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Abstract: Humans learn movements naturally, but it takes a lot of time and training to achieve expert
performance in motor skills. In this review, we show how modern technologies can support people
in learning new motor skills. First, we introduce important concepts in motor control, motor learning
and motor skill learning. We also give an overview about the rapid expansion of machine learning
algorithms and sensor technologies for human motion analysis. The integration between motor
learning principles, machine learning algorithms and recent sensor technologies has the potential
to develop Al-guided assistance systems for motor skill training. We give our perspective on this
integration of different fields to transition from motor learning research in laboratory settings to
real world environments and real world motor tasks and propose a stepwise approach to facilitate
this transition.
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Systems to Bring Motor Learning Motor learning is a broad concept that can be defined as any experience-dependent

improvement in motor performance [1]. The first well-investigated principle of motor
learning is called motor sequence learning and investigates in detail how we perform
several motor actions after one another with the aim of improving the speed and accuracy
of a sequence of actions [2]. The second well-known principle is called motor adaptation.
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This principle allows us to adjust our movements and make them robust to external pertur-
bations [3]. For instance, when walking on different surfaces or terrain, we automatically
adjust our walking pattern according to the properties of the surface. Motor skill learning
is an extension of motor learning, as it allows us to perform a motor task of interest better,

faster, or more accurate than before [4] and requires extended practice over hours, weeks,
or months [5]. Behavioral experiments have provided great insights into motor learning
at the behavioral and neural levels [1,6]. However, surprisingly few applications exist so
far that target the two well-studied principles of motor learning to improve motor skill
learning. A possible reason for this is the large gap that remains between what we know
from conventional laboratory experiments about motor learning principles and motor
learning in dynamic natural environments [7].

Concurrently, human motion analysis techniques have improved drastically over the
last decades. Especially in the field of artificial intelligence, huge progress has been achieved.
For instance, it has become possible to accurately track human motion in dynamic natural
surroundings; to estimate human body and hand poses in RGB images, depth images and
RGB-depth images [8-12]; to detect the objects and tools that are used or are visible in the
Attribution (CC BY) license (https://  surroundings [13]; to estimate object poses [8,14] and to recognize human actions [15-17].
creativecommons.org/licenses /by / All these developments have reached high accuracy with the progress made in machine
40/). and, especially, deep learning [18,19]. In this paper, we will focus on techniques from the
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machine learning family, of which deep learning is a subpart. These techniques have the
potential to bridge the existing gap between the insights from laboratory experiments and
the natural environment in which motor learning normally takes place [7]. Since every
technique has its own limitations and advantages, the complementary use of different
analysis techniques is often recommended. This is also the case for different sensors
that can be used to characterize motion or provide feedback. A trend exists to assist
human motion with sensors and algorithms for different motor skills, ranging from sport
applications [20] to music education [21] to surgery [22] to industry tasks [23-26]. However,
so far, these applications rarely implement insights from motor learning to optimize the
learning process.

One important step is to scale up the motor learning principles from laboratory
experiments to 3D real world problems. Currently, complex motor behavior is largely left
unexplored, since most studies are performed in well-controlled lab environments [27].
Gradually increasing the complexity of the studied motor behavior becomes possible with
improved observation and analysis techniques. We call this the bottom-up approach, since
this approach starts from fundamental motor learning principles and gradually increases
the complexity of the experimental motor tasks to approach closer to everyday motor
skills. In contrast, one can start from a motor skill of interest and gradually divide it into
individual components of motor learning, here called the top-down approach. Assistance
systems to train a specific motor skill already exist, but optimizing the learning process
with knowledge from motor learning is a new approach. We think that both approaches
are necessary to close the gap that exists between the laboratory knowledge about motor
learning and applications to efficiently train motor skills.

The scope of this review is to discuss how classical motor learning and motor control
research can transition from the laboratory to a real world environment to enhance motor
skill learning of real world motor tasks. The review starts with an introduction to motor
control in Section 2 (Figure 1, left top) and an overview of two well-known motor learning
principles and their relation to motor skill learning in Section 3 (Figure 1, right top).
Subsequently, Section 4 discusses a selection of human motion analysis algorithms (Figure 1,
right bottom), and Section 5 focuses on sensor technologies (Figure 1, left bottom). Finally,
Section 6 integrates motor learning research with human motion analysis algorithms and
sensor technology. In this section, a two-fold approach is proposed to bridge the gap
that exists between motor learning principles studied in laboratory environments and
real world complex motor skills. The bottom-up approach shows how, starting from well-
known motor learning principles, the complexity can be increased to investigate motor skill
learning, while the top-down approach starts from a motor skill of interest and quantifies
its performance by assessing the relevant motor learning parameters. In the long term,
these approaches can help to improve motor skill training by human assistance systems.

Human
What is motor What is
human control human
motor motor (skill)
learning?

control? m

Which sensor
technologies
for human
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Figure 1. Transferring human motor learning principles to real world applications requires the
integration of several research domains.
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Decision-making

2. Human Motor Control

In the discipline of motor control, we study how organisms make accurate goal-
directed movements [28]. A motor command is sent to the muscles of our body (Figure 2).
This results in a specific movement trajectory and an end position of the activated body
parts (state change), which can be observed by the sensory system with a short delay. In
parallel, an efference copy of the motor command is used by the forward model to predict
the movement trajectory and the end position before it occurs. The difference between the
predicted state and the observed state is the sensory prediction error. This error is used
by the control policy to generate the next motor command. Together, the feedback and
feedforward loop allow efficient and accurate control of the muscles.

Desired Motor omanibed State
goal Control command y change
-+ >
olic .
P Y environment
Sensory
prediction- :
error Time
Sensory delay
Forward
state <
; . Predicted model
estimation
sensory
Measured feedback
sensory
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Figure 2. Human motor control scheme (adapted from Shadmehr et al. [6]), extended with sensor

technologies and augmented feedback to design an Al-guided assistance system for motor skill
training.

Motor control can, to a large extent, occur without much cognitive effort; imagine, for
example, the daily actions that we undertake, like drinking, eating, standing and walking.
All these actions can be done without requiring our full cognitive capacity. However, also,
cognitive decision-making can influence human motor control by selecting the desired
movement goal (Figure 2) [29]. At some points, motor control requires additional cognitive
effort; imagine walking across a road with heavy traffic. Briefly, you need to time very well
when you start crossing the road and increase the vigor of your walking compared to how
fast you usually do. Additional cognitive effort is also necessary when we learn to make
new movement patterns, when we learn to improve our movement accuracy or when we
learn to improve our movement timing. If we want to improve our movement timing, for
example, temporarily, we can decide to increase the cost for incorrect timing. Later, we can
decide to practice more on movement accuracy, and a reweighting occurs with an increased
cost for an inaccurate movement or more weight on reaching the desired visuospatial goal.

In addition, in this review, we expand the motor control scheme (colored elements in
Figure 2) to visualize how human assistance systems can improve human motor learning.
Besides the human sensory system, sensor technology can play a similar role to register
and quantify observable state changes of the human body. Different machine learning
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algorithms can be used to analyze the obtained sensor data. These analyzed sensor data
can be fed back to the user as augmented feedback, which complements its own body
sensory feedback. Sensor data can also be provided directly to the user without extensive
processing. The additional information can have an impact on the decision-making process.
The augmented feedback can result in an altered weighting of each decision criteria and,
hence, result in a different movement goal.

3. Human Motor Learning

The motor control scheme (Figure 2) showed how organisms make accurate goal-
directed movements. In motor learning, we study how organisms, with practice, can
improve the motor performance of these goal-directed movements. In this section, we give
a brief overview of a selection of two principles of motor learning. For comprehensive
reviews discussing motor learning principles, we refer to the following excellent reviews
in motor learning: H. E. Kim et al., 2021; Krakauer et al., 2019; Shadmehr et al., 2010;
Wolpert et al., 2011 [1,7,28,30].

3.1. Motor Sequence Learning

Motor sequence learning occurs when separate movements are integrated into a
unified and coordinated sequence of actions through practice [31]. This sequence of actions
can either be several discrete actions or several continuous and (partially) overlapping
actions. For example, preparing a cup of tea are several discrete steps, while a smash in
badminton are several continuous actions of the whole body [1]. Performance improvement
in motor sequence learning occurs, often in the time-domain of the movement, as an
improved reaction time or a faster movement time for a sequence of actions. In the
laboratory, sequence learning is often studied using a finger tapping task, during which
buttons on a keyboard should be pressed in a specific order [32]. The simplest finger
tapping task requires the repeated execution of a short sequence of 4-6 elements [1]. Each
finger is represented by a digit, such that each digit indicates which finger should press the
underlying button (e.g., index: 1, middle: 2, ring: 3 and little: 4). The sequence is provided
to the participants at the start of the task, and the goal of the task is to execute the sequence
as accurate and as fast as possible. With practice, sequential action execution becomes
faster, more accurate and largely automatic [1,32].

The most-used paradigm to study sequence learning is the Serial Reaction Time Task.
During this task, participants have to respond to a visual cue as fast as possible by press-
ing the corresponding button with their finger. Alternative options are arm reaching to
buttons or foot presses. The response should be made only after the visual cue appears.
The sequence (S) of target appearance has a fixed order, which is learned through prac-
tice. The fixed sequential order of targets is often alternated with a random (R) order
of targets to correct for changing reaction times to random targets (e.g., by changing at-
tention). Sequence-specific learning is calculated as the S-R difference of the reaction
times [1]. Performance improvements of the reaction time occur with practice in an expo-
nentially decreasing way (Figure 3A), but improvements also occur in between practice
sessions [33,34].

An important explanation for sequence learning is the grouping of individual elements
into chunks. As learning progresses, the chunks become larger and eventually result in an
entire sequence. The length of the chunks and their structure may depend on the working
memory capacity [35]. Chunking might also explain why the generalization of sequence
learning occurs. Generalization is the transfer of sequence learning to untrained but similar
sequences or to a different effector (e.g., the other hand). Chunking is the grouping of
elements or the representation of order rather than the motor action itself [36]. This order
representation might thus help to speed up the learning process of a similar order with the
same hand or to speed up the execution of the same order with the other hand.

Different aspects of sequence learning are learned explicitly or implicitly. For ex-
ample, Wong and colleagues showed that both a random sequence and a fully explicit
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sequence were executed faster with extended practice. The gradual performance improve-
ment did not differ for both sequences, suggesting that this gradual improvement was
sequence-independent and that no sequence-specific implicit learning occurred. How-
ever, an immediate improvement in response time existed for the fully explicit sequence,
reflecting explicit sequence knowledge [37].

