) in vegetable crops (tobacco, tomato, cabbage, rapeseed)
- Underlying mechanism (RNA silencing, PTI)
- Effect of temperature (changing climate)