A Java-based Framework for Case Management
Applications

André Zensen
andre.zensen@fh-bielefeld.de
and Jochen M. Kiister
jochen.kuester@fh-bielefeld.de

Bielefeld University of Applied Sciences
Bielefeld, Germany

Abstract. Case Management aims to support knowledge-intensive, flexible and
non-routine processes. While modeling of Case Management applications is sup-
ported by the notation Case Management and Model Notation, the design and
implementation of such applications can be realized using one of the currently
available heavy-weight tool suites. In situations where such heavy-weight tool
suites cannot be applied, a case management application must be implemented
step by step from scratch. In this paper, we propose a framework to systematically
create light-weight Case Management applications with CMMN execution seman-
tics. Reusable elements are assembled into case blueprints and executed together
with individual implementations. Case Management applications can be realized
with less effort compared to a step by step approach. Developers can focus on
business logic and supporting graphical user interfaces. As a proof of concept, we
use our framework to implement part of a more complex CMMN case study.

1 Introduction

Knowledge work and knowledge-intensive processes gain importance especially in
industrialized and information societies. While routine work and known procedures
can be supported and automated by IT systems such as work flow systems, this is not
necessarily the case for flexible and unstructured work. Yet this kind of work is more
and more needed to adapt to new situations. Case Management (CM) aims to support
knowledge-intensive, flexible and non-routine processes. The Case Management and
Model Notation (CMMN) aims to become a standard notation for CM.

After requirements for a Case Management solution have been specified and a
CMMN model has been created, one approach to create a CM application is to use a
commercially available proprietary solution, such as by ISIS Papyrus [22] or IBM [15].
However, these often do not use a notation standard and come with the disadvantages
of high costs and vendor lock-in. Alternatively, a complex BPMN engine with partial
CMMN functionality could be used, such as Camunda [2], with the disadvantage of
only partial CMMN support and part (the BPMN part) of the engine being not used
at all. Another different approach is to create a CM application from scratch, e.g. by
programming a solution directly in Java. However, due to the complexity of the CMMN
semantics, such an approach is also costly and time consuming.

In this paper, we present a framework for creating light-weight applications based on
CMMN. The idea is to enable the systematic realisation of case management applications
based on CMMN models. The framework provides reusable building blocks based on a
simplified CMMN structure. The framework itself makes use of proven architectural and
design patterns, is flexible and adaptable and not restricted to a specific domain. A case
management application can then be assembled by reusing building blocks of the frame-
work for reoccurring functionality of any CM application and complementing them with
additional components, such as specific UI components. Using the current framework
prototype, an example application based on a case study has been implemented as a
proof of concept.

The paper is structured as follows: Section 2 introduces concepts of CM and addresses
problems of traditional and activity-centric process management. It also introduces
CMMN elements and its execution semantics. Requirements for the framework are
derived in Section 3. In Section 4 the overall architecture of the framework is introduced.
Section 5 describes how our framework can be used to implement CM applications.
Section 6 reports on an implementation of a case study. Related work is discussed in
Section 7, before a conclusion and outlook on future research is given in Section 8.

2 Concepts and Modeling of Case Management Processes

Activity-centric process management with tasks along pre-defined paths and structures
has its limits with regards to non-predetermined paths and high degrees of flexibility.
Modeling such flexibility with traditional tools quickly leads to cluttered models [25,
26].

CM processes are handled as often long lasting cases, which are coordinated and
handled by case workers in a collaborative fashion. The goal of a case is usually known,
while the path leading there varies or cannot be pre-determined at all [23].

CM organizes activities around a case file, such as those of a legal or medical setting
[3]. The roots of case management can be found in patient care: Depending on a patient’s
needs and state of health, different treatments and services are chosen for the patient
to reach the overarching goal of improving the patient’s health. How exactly this goal
is achieved might not be known beforehand, e.g. a method of treatment might not be
available or applicable to the case and unplanned treatments might become necessary at
a later point [14].