3.2. Motor Adaptation

Motor adaptation occurs when movements are adjusted to perturbations or changes
in the environment [3]. For instance, when humans walk on different surfaces or terrains,
or with rested or tired muscles, they automatically adjust their walking pattern to the
specific conditions. A recent study with quadruped robots showed that robots also require
a real-time motor adaptation module to successfully walk on various terrains [38]. Another
example is, when lifting different objects, humans automatically adjust their grip according
to the weight of the object [39-41]. In motor adaption, learning is triggered by errors, often
in the spatial domain of the movement, for instance, as the compensation for a walking
error, a lifting error or a reaching error. In lab experiments, human motor adaptation is most
typically studied for upper limb movements using a tablet computer or a robot. Participants
are instructed to perform sequential arm reaching movements on the tablet with the arm
made invisible. The task is to move a cursor on the monitor from a start position towards a
target. At a specific point in time, a perturbation is introduced as a rotation of the cursor
with respect to the hand motion (Figure 3B). Participants should adapt to this perturbation
by moving their hand in the opposite direction of the rotation (reduce error in Figure 3B).
This experimental paradigm to study motor adaptation is called visuomotor rotation. Motor
adaptation can also be studied with a forcefield paradigm on a robot. Again, participants
are instructed to make arm reaching movements to reach targets on a monitor. Instead of a
rotational perturbation, a force perturbation is executed by the robot on the participant’s
hand. The participant can adapt to the perturbation by opposing the perturbing force,
which is called forcefield adaptation. Besides these often-used paradigms to study the
motor adaptation of upper limb movement, alternative paradigms exist to study the motor
adaptation of gait [42-44], speech [45-47] and eye movement [48-53].

Motor adaptation can be dissociated in underlying components, which can be observed
with adjusted versions of the typical motor adaptation experiments. A first way to dissociate
motor adaptation is by the dependence on cognitive processes. Motor adaptation can occur
either unconsciously (i.e., implicit) or with cognitive control (i.e., explicit) [54]. The explicit
process is the easiest to understand. For example, in a visuomotor rotation experiment
with a 30-degree counterclockwise rotation, a participant may decide to aim somewhat to
the right of the target (e.g., 20 degrees). In that case, we say that the participant’s explicit
strategy equals 20 degrees. The most optimal explicit strategy to counter a 30-degree
perturbation would be to aim 30 degrees clockwise with respect to the target. However,
most participants do not use aiming angles, which exactly match the perturbation size,
since they are not informed about all details of the perturbation. Several experimental
paradigms exist to assess explicit adaptation during motor adaptation experiments [54-56].

A participant adapts unconsciously or implicitly as well. As a result, the actual
reaching angle is bigger than the aiming angle. The difference between the actual reaching
direction and the explicit aiming direction equals the amount of implicit adaptation. The
driving factor for implicit adaptation is the mismatch between the predicted sensory
feedback and the observed (and perturbed) sensory feedback, called the sensory prediction
error. The sensory prediction error is used in the motor control scheme, but the exact link
between implicit adaptation and motor control is not clear. It appears to be involved in
updating both the control policy and the forward model (Figure 2) [29]. A participant
automatically minimizes this sensory prediction error by moving the arm in the opposite
direction of the perturbation. Implicit adaptation is a slow process, while explicit adaptation
is faster [54]. Depending on the task parameters (perturbation size, targets, reaction time,
etc.), the relative contribution of implicit versus explicit adaptation is different [57-60].
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Additionally, motor adaptation can be assessed depending on the presence (or absence)
of reward or punishment. Learning from reward is also called reinforcement learning.
Several adaptation paradigms have been designed to assess the effect of reward on motor
adaptation [61-65]. Reward has a positive effect on the retention of motor adaptation, while
punishment enhances the learning rate [62].

3.3. Motor Skill Learning

Motor skill learning allows to perform a motor task better, faster or more accurately
than before [4] and requires extended practice over hours, weeks or months [5]. For instance,
learning to play badminton (or tennis) well requires several years of training and can be
considered as an example of motor skill learning.

Remember the process of motor sequence learning, where a specific sequence of
actions is learned to be executed faster, more fluently or more accurately with practice.
One example for badminton could be the training of a specific stroke such as smashing.
During training, a novice player learns to smash by combining different subelements or
postures. If a badminton player smashes during a game, these subelements cannot be
recognized anymore, since no clear boundaries exist between the individual subelements.
This example shows that sequence learning is one way to contribute to the complex process
of motor skill learning.

This contrasts with motor adaptation, which only investigates the recalibration of the
existing task performance to a changed condition [3] and is often possible within a few prac-
tice trials [58,66] or even within a single trial [67]. For instance, learning to play badminton
(or tennis) well requires several years of training (i.e., motor skill), but getting used to
playing badminton with a new racket sometimes only requires a few training days or, with
new strings on the existing racket, only a couple of strokes (i.e., motor adaptation). In addi-
tion, since the task performance does not improve compared to the baseline performance
(Figure 3B, AError = ASKkill = 0), motor adaptation could, according to its definition, not be
considered as a process contributing to motor skill learning [4,68,69]. Nevertheless, motor
adaptation enables that the forward and inverse model (or control policy) (Figure 2) remain
calibrated for various external changes, which ensures the robustness of the movement.
Without motor adaptation, a new motor performance level can be reached, but a small
change in any relevant parameter could result in complete motor skill failure. In addition,
the process of error reduction or cost optimization are inherent to both motor adaptation
(Figure 3B, green curve) and motor skill learning (Figure 3C left top, green curve). In
motor adaptation, the process of error-based learning (Figure 3B, green curve) is essential
to recalibrate the performance back to the baseline level after a perturbation, while, in
motor skill learning, it is an important process to reach a new performance level. Therefore,
we argue here that the study of motor adaptation does contribute to the understanding of
motor skill learning through the process of error-based learning.

However, the optimization problem is more complex in motor skill learning (Figure 3C)
than in motor adaptation paradigms, which we know from laboratory experiments (e.g.,
visuomotor rotation and forcefield adaptation). Therefore, in motor skill learning, much
more practice is required to reach an optimal solution range [70,71]. For instance, if we use
the badminton example again, the optimization occurs in a high number of dimensions.
One typically first learns the basic strokes of the game: the serve, dropshot, smash, clear and
lob. For each of these strokes, the player must control their posture at different steps in the
stroke, control the timing of the motion, control eye-hand-body coordination and control
the racket orientation. During the game itself, the player should control their footwork
and monitor and predict the state of the shuttle and the opponent, while, at the same
time, making tactical choices between different strokes and directions to play the shuttle.
Each of the steps described above requires optimization from years of training to reach an
expert performance level of the motor skill. Instead, when only replacing the strings of the
badminton racket, the only optimization necessary is the error reduction to control for the
change in shuttle velocity induced by the increased string tension [72].
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Morehead and Orban de Xivry [29] recently proposed how the weight of each compo-
nent of the loss function could be determined by cognitive decision-making in visuomotor
adaptation. In other words, cognitive decision-making defines the weights for the different
objectives in multi-objective optimization. Multi-objective optimization typically deals
with the optimization of multiple conflicting objectives [73]. In motor learning, two clearly
conflicting objectives are speed and accuracy of the movement (Figure 3D). This typically
results in a trade-off between the different objectives, and the speed—accuracy trade-off is a
well-known one. We argue here that the same applies to motor skill learning, with the num-
ber of objectives (Figure 3D) and the number of dimensions (Figure 3E) of the optimization
problem higher than for visuomotor rotation experiments, one reason for this being the
control of the entire body in a three-dimensional space compared to upper limb motor
control in only two dimensions. It is plausible that increasing the number of objectives and
dimensions increases the amount of practice required for successful optimization.

A)  Motor sequence learning D) Multi-objective optimization
A A ‘/‘/ HOptimlzation for accuracy
Aceuracy
@ improvement

Optimization for speed and accuracy

Reaction AReaction time = Accuracy /
time ASkill

B Optimization for speed

>
>

Training time (days, months, years) Speed
B)  Motor adaptation E) Multi-dimensional optimization
A Introduction
i perturbation 2

Error-based learning

Error Cost

AError = ASkill=0

Baseline 3 Adaptation Add 1.5
period | period

Y

Training time (trials)

Optimal range

C)  Motor skill learning

Spatial error and/or
Reaction time and/or
Movement time and/or AY = ASkill

Training time (days, months, years)

Figure 3. Motor sequence learning and motor adaptation are two well-known motor learning
principles, which are also active during motor skill learning. (A) Motor sequence learning. Only a
single parameter is optimized, usually the reaction time or response time. Optimization lasts after
training. (B) Motor adaptation. No skill learning, only recalibration of the current motor performance
to anew changed parameter (e.g., string tension) that induced a sudden error. Only a single parameter
is optimized, usually angular error or spatial error. Error-based learning (green curve) is the process
of reducing errors. (C) Motor skill learning. Optimization that lasts after training. The parameter(s)
to optimize can be spatial error, reaction time, movement time or many others. (D) Multiple-objective
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optimization deals with the optimization of more than 1 objective simultaneously; often, these
objectives are conflicting. In motor skill learning, conflicting objectives could be optimized for
speed and for accuracy. (E) Multidimensional optimization is optimization that deals with many
dimensions. In motor skill learning, optimization can depend on variables like the reaction time,
movement speed, accuracy, body posture, limb coordination, predicted movement and many more.
Expert demonstration of the motor skill provides a reference for the desired range of the different
variables. This can help to find the right direction for the optimization problem faster or to take bigger
steps during the optimization (learning curve schemas in (A—-C) adapted from Sternad (2018) [74]).

Training a motor skill requires many training sessions with different exercises, these
exercises are useful to allow a person to focus only on a few of their errors and to opti-
mize the performances for these errors (i.e., reducing the dimensions of the optimization
problem). For instance, one could focus only on the posture errors during the serve in
racket sports (i.e., accuracy improvement, blue arrow in Figure 3D); alternatively, one could
focus on improving the speed of the movement on the court (i.e., speed improvement,
green arrow in Figure 3D). A shift in the speed—accuracy trade-off can be defined as an
increased motor skill performance [75]. Another element of training is the demonstration
of the desired motion by an experienced person before the exercise is executed by an
unexperienced person. This will allow the unexperienced person to become better aware
of the error they are making and correct for it. This visual demonstration can serve as a
reference for the desired action that can be imitated, and this way, the optimization in the
enormous multidimensional space (Figure 3E) can proceed faster [76]. Sometimes, it is not
only a visual demonstration that can function as a reference; for instance, when learning
to play a new piano piece, the teacher will play the song before the pupil starts playing.
Here, the memory of the desired sound can serve as an alternative reference for the desired
finger movements. By dividing a motor skill into subskills and by demonstrating the
desired behavior, training sessions can be designed to reduce the overall error complexity
(or dimensionality) of the motor skill to be trained and bring specific errors into focus.

Most motor learning and motor skill learning research is conducted in laboratory
settings with strictly controlled movement parameters, whereas real world motor learning
is typically very variable, as optimization occurs in many dimensions, given that the
human body has many degrees of freedom and given that many solutions exist to solve the
same motor task. This contradiction shows that it is necessary to create new experimental
paradigms that closer match the real behavior and environment with its intrinsically high
variability. This is where we can benefit from the recent developments in machine learning
algorithms and sensor technologies for human motion analysis.

4. Machine Learning Algorithms for Human Motion Analysis

In this section, we describe a selection of machine learning algorithms useful for ana-
lyzing human motion. First, we discuss dimensionality reduction techniques to transform
motion data to a low-dimensional space that captures the dimensions with the highest vari-
ability in the data. Then, the algorithms are divided into four different categories according
to purpose: pose estimation, action classification, motion prediction and motion compari-
son. The representation of the motion is given by skeleton data (relative joint positions and
angles) captured with inertial measurement units or image sequences recorded from RGB,
depth or RGB-depth camera(s). For teaching a motor skill, a teaching system needs to be
able to detect the actual pose, determine the according motion (motion classification) and
determine the difference to the desired motion (motion comparison) to instruct the novice
how to correct their motion. The prediction of motion could help to predict a mismatch
with a desired motion at an early stage. Finally, we discuss how developments in robot
motor learning can be useful to test new hypotheses about human motor (skill) learning.

Machine learning algorithms can be divided into different categories: unsupervised,
supervised and reinforcement learning (Figure 4). In unsupervised learning, the machine
learning algorithm is used to find structures inside the data without prior knowledge.
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reduction

Two subclasses of unsupervised learning are clustering and dimensionality reduction.
Clustering algorithms try to discover clusters in data based on a distance measure. For
motion comparison, for example, two motions are considered to be the same when the
distance of the joint positions is smaller than a given threshold. In supervised learning, the
training data consists of an input and a desired output. The task of the machine learning
algorithm is to learn the relevant features from the training data while generalizing for
unknown data. Supervised learning can be differentiated into regression (continuous
output) and classification (discrete output). Pose estimation, for example, can be treated
as a regression or a classification problem. Finally, machine learning algorithms can make
use of artificial neural networks to achieve higher accuracies if combined with powerful
computing. The choice of the machine learning algorithm for a human motion analysis
problem often depends on the data used for training. In reinforcement learning, the decision
of the machine learning algorithm is evaluated after each prediction step. The system gets
penalized for bad predictions and rewarded for good predictions. The overall task of the
algorithm is to maximize the reward function.

Machine
learning

Reinforcement]

Supervised

Model-based
understanding of
motor learning/
adaptation

Regression

Data compression
Structure discovery

Motion comparison *  Pose estimation *  Pose estimation

* Pose prediction ¢ Action classification

Figure 4. Machine learning categorization and some example attributions of human motion analysis
problems. This schema should not be considered as a strict separation or as the only possible existing
combinations, but rather, it shows the most frequently occurring categories.

Databases exist for different types of motions (e.g., drinking, eating, walking or even
taking a selfie [77]); different body parts (e.g., hand [14,78] or body [79]); different sensor
types (e.g., Vicon system [80], inertial measurement units [81], RGB video [82] or RGB-
depth [83]) or for human-—object interactions [84].

4.1. Structure Discovery and Data Compression by Using Dimensionality Reduction Technigues

Dimensionality reduction techniques can transform high-dimensional data to a low-
dimensional space. Their use is beneficial for human motion datasets, which contain many
measurement trials, measurement variables or combine multiple measurement techniques.
Dimensionality reduction can help to discover structure in the data [85-87], to compress
the data [88] or to enable easier visualization [89]. It can be applied directly or after pose
estimation but can also be used as an action recognition method by itself [90]. Nguyen
and Holmes [91] present ten practical tips for the effective application of dimensionality
reduction techniques. At first, it can seem intimidating to select the correct dimensionality
reduction technique among the many techniques that exist (for a comparative overview
of the techniques, see Van Der Maaten et al. [92]). Therefore, the first of the ten tips is the
choice of the dimensionality reduction technique based on the input data. For instance,
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nonlinear dimensionality reduction techniques can better deal with complex nonlinear data,
which could be favorable in real world data that presents itself as nonlinear manifolds [92].
They do preserve local interactions well, but for preserving the global data structure,
linear techniques are the better choice [91]. The core idea of dimensionality reduction
techniques is to find the intrinsic dimensionality of the data, which is the minimum number
of parameters required to account for the properties of the data [93]. The most well-
known unsupervised linear reduction technique is principal component analysis (PCA).
PCA constructs a low-dimensional representation of the data by searching for the linear
basis of reduced dimensionality with maximal variance in the data [92]. PCA has been
applied for technique analyses in sports (e.g., skiing: Federolf et al. [94] and Gleersen
et al. [95]), for data compression of natural motion (e.g., hand motion: Lin et al. [96]), for
the comparison of motions among different experience levels (e.g., race walking: Dona
et al. [97]) or conditions (e.g., ergonomic assessment during a lifting task: Sadler et al. [98]).
This shows some of the many possibilities that dimensionality reduction offers for a human
motion analysis. Besides linear reduction techniques, nonlinear techniques also offer great
potential in human motion analysis. For example, Uniform Manifold Approximation
and Projection (UMAP) has been used to analyze soccer players’ skills [99], and deep
autoencoders have been used to find a representation of movement in a latent feature
space [100]. The movement that the different neurons in this latent space represent can be
visualized by using dynamic movement primitives [101] as an additional hidden layer.

4.2. Motion Comparison with Clustering

After dimensionality reduction, a useful next step is clustering the data. Clustering
algorithms divide the data into a number of clusters (groups, subsets and categories) [102].
A formal definition for a cluster does not exist, but it could be described as a set of
entities that are alike, and entities from different clusters are not alike. Data from the same
cluster are similar to each other, while data from different clusters are dissimilar from one
another [102]. For a motion analysis, one could group the data according to experience
level (novice vs. intermediate vs. expert); according to applied techniques or strategies
or according to movement patterns. For instance, Marques et al. [87] used a two-stage
unsupervised clustering approach to identify 13 different swimming patterns in zebrafish
larval movements. They used a custom-developed density-based clustering method. In
sports, clustering can be used to compare players based on a set of attributes. An example is
the work by Lopes and Tenreiro Machado [99] where this approach was used for assessing
different soccer player styles. Another example from sports shows how clustering can be
used to extract temporal behavior of a specific movement. Ghasemzadeh and Jafari [103]
used k-means clustering on kinematic data from the hip, shoulder and wrist to divide
a baseball swing motion into specific groups of frames that were similar. From these
groups, they analyzed the coordination of the movement and determined if a sequence
of actions from the hip, arm and shoulder was performed with good or bad timing of the
key events. In surgery, unsupervised temporal clustering was applied to chunk a surgical
procedure into clinically relevant tasks [104]. After comparing four different temporal
clustering algorithms, they concluded that the hierarchical aligned cluster analysis method
outperformed the others, with an average segmentation accuracy of 88.0%. These examples
show that, together with dimensionality reduction techniques, clustering methods can bring
structure into a complex dataset without the need for a labor-intensive-labeled dataset.

All clustering algorithms need a notion of similarity to find groups. We show recent
articles presenting different similarity measures that are or could be used for cluster analysis
(Table 1). We provide the input data type and the task solved. As we can see, most similarity
measures need 3D joint positions as inputs. The exceptions are 3D curves, quaternions
and RGB videos. Three-dimensional curves are used to represent a line in space as a
sequence of direction changes [105]. Quaternions are used to represent rotations in three-
dimensional space. A motion sequence is translated into a set of rotations for each limb
and timeframe [106]. RGB video was used by Park et al. [107] but could be grouped with
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3D joint positions, as one of the first steps in their approach was to pose a 3D estimation

onto the video data.

Table 1. Short summary of the similarity measures used to analyze human motion data.

Year Authors Data Type Task

2018 Coskun, Tan et al. [108] 3D joint positions Find be:f;ei:aijflei iflg;i(;};;lelzf;;;eii;e;tF\)A;eheCI;trir;onx;ements
2018 Guo and Wang [109] 3D joint positions Motion Segmentation

2018 Li, Liu and Tan [110] 3D joint positions Motion Segmentation

2018 Park and Kim [111] 3D hand positions Find start and end of different tasks within a recording
2018 Pham, Hochin [112] 3D curves Similarity between movements considering speed

2018 Sedmidubsky, Elias et al. [113]

Machine learning based searching of large

D joint position:
3D joint positions mocap databases

2018 Xia, Sun et al. [114] 3D joint positions Motion Segmentation

2018 Zia, Zhang et al. [104] Mixed Comparison of clustering algorithms for surgical data
2019 Sedmidubsky, Elias et al. [115] 3D joint positions Find subsequence in longer recording

2020 Pham, Hochin et al. [116] 3D curves Compare sub-movements within a sequence
2020 Piorek, Jablonski [106] Quaternions Similarity measure based on rotations

2021 Aouaidjia, Bin et al. [117] 3D joint positions Quantify similarity between movement sequences
2021 Park, Cho et al. [107] RGB video Compare two short video clips

Similarity measures between different motions are important to human motor learning
experiments, because they can be used as a measure of conformance of a novice action
with an expert execution. Alternatively, for one subject, we could compare the beginning
of a movement sequence to the end of the movement sequence in order to assess whether
learning occurred for this subject. We showed that significant progress has been made for
similarity measures during the last couple of years (Table 1) and argue that this should
be used by motor control researchers when explicit measures of movement quality are
not available.

4.3. Pose Estimation

Moeslund et al. [118] defined pose estimation as the process of estimating the con-
figuration of the underlying kinematic or skeletal articulation structure of a person. This
usually means estimating 2D /3D coordinates for a set of joints in some simplified human
skeleton. Since the successful use of convolutional neural networks (CNNs) for tasks like
object recognition (AlexNet) [19], the use of CNNs dominates the state-of-the-art methods
in nearly any image-based task [119]. Especially in pose estimation from images or videos,
the use of convolutional neural networks was beneficial. For in-depth overviews on pose
estimation with neural networks, we refer to References [120-122] or the most recent from
Zheng et al. [123]. In this study, we focus on the most prominent techniques. Human pose
estimations can be separated using 2D and 3D methods. A brief overview of these two
approaches is given in the following two subsections.

4.3.1. Pose Estimation in Two Dimensions

For 2D pose estimations with neural networks, two approaches can be distinguished:
pose regression and pose detection (Figure 5). In the regression-based approach, a CNN
predicts onto the input image the 2D coordinates of the key points. The connected key
points are the 2D pose. In the detection-based approach, a CNN predicts a set of heatmaps
for individual body parts. The fusion of the detected heatmaps gives the estimated 2D pose.
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DeepPose by Toshev and Szegedy [11] was the first successful 2D human pose es-
timation approach that formulates a pose estimation as a CNN-based regression prob-
lem (Figure 5A). It is based on AlexNet, with an output layer that consists of the two-
dimensional coordinates of the joints. By learning the joint coordinates directly, DeepPose
suffers from the inability to generalize. Therefore, instead of determining the exact joint po-
sitions, heatmaps are introduced that indicate the confidence for each joint (Figure 5B) [124].
In addition, Tompson et al. [124] are jointly training a convolutional network for heatmap
prediction and a graphical model, which allows to preserve geometric relationships be-
tween the joints of the body. However, a superior performance was achieved by a “stacked
hourglass” networks algorithm [125], which did not use a graphical model. The idea of
stacked hourglass networks is that spatial relationships on smaller and bigger scales are
equally important for determining the human pose by combining information from differ-
ent scales (Figure 5C). The basic building block of the proposed network is an hourglass
module. There are three main components: the encoding, the decoding and the bypass. The
encoding procedure uses convolutional and max-pooling layers to encode the information
in the picture in decreasing resolution. At each stage, another convolutional layer is applied
and stored at the bypass without pooling, so it remains in the same dimension as the layer
pre-pooling. After reaching the minimum resolution (4 x 4 pixels), the decoding procedure
begins. The network is symmetrical, so, for each decoding layer, there is an encoding
equivalent. The process of combining information at two resolutions was described by
Tompson et al. [124]. The architecture is called stacked hourglass because multiples of
these modules are stacked behind each other. These stacked hourglasses produce a set
of heatmaps, representing the probability of the presence of a joint at each position in
the image. The output produced by the network is the estimated pose as the maximum
activations across each heatmap.