Tasks are performed based on data and generate it. Which tasks are to be performed
or necessary data to be collected is decided by the case workers. Task states change, e.g.
information becomes available or updated and this leads to different decisions, tasks
and (intermediate) goals to be achieved. Paths are thus not pre-determined from the
beginning, but evolve as the case progresses over time. This approach is not restricted to
healthcare domains: highly flexible processes or parts thereof can also be handled as a
case across very different domains such as production [23, 26].

Case management aims to address four criteria found to be problematic in traditional
work flow management systems and process management [25]:

Context tunnelling is avoided by making information available to all case workers and
not restricting it to single tasks currently worked on.

Flexible paths evolve over time dependent on available information and states instead
of being restricted by pre-determined paths and previously absolved tasks.

Division of labour is not restricted to certain authorised execute roles, but shared among
participating case workers who have different roles.

Data and information can be added and edited regardless of specific activities and is
thus not bound to a temporal order of tasks.

At least three approaches to case management have emerged, mainly differing in
their degree of flexibility [7]: Adaptive Case Management (ACM) [10, 19, 9], Dynamic
Case Management (DCM)[21] and Production Case Management (PCM) [5]. While
ACM is the most flexible and aims to enable case workers to build their case on the fly
as a ”‘do it yourself”’ during execution, DCM enables case workers to adapt and expand
on existing case structures which were set up before execution. The least flexible of the
three approaches is PCM. It can be seen as a best of breed of previously enacted ACM or
DCM cases, using templates of tested and proven flexible structures and partially known
paths. These are then combined into a case structure before execution.

The Case Model and Management Notation (CMMN) 1.1 [4] is a declarative
approach to process and case modeling. Its specification regards case management as a
”‘proceeding that involves actions taken regarding a subject in a particular situation to
achieve a desired outcome™’ . It can be regarded as a modeling notation closest to the
characteristics of the DCM and PCM approaches, but also captures ACM characteristics
[6]. Its structure and execution semantics are heavily based on the Guard Stage Milestone
approach (GSM) [8] and the case handling paradigm described in [25].

/ Component Release %\ ’_

Create Technical Specifications {ocour] ©

8

Create . foreate] | . Specifications O
Specifications created Cancel

Specifications

=

/_Create Technical Specifications \

L2

fa}

lete] A—
[c? C“p_e_e] Review
Specifications

[complete] :

[update]

 Assemble
Specifcations

" Revise
Specifications

H

Provide parent
‘case with data

[update] I

[complete] l

Fig. 1. Simple Component Release Example CMMN Model

Fig. 1 shows two (simplified) CMMN models based on a case study conducted
in [26]. Like its ‘sibling-notation’, the Business Process and Management Notation
(BPMN) [1], CMMN offers a formalised graphical notation with defined execution

semantics for its elements as well as an underlying specific markup language. The shown
models express the high flexibility provided by CMMN with its decorators and sentry
concept controlling the work flow. The top case is started by case workers, who can also
trigger the EventListener Cancel to terminate the parent case. The required CaseTask
Create Specifications in Stage Create Technical Specifications starts the bottom case
Create Technical Specifications. Both cases automatically complete once all required
elements are completed (signified by the exclamation mark at the bottom of HumanTask
Assemble Specifications).

The repetition decorators on HumanTasks Review Specifications and Revise Spec-
ifications) in the bottom case are used to model a loop structure. They evaluate a
boolean Property of CaseFileltem Specifications which expresses whether or not the
specifications have been approved or need to be revised and reviewed again.

Once the specifications are assembled, either in the context of work on the Human-
Task or by other means, one of the EntrySentries on HumanTask Review Specifications
is satisfied and transitions into an active state.

Apart from other Sentries observing state transitions of other elements and data in
order to activate an element they are attached to, an IfPart controls entry to ProcessTask
Provide parent case with data. Once the specifications are updated and have been
approved, the ProcessTask is used to transfer data to the CaseFileltem of the parent case.

Then the CaseFileltem of the parent case undergoes its create transition, the Entry-
Sentry on Milestone Specifications created is satisfied and the Milestone occurs, leading
to a completion of the parent case.