A) DeepPose: Body Pose Estimation with Deep Neural Network-based Regression

@ E Regresswn .

B) Joint Training of Convolutional Network and Graphical Model for Body Pose Estimation

C) Stacked Hourglass Network for Body Pose Estimation ® ®

LI

CNN | I | | ‘ i
heatmap estimation

heatmap
fusion

# "

heatmap

D

fusion
Hourglass

network

ﬂ
Figure 5. Overview of 2D human pose estimation approaches with deep learning. (A) Deep learning-
based regression predicts the key points as 2D coordinates directly on the image. The 2D pose is the
connected graph of the predicted key points. (B) Deep learning-based pose detection generates a
set of body part heatmaps that are fused to generate the 2D pose estimation. (C) Architecture of
the stacked hourglass network introduced by Newell et al. [125]. Each individual hourglass module

consists of convolutional layers (encoding), followed by deconvolutional layers (decoding). The
maximum activations across each predicted heatmap are the final estimated pose.
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4.3.2. Pose Estimation in Three Dimensions

Two-dimensional pose estimation refers to the estimation of the joint position in
the two-dimensional picture, but the underlying human motions take place in a three-
dimensional environment. In order to analyze the 3D motion, methods to infer 3D co-
ordinates for the joints in a 2D image are necessary. These 3D coordinates are usually
used with respect to one root joint that serves as the origin (e.g., the hip). Other types
of encodings were discussed by Li and Chan [126]. Algorithms that approach the 3D
pose estimation problem can be sorted into two categories [123]: 2D-to-3D lifting and
direct estimation (Figure 6). In the direct estimation approach, the three-dimensional
joint locations are directly inferred from the image without an intermediate step in the
two-dimensional space [127]. The 2D-to-3D lifting approach identifies the joints in a two-
dimensional image space first and then estimates the three-dimensional coordinates from
the 2D joints [128,129]. In this way, the second approach benefits from excellent existing 2D
pose estimation algorithms.

3D Human pose estimation

2D human
pose
estimation

Il

Figure 6. Schematic overview of 3D human pose estimation approaches with deep learning on an
image. Two different approaches can be distinguished: direct and lifting.

Human pose estimation techniques can be categorized according to input and output
datatypes (Table 2). As we can see, 3D pose estimation techniques have been developed
for many different input data types. RGB images or videos are the most common sources
of materials. Many datasets are openly available [80,130-132]. Depth images provide the
natural advantage of directly containing 3D information, which makes them perfectly
suited for a task in three dimensions. Multiview images are most often generated in a
controlled lab environment. Information about the camera setup can be used to enhance
the estimation. Although they might not be suited to make pose estimations in real world
applications, they might be a great first step to more complex experimental setups. Despite
great advancements of 3D pose estimations, recent works have argued that some limitations
should still be resolved before the extensive application of pose tracking for movement
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sciences is possible. Examples of limitations are the lacking estimation of important
quantities such as accurate velocity and acceleration estimates; lacking the quantification
of external forces; lacking estimates of the mass, size and inertia; biased demographics of
databases and lacking the detection of contact or partial occlusions [12].

Table 2. A collection of recent advances in human pose estimations. We show different application
scenarios, depending on the data available and output desired.

Input Datatype Output Datatype
3D 2D
RGB images [127,133,134] [135-138]
RGB videos [122,123,139,140] [9,141,142]
Multiview [143-145]
Depth images [146-148]

4.4. Action Recognition

Action recognition is usually defined as a classification task of matching an observed
movement with a label. Action labeling can be performed for video (or image) data
directly or for a sequence of joint coordinates estimated with the methods in Section 4.3.
Some sensor technologies also provide sequences of 3D coordinates directly (see Inertial
Measurement Unit in Section 5.3).

Some confusion and discussions have evolved around the terminology of action
recognition. In this paper, we stick with the distinction as made by Moeslund et al. [118],
which defined action primitives, actions and activities. Action primitives are defined as the
most elementary motions, which are combined to form an action. When playing tennis, an
action primitive could be “run”. Actions are more complex movements combining multiple
primitives, like returning a ball in tennis. The activity is the broadest category—in this
example, playing tennis. When training a novice, action recognition can be used to identify
their actions and the order of execution of these actions. In order to provide feedback, the
actions themselves, as well as their sequences, can be compared to the expert data with
the methods described in Section 4.2. The next sections describe state-of-the-art methods
to perform action recognition either from series of 3D coordinates for each joint or based
directly on video input.

4.4.1. Graph-Based Neural Networks

Graph convolutional networks (GCNs) are a recent neural network architecture that
can use graphs as input [149], and GCNs have been used for action recognition successfully.
Methods utilizing GCNs obviously need the movement represented as a graph. Popular
encodings are spatiotemporal graphs [150-152]. Usually, the graph structure is a description
of the skeleton structure, where each node represents a joint, and the edges indicate that
two joints are connected by a limb. Movement data can be stored as either 3D coordinates
for each joint and timeframe or as rotations around each joint from one timestep to the next.
This data structure has the advantage of being very small, such that even large databases
with movement data can be stored easily. It is also universally usable, as one can use data
from inertial measurement units as well as image data to produce the graphs. A special
case is the dynamic skeleton [153]. In addition to the edges representing the skeleton
structure, it contains another set of edges: the temporal edges that connect the same joints
in consecutive frames. Yan et al. [153] developed a Spatial Temporal Graph Convolutional
Network (ST-GCN) that used this data structure for action recognition. Other methods
based on GCNs do not consider the intraframe edges and instead infer the dependencies
from the data. One such method is Attention-Enhanced Graph Convolutional LSTM (AGC-
LSTM), which uses long short-term memory units to model spatiotemporal relationships
between the frames [154]. Cho et al. [155] showed the importance of the appropriate design
of the self-attention network for the performance of action recognition. The self-attention
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mechanism (SAN) also seems to be an important key for a better representation of spatial
features of the human skeleton [156]. While many methods use the whole skeleton of the
human body as a single graph, there are also approaches that consider part-based graph
convolutions. In these methods, the human skeleton is divided into subparts (e.g., legs,
torso, etc.). The network can then analyze the subparts first and aggregate the results to
infer relations between them [157,158]. Datasets that are widely used for action recognition
with GCNs are Kinetics-Skeleton [159], HDMO5 [160] and NTU-RGB+D [77]. NTU-RGB+D
contains 56,000 action clips from 60 different action classes. Each action clip is captured
by three cameras with three different views. It also contains two different benchmarks:
cross-view (CV) and cross-subject (CS). In the CV benchmark, the camera viewpoints are
different. The training dataset consists of 37,920 action clips captured from cameras 2 and 3,
and the test dataset consists of 18,960 action clips captured from the first camera. In the CS
benchmark, the actors in the training and the test datasets are different. Table 3 shows the
progress of state-of-the-art methods in action recognition with the aforementioned methods
on the NTU-RGB+D dataset.

Table 3. Recent advances in action recognition with graph-based neural networks (GCN: Graph
convolutional network, ST-GCN: Spatial temporal graph convolutional network, AGC-LSTM: Atten-
tion enhanced graph convolutional long-short term memory and SAN: self-attention mechanism).
Accuracy is given for the action classes from the NTU-RGB+D database for two different benchmarks:
cross-view (CS) and cross-subject (CS).

Year Author Method (N'Il}lj-cll{lgl?-:-D)

2018 Yan, Xiong and Lin [153] ST-GCN 81.5% (CS)/88.3% (CV)
2018 Thakkar and Narayanan [157] part-based GCN 87.5% (CS)/93.2% (CV)
2019 Lietal. [150] ST-GCN (routing) 86.9% (CS)/92.3% (CV)
2019 Si et al. [154] AGC-LSTM 89.2% (CS)/95.0% (CV)
2020 Cho et al. [155] SAN 87.2% (CS)/92.7% (CV)
2020 Zhang et al. [156] SAN -ST-GCN 96.9% (CS)/99.1% (CV)

4.4.2. Learning Directly from Video

In contrast to the graph-based methods, there are also methods that infer the action
label directly from video data without intermediate processing like pose estimation. This
might be a better solution if the data is collected as RGB and/or depth videos.

Image analysis can be done effectively with convolutional layers. These layers apply
a filter to an image, which can learn to do edge detection or other useful operations. To
process videos (stacks of images), a third (time) dimension can be added to the filter.
Networks utilizing these layers for action recognition were introduced in 2010 [161]. Many
improvements have been made to classification accuracy, as well as speed [162-164]. While
these architectures produce state-of-the-art results, other developments in deep learning
might be more fitting when focusing on motor learning. That is because the results from
these networks are hard to understand or explain in hindsight. The user gets a good
prediction for the action label, but it is difficult to tell why the network decided this way.

The idea to use two parallel networks for action recognition was introduced by Si-
monyan and Zisserman [165]. The goal is to separate the spatial and the temporal di-
mensions first and combine them only at the very end, when making a prediction. This
was inspired by nature, where the human visual cortex is hypothesized to send visual
information to two separate streams: the ventral stream (object recognition) and the dorsal
stream (motion recognition). This was the inspiration of the two-stream network [165].
More information, e.g., sound can be added via new streams [166—168]. The architecture
was further investigated by trying different ways of fusing the layers and deeper net-
works [169-172]. To facilitate the high computational costs of 3D convolutional layers, Lin
et al. [173] introduced the Temporal Shift Module (TSM) that can be incorporated into 2D
CNNs to model the exchanges among neighboring frames while maintaining the lower
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computational costs of 2D CNNs. To take different frame rates in videos into account, a
frame-number-unified strategy can be applied on the temporal stream [174]. Recurrent
networks and their extensions can be used to recognize actions on longer video sequences
(>0.55) [175]. The approach to have the different aspects on different streams is interesting
in motor learning examples, because it allows to trace errors back. In an assembly task, for
example the information from the spatial stream would tell whether the worker stands in
the right pose for the task, while the temporal stream might detect a wrong sequence of
actions or a timing mistake. Two widely used datasets for action recognition on video data
are the UCF-101 [176] and HMDB-51 [177] datasets. UCF-101 contains 13,000 annotated
videos with 101 action classes. HMDB-51 consists of 6800 videos with 51 different actions.
Table 4 shows the progress of the state-of-the-art methods in action recognition with the
aforementioned methods on the UCF-101 and HMDB-51 datasets. The comparison also
shows that the performance of an action recognition method strongly depends on the data
it is trained with and does not necessarily generalize well.

Table 4. Recent advances in action recognition in video data. Accuracy is reported for action
recognition on video data from the UCF-101 and HMDB-51 datasets.

Accuracy Accuracy

Year Author (UCF-101) (HMDB-51)
2014 Simonyan and Zisserman [165] 88.0% 59.4%
2015 Wu et al. [166] 92.6% -

2016 Wang et al. [171] 94.2% 69.4%
2017 Lietal. [163] 92.5% 69.7%
2018 Lin, et al. [173] 95.5% 73.5%
2019 Crasto et al. [172] 95.8% 75.0%
2020 Kalfaoglu, et al. [162] 98.7% 85.1%

Besides action recognition using video or using joints coordinates data, action recog-
nition can be achieved by relying on motion data in the frequency domain. Several
studies have converted human motion to the frequency domain using different meth-
ods [178,179] and used this additional information in the frequency domain for action
recognition [180,181] or even for autoencoder-based motion generation [182]. Action recog-
nition using information in the frequency domain also allows for faster performances, as
compressed videos would be sufficient instead of regular RGB videos [181].

4.5. Motion Prediction

Using neural networks, not only pose estimation and action recognition drastically
advanced, but pose prediction also became possible. This will undoubtfully become
important for the interaction of machines with humans. For example, it will help to
improve the safety of autonomous cars when they can predict well how the surrounding
humans are likely to move [183]. Additionally, for safe human-robot collaborations, human
motion prediction is necessary [184]. In addition, human motion prediction might also
help to improve motor skill learning. For example, imagine executing a complex manual
task involving several tools and material pieces during which you are assisted with virtual
reality instructions. If the system can predict your motion well, it can detect faster if you are
moving your hands to the wrong object or location and provide correctional instructions or
give a quick warning to the user.

Different approaches have shown to be promising in the field of motion prediction.
Biitepage et al. [185] developed a general representation of human motion that can be used
as a generative model and as a feature extractor. They trained three different temporal
encoders on a generic motion capture database to learn a low-dimensional representation
of human motion dynamics. The resulting encoder-decoder models were successfully
used for classification and prediction. This model is useful if one wants to use not only the
prediction itself but also the extracted features for further analysis. In variations of encoder—



Sensors 2022, 22, 2481

17 of 41

decoder networks like the skip-attention encoder-decoder framework, the encoder is used
to recognize the observed motion and the decoder to predict the following motion [186]. A
second approach is using generative adversarial networks (GAN). A generative adversarial
network consists of two models that compete with one another: the generative model
generates new examples of a given data type, while the discriminative model tries to
determine whether the new examples are real or fake [187]. Barsoum et al. [188] developed
a GAN with a custom loss function designed for human motion prediction. A generative
model predicted sequences of possible future human poses; simultaneously, a discrimina-
tive motion quality assessment model was trained to learn the probability that a motion
sequence is a real human motion [188]. The generative model can produce not just one but
many plausible upcoming movements with a corresponding probability. This probability
estimation is useful to quantitatively assess the quality of the motion prediction and can
thus prevent the occurrence of false instructions or warnings in a system for motor skill
training. A third approach depends on residual neural networks. For instance, Martinez
et al. [189] developed a sequence-to-sequence architecture with residual connections to
predict human motion. They noticed a few disadvantages in previous residual neural
networks to predict human motion, such as first frame discontinuity, hyperparameter
tuning of a noise schedule and the depth and complexity of the networks. The following
solutions were proposed: sequence-to-sequence architecture with sampling-based loss, a
residual architecture and multi-action models. Three main experiments were performed
to quantify the impact of these solutions, and they showed that their architectures outper-
formed previous residual neural networks. Analogous to the part-based approach from
graph-based neural networks, Liu et al. [190] suggested using local GANSs for different
body parts and combining the results by using a global GAN. The methods described
above performed different solutions to solve the human motion prediction problem.

4.6. Robot Motor Learning for Understanding Human Motor Learning

In this section, we will briefly describe how research in robot motor learning can
expedite the research in human motor learning. Machine learning algorithms that are
mainly used for robot motor learning are based on imitation learning, (deep) reinforcement
learning, transfer learning or a combination of these [191-193]. Imitation learning or
learning from demonstration is the task of teaching human behavior to a (humanoid)
robotic agent [194]. In order to teach a robot a human motion, a demonstration of the
motion needs to be recorded as a video or joint sequence (inertial measurement units). The
sequence of features relevant for the task then needs to be extracted from the demonstration.
This sequence of features needs to be learned by the robot. In reinforcement learning, the
agent learns a new motor skill by trial-and-error, maximizing the reward function [191].
Finally, transfer learning is used to adapt a pretrained model in a training domain to a
different test domains [195].

The algorithms described above can be helpful to solve an issue in the modeling of
motor learning. Caramiaux et al. [191] pointed out that machine learning for movement
modeling did not address enough the motor learning aspects, i.e., the adaptability of the
movement to fine-grained changes (motor adaptation) and to radical changes (motor skill
acquisition). In their study, they identified three prominently used adaptation categories in
machine learning-based robotic motor learning: (1) parameter adaptation in probabilistic
models (e.g., Hidden Markov Model or Dynamic Bayesian Networks)—useful for motor
adaptation, (2) transfer and imitation learning—faster learning of new skills and (3) adapta-
tion through reinforcement learning—improving stability in unstructured environments.
They concluded that a combination of these would be a promising approach for motor
learning models to be integrated into motor learning support systems. In this way, robot
motor learning can be seen as a testbed for developing new human motion models. In
summary, it is not only our understanding of human motor skill learning that remains
limited but also the development of more intelligent robot motor control algorithms that
adapt robot motions to changes and acquire new skills [191]. It is to be expected that
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progress in robot motor learning can boost progress in understanding human motor (skill)
learning and vice versa [196].

5. Sensor Technologies for Human Motion Analysis

Several sensors are useful to study human motion, and an overview of some suitable
sensors is given here. We divide technologies according to sensor type or device: RGB,
depth and inertial sensors and virtual and augmented reality devices. Besides the dis-
cussed technologies, many others exist (e.g., marker-based motion capture, indoor GPS
and stretchable and wearable electronics) but are not included in this brief overview, since
it would distract this manuscript from its main focus.

5.1. RGB Camera

With the advancement of deep learning, the markerless detection of body parts via
RGB cameras has become accurate and robust [9-11,197]. If using a stationary setup, it is
often desirable that no sensors are worn on the body, so that motion is allowed to occur
naturally [198]. Simultaneously registering human motion and detecting objects allows
to study hand—object interactions [199] or helps to recognize actions or object affordances
(i-e., functionality) [200] or to detect interaction hotspots between hand motions and ob-
jects [201]. With RGB cameras, it is possible to simultaneously detect the motion of multiple
persons [10,135] or to investigate human-human interactions in a RGB video [202]. Vision
is easy to scale up for the pose estimation of larger groups of people simultaneously or
many people moving past a specific point [10,137]. Three-dimensional pose estimation
is becoming increasingly accurate using only RGB data [134]. An RGB camera can be
integrated in head-mounted virtual or augmented reality devices, allowing to detect one’s
own hand motion and simultaneously registering the surroundings. Another advantage
is the cheap hardware. Eye tracking is also possible with an RGB camera [203]. A deep
learning approach to track eye motion in RGB data could make eye tracking available to
anyone with a tablet or smartphone [204]. However, RGB cameras also bring their limita-
tions, such as the occurrence of partial or complete occlusions of body parts [135] or the
occurrence of conditions where the detection algorithms fail to detect motion (e.g., because
of intense lighting or covered skin). Furthermore, unbalanced datasets to train algorithms
result in a detection bias for different populations [205]. Despite the great potential for
motor learning research, only a few studies used RGB data so far in human movement
sciences. Cornman et al. [206] recently used pose estimation to assess finger tapping, and
pose estimation was also used on online videos to study walker synchronization [207] and
for gait analysis [208-211]. For an in-depth discussion of the advantages and limitations of
pose estimation algorithms for movement sciences, we refer to Seethapathi et al. [12].

5.2. Depth Camera

Different technological solutions (e.g., structured light, time-of-flight and coded aper-
ture) can generate a depth image as the output [212-214]. Depth images have been used for
body [215], hand [146,147,216,217] and object [218] pose estimations; simultaneous hand
and object detection [219] and for action recognition [220]. The advantages of depth images
for hand motion analysis are their robustness to change in shape, skin and size. In addition,
depth sensors can easily be integrated into head-mounted devices, allowing to register
the depth of the surroundings. A disadvantage is the susceptibility to ambient infrared
sunlight. Fewer data are available for depth compared to RGB images, but data availability
might change in the future, since depth sensors have become more frequently integrated
into smartphones. Occlusions are still possible and can result in the failure of algorithms or
inaccuracies. Most of the algorithms will need 3D models for proper 3D pose estimations,
but these models are not always available. For hand pose estimations, this is not a big
problem, since hand models can be easily generalized to different hands [8].
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5.3. Inertial Measurement Unit

An inertial measurement unit (IMU) consists of an accelerometer and gyroscope, which
measure acceleration and orientation, respectively, at one position on an object or a body.
Additionally, an IMU can contain a magnetometer that allows to measure the heading with
respect to the Earth’s magnetic field. To obtain accurate position data, sensory integration
between IMU and GPS data is necessary, since IMU position data alone suffers from large
integration drifts [221]. Inertial sensors allow to accurately detect motion, independent
of the presence of visual occlusions. Sensors are often integrated in smartphones, which
allows them to detect leg or arm motions with devices that many people already possess.
However, sensors should always be worn on the body, which could restrict or interfere
with movement, such as when a motion detection suit is too large or too small or when
data gloves cover a person’s fingertips, reducing touch information.

5.4. Sensor Fusion

Each of the different sensors to gather motion data comes with its own advantages
and limitations, which makes it hard to find the right option for an application. Therefore,
researchers began to use multiple sensors and combine the data to overcome the limitations
of the single techniques. Chen et al. [121] provided a review of papers combining RGB
video, depth sensors and inertial sensors. Another example of sensor fusion for pose
estimation is the work of Von Marcard et al. [222], who combined multi-view RGB video
with inertial measurement units to improve the performance of a video-only estimation.
They argued that, by combining very few inertial sensors (five in this case) with video data,
they can overcome the limitations of both techniques. IMUs need a lot of set-up time and
suffer from positional drift. On the other hand, the IMUs provide information where the
multi-view video often fails, like the estimation of orientations for rotation-symmetrical
limbs [222]. A similar approach was tested by Huang et al. [223]. When developing
movement training applications, researchers may want to look for more than one technique
to achieve the best results possible.