The next chapter discusses requirements to build CM applications to support such
cases.

3 Requirements for a Light-Weight Case Management
Framework

CM applications can be characterized as distributed applications for collaborative work
on long running cases. The application enables tasks depending on the overall context,
data and state of a case instance. Case workers view and manipulate data to drive the
case.

Requirements can be derived from CM characteristics [3, 10] and our project work
on component release processes as cases [26]. The requirements can be divided into base
(1-6), CMMN specific (7-9) and those addressing problems of traditional process man-
agement (10-13). The list is not all-encompassing, but focus on minimum requirements
for our framework to support light-weight, CMMN based CM applications.

Base requirements of the framework cover characteristics of CM:

REQ-1 Offer a structured approach for implementing CM applications. The framework
needs to enable developers to implement CM applications in a systematic fashion.
REQ-2 Remain light-weight. Vendor-specific technology should be avoided, e.g. specific
application server and database management system. Instead open standards should be
used.

REQ-3 Support case workers with graphical user interfaces. Case workers need to view
and edit data, often based on unstructured documents.

REQ-4 Support multiple case workers with different roles. A role system is required to
restrict access to sensitive functions.

REQ-5 Provide access for external systems. Web-services are required for case workers
accessing an application via web browsers and for external systems performing auto-
mated tasks, e.g. for call backs upon finishing the task.

REQ-6 Support long running case instances. A persistence mechanism is required to
store and retrieve case instances which can last up to several years.

CMMN-specific requirements encompass building blocks and their behaviour:

REQ-7 Provide foundational building blocks for a CM application. The framework
should provide classes representing CMMN elements, such as Stage, HumanTask and
ProcessTask, in order to build case structures.

REQ-8 Capture CMMN execution semantics and behaviour. A common understanding
of how the case instances behave needs to be established by basing behaviour of building
blocks on the CMMN specification of execution semantics including those of decorators.
REQ-9 Support the sentry concept. Central to dynamic flows in CMMN are Sentries.
The framework needs to support these to link elements together in order to influence
states of elements, the availability and necessity of tasks to help guide case workers and
to open possible pathways depending on element states and data values.

The following requirements address four problem areas of traditional process man-
agement, such as context tunnelling, rigid roles and path flexibility (see Sec. 2):
REQ-10 Avoid context tunnelling. All case workers should be able to access all informa-
tion of a case instance to make better decisions.

REQ-11 Enable flexible paths. CMMN structures and execution semantics enable highly
flexible and context dependent paths. Milestones further aid to focus on achieving a goal
and what can be done instead of rigid paths focusing on what should be done.

REQ-12 Enable flexible division of labour. A simple role system should enable case
workers to choose and work on tasks as well as trigger events they deem necessary, going
beyond a restricted execute role.

REQ-13 Make access to data flexible. Case workers should be able to view and edit data
regardless of current tasks.

How these requirements are supported and fulfilled by the framework and its architecture
is described in the next chapter.

4 Architecture of the Framework

In this section we present our framework architecture and reference how it fulfills the
requirements of the previous chapter. The architecture is viewed from two perspectives.
A high-level perspective shows the structure of the framework itself and how it is
embedded in an application server. A design-level view shows a domain model covering
classes representing CMMN elements used to build case models. Also discussed are
basic services provided and used by the framework.

Currently, planning elements (such as classes PlanltemDefinition or PlanFragment)
are not supported by the framework and have to be transformed into elements making
use of available elements (e.g. turning a discretionary item into a manually started item).

4.1 A CM Application built with the Framework

JEE 7 Application Server

Case Management Application

{ Webclient/Browser

(e.g. Angular) Java Web Frontend (e.g. JSP)
3

Custom User Interfaces

REST-Interfaces

(External Systems Case Blueprints and Instances | 3

Persistence (JPA)

Case Management Core

Case
Instances

Fig. 2. Layers of the Application in the JEE Server Environment

The components of a CM application built with the framework is shown in Fig. 2.
The application is run in a JEE7 application server and consists of five central layers
(1-5). Access to the application is provided either directly via an integrated Java-based
frontend framework or via Representational State Transfer (REST) interfaces (6). Both
use stateless services provided by the framework (2). The services are described in
Sec. 4.3.