5.5. Virtual and Augmented Reality Devices

Virtual and augmented reality devices make use of sensor fusion, as they often combine
many sensors into one mobile setup, which allows to combine the advantages of the
different sensors. With virtual reality devices, the users are completely immerged in a
virtual environment, while, with augmented reality devices, interaction with the real world
remains possible, as well as with virtual objects. Both virtual reality and augmented reality
can be valuable research tools. The advantages of virtual reality are the well-controlled
experimental setup and increased ecological validity. It is possible for subjects to move
in all directions; to track a subject’s hand, head and eye motions and to provide stimuli
in relation to a subject’s position with high precision [224]. A limitation of virtual reality
is the susceptibility of subjects to motion sickness [225]. The advantages of augmented
reality are the ability to give virtual feedback in the real environment or during interactions
with physical objects and tools. This way, trainees can practice for a new task and train
the corresponding sensorimotor skills without an onsite trainer or coach [24]. It can allow
the user to focus on the task at hand without having to shift focus to an external display,
and it allows to stream video data and obtain instructions from a remote party [22]. A
potential risk is that users become reliant on the virtual feedback; therefore, it might be
useful to reduce the amount of information at specific points in the training process to
prevent this dependency. As with any stereo imaging device, prolonged use could result in
visual discomfort [226]. Future work in training with AR devices should focus on capturing
skill performances and adjust instructions accordingly. In addition, if enough data from
experts can be obtained, they could be used to develop and continuously refine an AR
training system [24].
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6. How to Transfer Motor Learning Principles to Complex Real World Environments?

In this section, we present different ways in which the technological advancements
could support the transfer of insights about motor learning to real world environments
to develop assistance systems for motor skill training. An example of such an assistance
system could be a setup in which a surgeon gets feedback from augmented reality glasses
while doing a surgery. Table 5 provides an overview of some recent existing studies that
applied machine learning algorithms and/or recent sensor technologies to motor (skill)
learning or motor behavior assessments.

Table 5. Examples of recent studies in motor (skill) assessments with methods that apply machine
learning and/or recent sensor technologies for human motion analysis.

Motor Task/Motor Learning

Year Authors Principle Integration of Motor (Skill) Assessment with . ..
2018 Butt et al. [227] Catheter insertion Virtual reality, haptics gloves

2018 Meyer et al. [228] Juggling Augmented reality; Ball and hand tracking
2019 Sharma et al. [229] Prosthesis training Augmented reality

2019 Chambers et al. [207] Human gait Pose estimation in YouTube videos

2020 Stenum et al. [210] Human gait Pose estimation (with OpenPose)

2020 Haar, van Assel, Faisal [230] Pool billard IMU motion tracking suit

2020 Bahar et al. [231] Robot-assisted needle driving Haptic feedback in virtual environment
200 eoandBilled 2] T RS T verse optimization)
2020 Harris et al. [233] Golf putting Virtual reality, motion tracker on real golf club
2020 Vanneste et al. [234] Product assembly Augmented reality

2020 Ropelato et al. [235] Ophthalmic microsurgery Augmented reality

2021 Lilija et al. [236] Precise hand motion Virtual reality

2021 Tommasino et al. [237] Ball Throwing Dimensionality reduction techniques
2021 Haar, Sundar, Faisal [238] Pool billard Embodied virtual reality

2021 Campagnoli et al. [239] Visuomotor rotation Virtual reality

2021 Zhang and Sternad [240] Ball throwing Virtual reality

We see two major approaches to trigger progression in developing assistance systems
for motor skill training. The first important approach, which the techniques discussed in
Sections 2-5 can achieve, is to scale up the motor learning principles from laboratory ex-
periments to 3D real world problems. Currently, complex motor behavior has been largely
left unexplored, since most studies are performed in well-controlled lab environments [27],
but the surgeon in our example works in a three-dimensional body, using both hands and
multiple tools. Gradually increasing the complexity of the studied motor behavior becomes
possible with improved observation and analysis techniques. We call this first approach
the bottom-up approach (Figure 7, left) since this approach starts from fundamental motor
learning principles traditionally measured in a lab environment with well-controlled experi-
mental paradigms. In this approach, the complexity is increased gradually to obtain a better
understanding of complex motor skill learning. In contrast, in the second approach, one
starts from a complex motor skill and gradually divides the motor skill into components of
decreasing complexity to implement knowledge from motor learning principles to improve
training systems, here called the top-down approach (Figure 7, right). In the bottom-up
approach, the starting points are experimental motor tasks of lower complexity, while,
in the top-down approach, the starting point is a complex real world motor task. The
definition for ‘a complex motor skill’ is still under debate [241,242], but we here describe



Sensors 2022, 22, 2481

21 of 41

‘complex motor skills” as motor tasks with an infinite number of solutions to execute them.
Due to the higher complexity of these tasks, it generally takes longer to train a complex real
world motor skill [5] (e.g., hours, weeks or months) compared to the motor task of lower
complexity in a laboratory environment. The bottom-up approach is knowledge-driven, as
it starts from a research question. The top-down approach is application-driven, as it starts
from a real world problem that requires a solution. Both approaches are useful to transfer
the knowledge from motor learning to complex everyday motor skills and, hence, close the
currently existing gap between motor learning research and real world motor skills.

Real-world environment

Real-world tasks
High complexity
Application-driven

()

Top-down
approach

Complex motor skill
Divide in
parts to
decrease

()

Sensor C

technologies

parts to
increase
complexity

Sensor C

technologies

Motor learning

principles

Bottom-up

Laboratory environment approach
Experimental paradigms

Low complexity
Knowledge-driven

Figure 7. Two approaches are proposed: the left triangle shows the bottom-up approach, starting
from motor learning principles measured with laboratory paradigms; the complexity is gradually
increased by combining the known motor learning principles. The right triangle shows the top-down
approach with a gradually decreasing complexity by dividing the complex motor skill into parts of
lower complexity.

6.1. Bottom-Up Approach: Improve Understanding of Motor Learning Principles That Are
Relevant for Motor Skill Learning

Most motor learning paradigms are confined to well-controlled laboratory tasks with
a strictly controlled number of trials, specified timing, controlled movement and accom-
panying reward for successful motion. The advantage of a controlled environment is the
ability to study fundamental motor principles, apply specific manipulations and establish
causality. A clear disadvantage is the ignorance of the complexity of the real world en-
vironment, with multiple degrees of freedom in the body movements and with multiple
spatial and temporal solutions to a single task [243]. A bigger variety of paradigms is
necessary to cover the whole range of natural real world motor learning [30]. This need for
additional behavioral studies has also been emphasized for the overall research discipline
of neuroscience and not only for the smaller subdiscipline of motor learning [244]. The
algorithms and technologies discussed in Sections 3 and 4 allow us to invent more diverse
paradigms that closer resemble the real world environment.

The challenge of real world motor learning was recently addressed in a range of studies
by Haar et al. and Campagnoli et al. [230,238,245]. The studies by Haar et al. developed
an embodied virtual reality environment that allowed natural unrestricted body motion
while, at the same time, controlling the experimental variables. The motor task was a pool
game with the performance quantified with the trial error, the angular difference between
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the ball movement direction and the desired direction. The decay of error over the trials
indicated that learning was achieved during the task. The recent study by Campagnoli
et al. investigated the effect of 3D perception on explicit and implicit motor adaptation
using a virtual reality environment [239]. Their findings suggest that explicit and implicit
learning may rely on different sources of perceptual information, but they also stressed that
more work is required to detect how depth cues influence the different learning principles.

Many insights into motor learning have been gained by dividing motor tasks into
basic components of reduced complexity (e.g., implicit, explicit learning, use-dependent
learning and reinforcement learning) [7,29], which has been a very successful approach
to better understand motor learning and should definitely be continued for fundamental
understanding. Nevertheless, we here suggest that, for the purpose of research transfer,
the direction of increased complexity should be explored as well. A good start would
be to gradually increase the motor task complexity to better match the diversity of real
world motor behavior, such as adding the third dimension to the motor task [238,239],
allowing unconstrained movement [246], investigating tool use [247,248] or increasing the
task training time [249]. Increasing the complexity can be done at many levels; here, we
propose some options (Figure 8). At several of these levels, recent developments in sensor
technology (VR: virtual reality, AR: augmented reality), in machine learning (ML) or in
artificial intelligence (AI) can create opportunities.
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Figure 8. Bottom-up approach: improve the understanding of motor learning principles that are
relevant for motor skill learning (VR: virtual reality, AR: augmented reality, ML: machine learning
and Al artificial intelligence).
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1.  Variation of task parameters

The effects of many task parameters on motor adaptation of arm reaching are unclear
so far. Overall, the early motor adaptation rate is higher with fewer targets (one vs. two vs.
four targets). The relative contribution of explicit and implicit adaptations to the overall
adaptation seems to be different depending on the number of targets, with a higher relative
contribution of implicit adaptation with fewer targets [57]. Another study reported no
effect of the number of targets on implicit adaptation (four vs. eight targets) [250]. Given
these inconsistencies, it would be useful to further investigate the effect of the number of
targets on explicit and implicit motor adaptations in future studies. Additionally, the target
location could influence implicit motor adaptation, with higher levels of adaptation for
diagonal compared to cardinal target directions [250]. The effect of target location on the
explicit strategy has not been investigated so far, but as competition exists between explicit
and implicit motor adaptations [251], the effect of the target location could be the opposite
from implicit motor adaptation.

This approach to investigate the effect of the task parameters on motor adaptation is
ongoing and should be continued for all possible task parameters: error size [250,252,253],
error consistency [254,255], feedback timing [256,257], dimensionality [239], inter-trial time,
movement speed, degrees of freedom of motion [258], reaction time [259] or continuous vs.
discrete control [260].

2. Investigate a variety of model task paradigms

A lot of our understanding of motor learning comes from an arm reaching paradigm
as the model task [7]. However, it is necessary to verify how these findings can be gen-
eralized to different movements. Besides arm reaching, many other movements can be
explored: gait [42—44], speech [45—47], rapid eye movements or saccades [48-50], slower
eye movement or smooth pursuit [51-53], finger motion [261] or the absence of movement
in postural control of the arm and fingers [262]. Additionally, paradigms that consist of a
combination of movements could be interesting, since motor skills are often a sequence or
a simultaneous execution of different actions.

3. Investigate object interaction and tool use

Important for human motor behavior is the skillful interaction with tools or tool use.
The motor system generates separate memories for different control points on an object
if they are linked to different dynamics [247], even when the task implicitly defines these
control points [248]. This study suggests that skillful interaction with an object or tool
requires to consider the different dynamics of each part of the object. For accurate and
calibrated motion, a human should thus not only have an internal model that represents its
own body dynamics but also (internal) models that represent the dynamics of the objects
with which the human interacts [39]. As most skilled motor tasks involve objects, motor
skill learning will, to a large extent, also involve learning to control the dynamics of these
objects. The visual appearance of these objects can act as cues providing information about
the dynamics [263-265], and the same holds for tactile and kinesthetic information that can
act as haptic cues for object dynamics [265]. As briefly touched upon during the overview
of RGB and depth sensors in Section 4, besides human action recognition and human pose
estimation, objects can also be detected in an image [13,266] and their poses estimated [8]
or predicted [267]. Together with studying the human motor behavior, one can register the
features of the objects with machine learning algorithms to come to a better understanding
of the skillful interactions with these objects.

4.  Investigate interaction of motor adaptation components

By taking the approach of dissociating motor adaptation in individual components,
these components became better characterized. Nevertheless, it is useful to combine the
components again to investigate the interactions between them. Depending on the experi-
mental paradigm and the amount of each component, the balance between the different
components fluctuates, as has been shown for explicit and implicit adaptation [268]. In a
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continuous reporting condition, verbal reporting and exclusion resulted in similar levels of
assessed implicit and explicit adaptation, while, in the intermittent reporting group, verbal
reporting resulted in more explicit and less implicit adaptation than in exclusion [268].
In addition, implicit and explicit adaptation are in competition in some contexts, with
increases in the explicit system reducing the learning in the implicit system [251]. Besides
implicit and explicit adaptation, several other components are known, like reinforcement
learning or use-dependent learning [7,29]. As well as dissecting these components in
additional subcomponents, for instance, implicit adaptation is driven not only by sensory
prediction errors but also by target errors [269]. Upon discovering different components
and subcomponents, the interactions between all of these can be determined to better
understand complex environments where isolated components are scarce.

5. Investigate how different sensory feedback can modulate motor learning

In real world motor tasks, performance feedback can be given in diverse sensory
modalities (for review, Sigrist et al. [270]): visual, auditory, haptic and multimodal. Visual
information is the most straightforward feedback modality to induce motor learning. When
learning a new motor skill, a more experienced person often shows the pupil how to per-
form the task [271,272]. This visual instruction serves as a reference of ideal task execution
that the pupil can imitate. Besides visual instruction by an expert, pupils can improve their
performance by observing each other [273], or visual feedback of one’s own motion can
guide the learning process. Not surprisingly, several studies have investigated how visual
feedback modulates motor adaptation. Tsay et al. [274] showed that visual uncertainty
attenuated implicit motor adaptation, but it only did this for a smaller perturbation size.
The visual uncertainty was simulated as a cloud of dots with a two-dimensional isotropic
Gaussian distribution with a standard deviation of 10 degrees. However, in the small
perturbation size, some of the dots induced errors of the opposite perturbation sign. In
addition, a lower visual error consistency with opposite error signs also attenuated the level
of the implicit component by downregulating the error sensitivity [255]. It remains thus un-
clear whether these error sign changes could have induced the differences between smaller
and larger perturbations for attenuated implicit adaptation with higher visual uncertainty.

In most circumstances, visual feedback is much more reliable than proprioceptive
feedback. In the dark or when vision is occluded, this changes. The effect of proprioception
on adaptation is less well-investigated, presumably because of two reasons: (1) it is more
difficult to control proprioceptive stimuli, and thus, causally investigating their effect on
motor adaptation is harder as well, and (2) proprioceptive accuracy is lower than visual
accuracy, and hence, the effects on motor adaptation are likely smaller. Nevertheless,
several studies have investigated the effect of proprioceptive feedback on motor learning.
A recent study [275] indicated that individual differences in proprioception could predict
the extent of implicit motor adaptation, whereby increasing the variability and negative
shift in proprioception, which was associated with higher levels of implicit motor adap-
tation. Future works should confirm the causality of this relation by manipulating the
proprioceptive acuity experimentally, e.g., by perturbing the proprioception [276,277]. In
addition, it could be of interest to simultaneously perturb the visual acuity and assess an
individual’s proprioceptive acuity. By simultaneously assessing both sensory modalities, a
better mapping between an individual’s implicit adaptation characteristics and sensory
acuities can potentially be achieved. It remains to be investigated further how different
sensory modalities interact during motor learning.

6. Investigate how different task instructions can modulate motor learning

The instructions in laboratory research are often well-standardized. For motor adap-
tation paradigms, participants are often instructed ‘to hit the target with the cursor by
making a fast arm movement’ [54,55,278], while, in sequence learning, they are instructed
‘to type the sequence as fast and as accurately as possible” [279-281]. In real world motor
behaviors, instructions can be virtually anything, depending on the motor task. For more
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complex tasks, longer instructions are often required. For many motor tasks, instructions
often specify how to manipulate certain tools or body parts.

7. Investigate how (sub)task performance feedback can modulate motor learning

In motor adaptation paradigms, the performance feedback is often given on a trial-
by-trial basis. It could be end point feedback showing the accuracy of the reaching motion
to the target or online feedback showing the reaching trajectory to the target [257,282].
Many other variations of feedback have been used in motor adaptation [261,283,284],
and they seem to impact motor adaptation differently. It would also be interesting to
investigate how performance feedback for different subtasks of a motor skill can impact
the learning process.

8.  Investigate how reinforcement can modulate motor learning

Reward and punishment differentially influence motor learning. Chen et al. [68]
reviewed and discussed the effect of reward and punishment on motor skill learning. They
concluded that novel laboratory-based motor skill paradigms should be developed to
better assess the impact of reward and punishment on motor skill learning. In real world
motor skill coaching, some practical guidelines for coaches exist: Reward and punishment
should follow a ratio of about 80 to 20. In the initial stage of learning, continuous reward
is beneficial, while, later in learning, less frequent, or partial, rewards would be better.
Rewards should also be provided for improving sub-actions, called shaping. Finally,
extrinsic rewards (like money or awards) can have different impacts on intrinsic motivations
(i.e., the behavior itself is considered rewarding) [285-287].

Laboratory-based motor learning experiments have resulted in the following insights:
punishment is leading to faster learning in motor adaptation, whereas reward is causing
greater memory retention [62]. Reward is enhancing retention in a force tracking task [288].
Punishment resulted in faster reaction times in a serial reaction time task but impaired
performance in a force tracking task [289]. Neither reward nor punishment improved
memory retention in either the serial reaction time task or the force tracking task [289].
Finally, a stochastic reward benefited motor skill learning, boosting online gains and
retention [290] potentially related to the positive effect of partial reward described in motor
skill coaching.

In our opinion, a great potential exists for modern motion analysis algorithms and
sensors to close the gap between the insights from (sports) coaching and laboratory-based
motor learning experiments regarding the effect of reinforcement, as well as for improving
the knowledge regarding the effect of instructions and performance feedback. For instance,
virtual reality and augmented reality are great tools to provide and register standardized
instructions, feedback and/or reinforcement; machine learning algorithms can potentially
tailor feedback depending on the skill level and different motion sensor technologies can
track a performance.

9.  Create standardized collaborative database of motor learning experiments

Motor learning studies are increasingly sharing code and data online. A platform
that refers to shared data from different studies is still missing. If data were stored in
a predefined structure on such a platform, this could help generate a new hypothesis
or testing models on existing data. This platform could also be used to store additional
information regarding individual studies (e.g., hardware used, task instructions, reward
specifications, target configuration, perturbation schedule and participant’s age). It could
also help to get a better overview of the experiments conducted as the number of studies
and complexity of the paradigms increases.

Many other aspects were left untouched in the scale-up levels presented above: repeti-
tion, attention, motivation, reaction times, eye gaze and coordination. The steps are by no
means exhaustive and should simply be considered as a good starting point. For all these
scale-up levels, recent developments in algorithms and hardware can play important roles
to get closer to more complex and realistic motor tasks.
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6.2. Top-Down Approach: Develop Al-Guided Assistance System for Motor Skill Training

In the top-down approach (Figure 9), we start from the motor skill and expert execu-
tions of that skill. We then apply machine learning algorithms and sensor technologies
to train novices in that skill. This can be done by dividing the skill into sub-actions and
give feedback on these smaller tasks to the novice. Feedback can be generated by machine
learning algorithms that compare motions of experts and novices. An interesting question
is whether we can target motor learning principles such as motor sequence learning or
motor adaptation with the top-down approach. This could not only improve the train-
ing process of novices but could also develop a better understanding of motor learning
principles applied in real world scenarios. In this context we already want to highlight
that a prominent work in this direction is from the Nisky Lab, with a focus on surgical
motor skills [231,291-293]. In the following, we will present an eight-step procedure that
researchers can follow when applying the top-down approach (Figure 9). At several of these
levels, recent developments in sensor technology (VR: virtual reality and AR: augmented
reality), in machine learning (ML) or in artificial intelligence (Al) can create opportunities.
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Figure 9. Top-down approach: 8 steps for making progress in developing an Al-guided assistance

system for motor skills training (VR: virtual reality, AR: augmented reality, ML: machine learning
and ALl artificial intelligence) (e.g., A: expert, B: novice).

1.  Define concrete task/use—case description

In the top-down approach, one starts with a particular skill of interest. This is usually
a complex motor skill performed in real world scenarios. Recent examples are a throwing
task [237] or a surgical task [231,292,293]. In the throwing study [237], 20 nonexpert right-
handed participants performed overarm throws, starting from a fixed initial position.
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Participants were instructed to hit one of four circular targets positioned vertically at a 6-m
distance; each target had a diameter of 40 cm. This study characterized the performance-
related features of the high-dimensional motor task by a small set of indicators. These
indicators could be used to distinguish the most skilled individuals and identify different
strategies.

In Nisky et al. [292], the participants had to manipulate a surgical robot (da Vinci Si
surgical system) using a custom-built grip fixture with their right hand. The task instruction
was to move a virtual cursor dot from a starting position to a target as accurately and as
quickly as possible. They developed metrics based on theories of motor control that allowed
to assess the task performance for this very simple motion and detect improvements with
practice blocks. This study showed how approaches from the field of motor control
could be used to analyze motor behavior in a biomedically relevant application. In a
perspective paper [293], Jarc and Nisky described how robot-assisted surgery could be
used as an experimental platform to study complex motor skills in real world contexts.
They argued that this platform would be beneficial since (1) both basic and complex tasks
can be studied, (2) it can be extended to real world applications and (3) users with different
levels of expertise exist for it. In a recent study [231], the performances of the participants
was evaluated for a surgical needle driving task through artificial tissue under different
haptic feedback conditions. They developed new metrics to evaluate the surgical needle
driving task.

A third example is the steering and control of a miniaturized soft magnetic gripper
with haptic assistance [294]. A micro-teleoperation system with haptic assistance for
intuitive steering and control of a gripper in 2D space was developed. Two experiments
with 26 human subjects showed that the system was viable, with significant improvements
in the performance elicited by the haptic stimuli. The first task consisted of steering the soft
gripper in a remote environment along a predetermined trajectory as fast and precisely as
possible. The second task consisted of picking up a polystyrene microbead and dropping it
off at a predetermined location while avoiding an obstacle along the path.

These examples (i.e., throwing, surgical robot operation and miniature gripping)
show that an important first step in the top-down approach is a detailed description of
the task or subtask of interest, and the construction of the metrics that can evaluate the
task performance.

2. Make choice for sensors and collect novice/expert data

Selecting the right sensory system for a specific application can be a difficult task. First,
it is important to keep the intended application in mind: What type of motion is being
investigated (e.g., full-body, fine-scale hand or eye motion or large forces)? In which range
should the motion be detected? Which detection accuracy is desired? Is the application
intended for in- or outdoor use? Is the motion of a single person being investigated or are
different people interacting simultaneously, or is there any interaction with objects, tools
or with other digital devices? Should the users be provided with feedback or instructions,
e.g., depending on their motion accuracy? Secondly, other parameters can constrain their
choice: What is the available budget? Is the environment limiting the sensor choice (e.g.,
noisy, dusty or wet)? Do they prefer a fast setup time, fast calibration, easy usage, good
user support, long battery life or low energy consumption? We did not intend to make
a complete overview here to effectively select a specific, or a combination of, sensors or
devices. Instead, we want to show that today’s possibilities are enormous, that they will
continue to grow and that multiple solutions are possible. However, depending on the
requirements for the application, the sensor selection can be constrained. In Section 4, we
listed some sensors with their advantages and limitations, and this list can help to get
started with the task of sensor selection.

3.  Divide motor behavior in separate actions to study motor sequence learning

Motor sequence learning is often studied with a simple finger tapping paradigm
where participants have to produce short sequences, often fewer than eight elements [31].
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As indicated in the previous section, it would be beneficial to study sequence learning in
more complex realistic behavior. This would require new techniques to assess the learning
curve. Similarly, like in motor sequence learning studies in the laboratory, we could divide
complex motor behavior into separate action steps.

Action recognition and pose estimation are useful techniques to divide this overall
task into different meaningful action steps. For instance, action recognition has been used
in manufacturing an assembly by Al-Amin et al. [26]. Their assembly example consisted
of seven actions that could be recognized in multimodal sensor data. As the motor skill
performance increases, the time to execute every single action is likely to decrease, since
the time to execute a skilled action is often lower for experts than for novices [232] and so
would be the overall execution time for a skilled task. We think this is like motor sequence
learning, where a sequence of actions is executed faster with extended practice.

In addition, after separating the actions, other techniques such as pose estimation,
full body motion tracking and eye tracking can be used to study in detail how individual
actions become more efficient while learning a new motor skill. Moreover, individual
actions likely consist of individual sub-actions that are optimized over time.

4.  Register performance error to study error-based learning

Most motor learning research is performed in well-controlled lab environments, with
very clear task instructions, separation of the task in different trials and two-dimensional
movements. All these measures essentially reduce the variability to a minimum. This is in
stark contrast with real world environments, where multiple spatial and temporal solutions
exist to succeed in a single task [242,243]. Imagine two medical doctors performing the
same type of surgery. They use a specific equipment set, use a specific motion pattern and
work with a certain speed and applied force. Depending on the medical doctor, the entire
procedure can be very different, although both surgeries might have a similar outcome.
They might use different surgical techniques, which could be reflected in different eye
motions and focus, or differences in hand and arm motions, either intended or corrective.
Altogether, very different spatial and temporal solutions exist to solve the same task.

This redundancy, i.e., multiple solutions for the same task, makes error tracking not
straightforward in real world motor tasks. A step-by-step detailed comparison of motion
seems to be an unsolvable problem, given the many degrees of freedom in unconstrained
variables. A good solution could be to also characterize the variations of these additional
environment variables (e.g., type of equipment used and position and orientation of the
tools), together with the movement. Given the large variability in solution spaces, a one-to-
one detailed motion comparison between surgeons is not very insightful. Instead, group
comparisons or individual-to-group comparisons make more sense after collecting larger
datasets with multiple surgeons.

In motor learning research, a task performance error is defined as the mismatch
between the task goal and the actual performance [253]. A task performance error can
also be tracked in real world tasks, but often, a range of solutions exists. Instead of a
single end task result, in a more complex task, one could also define several intermediate
steps and register the task performance error for all these intermediate steps. These steps
could be the separate actions that we discussed in the previous section. In motor adaption,
the performance error is defined in degrees or applied forces, but when defining task
performance errors for real world tasks, a variety of metrics will be necessary to track
the performance during intermediate steps. When performing surgery, task performance
errors might be a success or failure of the final surgical procedure. In music, it could be a
difference in pitch or intensity. In dance, accuracy in timing, fluency of motion or posture.
In sports, reaction times, speed of motion, posture or eye focus.

5. Assess speed-accuracy trade-offs of motor actions

In most behavioral tasks, a trade-off exists between speed and accuracy: the higher
the speed, the lower the accuracy [295]. In most laboratory experiments, speed—accuracy
trade-offs can be controlled to some extent by controlling either the speed or accuracy [296].
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In motor learning research, this is often achieved by constraining the speed of movement
to a minimum speed. If the movement speed is below the minimum desired speed, then
no points can be obtained for reaching a target accurately [54,278,297]. If sampling the
performances in different movement speeds, a complete speed-accuracy trade-off function
can be derived [298]. A shift in this speed-accuracy trade-off function after training
reflects an improved performance in motor skills [75]. In addition, training-induced
accuracy improvements at the same movement speed also reflect a beneficial shift in the
speed-accuracy trade-off. Together, it shows the importance of registering both speed and
accuracy to assess performance improvements for intermediate motor actions. Therefore,
for a quantitative comparison between subjects, it is essential to either constrain the speed
or accuracy.

6. Compare behavior between experts and novices during skilled tasks

Nisky et al. [292] compared experienced robotic surgeons and novice users performing
movements during the teleoperation of a da Vinci Si Surgical system and freehand (no
manipulator). They showed that novices partially learned to adapt their movements to
the dynamics of the robot manipulator, while experienced surgeons might already have
an internal representation of the robot’s manipulator dynamics. This paper was the start
of a range of studies by Nisky investigating the surgical motor skills for novices and
expert surgeons. Recently, an optimal control theoretical framework was used to analyze
differences in the task performances between novices and experts in a fine bimanual task
(watchmaking) [232]. Coordination patterns between the hands were evaluated using
three kinematic metrics (manipulability, task compatibility and comfort), and inverse
optimization was used to infer optimal criteria. The differences in coordination patterns
between novices and experts are interpreted as an alternation in the central nervous
system’s optimal criteria accompanied by the learning process. The comparison of experts’
and novices’ behaviors during the execution of skilled motor tasks will help us to better
understand how humans perform and learn skilled activities. In addition, comparison of
the motions between groups [299] or with a desired reference motion [16] will allow to
evaluate the motion and to give automatic and/or personalized instructions on how to
improve the performance.

Finally, in recent years, human action evaluations have emerged as another field
in human activity analysis with machine learning/artificial intelligence algorithms [300].
The aim of this field is to design computational models and evaluation approaches for
automatically assessing the quality of human actions. It is thus not merely the recognition
of actions or an estimation of human poses but, particularly, a quality assessment of how
those actions were performed. In these novel algorithms, networks are often trained with
experts’ ratings to estimate the skill level, which requires domain experts to provide the
ground truth annotations.

7. Train novices by bringing behavior closer to expert behavior

Data collection from experts and novices for a motor skill could result in a classification
of both groups based on movement differences [301,302]. This brings up the question of
whether it would be possible to train the novices by giving them instructions that can
reduce these differences. Patrona et al. [16] provided an interesting approach on how to
train novices to correct their motor behaviors. They analyzed motion capture data by
first detecting specific actions and comparing these actions to a reference motion. This
required spatiotemporal alignment between the detected and reference motions. For the
spatial alignment, they first normalized the bone length to compensate for body structure
differences; next, they spatially aligned the data by correcting for the rotational offset
of torsos. After this, the motion sequence was temporally aligned using multivariate
dynamic time warping. Finally, the 3D positions of eight limb joints (i.e., elbows, wrists,
knees and ankles) were compared with the reference, providing joint error statistics. These
error statistics were fed into a fuzzy logic engine to produce semantic feedback, providing
information on how to improve the action performance for the most erroneous joints.
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In addition, performance evaluations in sports using wearable inertial sensors were
enabled by a wide variety of criteria, such as technique analysis, spatiotemporal analysis,
body and object orientation and action classification. Monitoring these aspects can poten-
tially enhance training designs by the optimization of training stimuli and identification
of training needs and opportunities [20]. We argue here that motor skills in general can
benefit from evaluations based on such performance criteria, quantified with wearable
inertial sensors but also other types of sensors (Section 4). Experts in a specific motor skill
will allow to set desired or reference performance criteria and these criteria could help to
establish targeted training of a motor skill.

Given the improvements in vison-based automatic skill assessment [300] and in perfor-
mance evaluations with wearable sensors [20], automatic skill training or feedback systems
are becoming increasingly feasible to develop. Nevertheless, new solutions are required
to generate efficient and understandable instructions automatically; perhaps, methods
applying the principles of explainable artificial intelligence can provide an answer [303].

8.  Create an open research culture for real world motor behavior

When tracking motor behavior in more natural and complex conditions, datasets
might become more diverse. Given this diversity, and for many other reasons, it is recom-
mended for researchers to adhere to an open research culture by sharing their anonymized
data and codes on repositories. Additionally, the preregistration of hypotheses and main
analyses will be useful to better distinguish hypothesis-testing and hypothesis-generating
research [304]. In addition, an online platform that provides a structured overview of
the available studies with shared data and codes could be helpful to boost research pro-
gression. It could help to get a quick overview of the conducted experiments, to evaluate
new analysis algorithms, to pretest hypotheses, to help design future experiments and
to increase the data size for a specific motor task or a specific participant group. This
overview platform could also list details of the experimental methods and materials (e.g.,
hardware, participants, instructions, task description, reward, assessed and controlled
movement parameters).

7. Conclusions

The gap between motor learning in the laboratory and motor skills in the real world
remains big. In this paper, after introducing a selection of concepts in motor learning,
human motion analysis algorithms and sensor technologies, we suggested a two-fold
approach to bridge this gap. The first is a bottom-up approach, starting from the motor
learning principles and moving towards motor skill learning. The second is a top-down
approach, starting from the motor skill of interest and dividing it into less complex com-
ponents. For the bottom-up approach, we described several steps to gradually expand
the existing lab experiments further to approach closer to more complex motor learning,
where the error landscape is far more diverse and where the number of relevant variables
is higher. A combination of human motion analysis algorithms and recent technological
hardware developments allows to scale up the current motor learning principles to real
world applications. In the top-down approach, we described different steps that could be
useful to improve the training of motor skills. In these steps, sensors and machine learning
algorithms can play a central role as well. Besides the top-down/bottom-up approaches,
other developments could help advance the intended research transfer to real world scenar-
ios. For instance, some questions that come to our minds: Are the current machine learning
algorithms sufficient to support motor skill training? Can we design new machine learning
algorithms that are better-suited to translate the detected differences between novices and
experts into understandable and efficient training instructions? Will explainable artificial
intelligence [305] provide these new algorithms, as its purpose is to make Al behavior more
understandable to humans by providing explanations? Despite these unsolved questions,
we foresee a bright future for the expansion of knowledge about motor skill learning and
for the development of applications to train motor skills with improved efficiency of the
training process.
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