External systems can interact with the application the same way as web clients,
i.e. via the REST interfaces provided. These are a common approach to realize access
to required web-services. The basic architecture fulfills REQ-1. These and additional
components are described in this section.

The standard [20] is used to implement the framework. It fulfills REQ-2 by enabling
portability among application servers and avoiding vendor-specific annotations. Further-
more, JEE7-conform application server and database management system supported
by JPA can be used to run CM applications built with the framework, avoiding vendor
lock-in.

The different components of the layered structure cover almost all requirements:

1. Custom User Interfaces grant case workers access to the application and include
overviews of case instances, views for current tasks and data. Interfaces use services
(2) to interact with the application. Together with these, REQ-3 and 4 are fulfilled

by providing graphical user interfaces to case workers to access case information
and data.

2. Case Management Services provide functions for central elements and access to
case blueprints and instances (3). Using the services, REQ-10, 12 and 13 are fulfilled
by providing access to instance data and a selection of available tasks to suitable
roles.

3. Case Blueprints and Instances build on the core classes and individual implementa-
tions (4), fulfilling REQ-7 by providing case instance structures with CMMN based
building blocks.

4. Case Specific Implementations include reusable custom class specialisations and
implementations generated during runtime, e.g. for logic of ProcessTask classes or
Rules for decorators. Context for the reusable components is provided by referenced
element instances. These fulfill REQ-8 and 11 by implementing behaviour based on
CMMN execution semantics.

5. Case Management Core elements are used by all other layers. Core classes capture
the CMMN execution semantics, which fulfills REQ-1 and 7 by providing a system-
atic base structure. Requirement 4 is fulfilled by enabling associations of roles to
tasks. Like the previous item, the core also fulfill REQ-8, 9 and 11.

6. The REST interfaces build on internal services, fulfilling requirement 5 by providing
acccess to the CM application for external clients and systems.

7. Persistence is based on JPA. Persistence contexts are used by the stateless services
of (2). They cover Create, Update and Delete (CRUD) operations, e.g. to persist
case blueprints and to retrieve and manipulate resulting instances in their context.
Together with the persistent storage used to persist and retrieve case instances, this
component fulfills requirement 9. Data storage has to be compatible with JPA.

4.2 Main Building Blocks for a CM Application

childElements ©..*

Milestone contains

parentstage

EventListener CaseModel

Fig. 3. Base CM Elements

This section highlights the class models of the previously discussed layers Case
Specific Implementations (4) (light green) and Case Management Core (5) (purple).

Discussed are the Element, role, data and Sentry structures provided by the framework
and how they are connected to each other. These structures constitute the layer Case
Blueprints and Instances (3).

Fig. 3 shows classes representing CMMN elements. Central is the abstract class
Element from which specialisations inherit base attributes. These include an id for
persistence, the current state and cmld as a CM-related identifier. The CaseModel
reference caseRef provides context to case instances and can be used in queries.

Internally, factory methods are used to instantiate custom implementations of layer
(4) during runtime. The correct context is provided by the reference to Elements and
CaseModels.

Classes CaseModel and Stage serve as containers for child elements like Task,
MileStone and EventListener. Specialisation of abstract class Task further include Pro-
cessTask and CaseTask. Both are associated with abstract classes used for case specific
implementations located in layer (4).

ProcessImplementations can be used to execute algorithms, e.g. to send an e-mail
or communicate with external systems such as a BPM platform, while CaseTasklm-
plementation is used to start and as a link to a nested sub-case. For this a method is
overridden.

Where permitted as per CMMN specification, Elements can be associated with Rules
representing CMMN decorators. Specialisations are shown in Fig. 5. Fig. 4 shows a
caseadmins 0..*

CaseWorker [
caseWorkers 0..°

-
T

-a claims

claimant

tasklist 0..*

caseRole 0%

socessible to e caseRaoles

caseRole

Fig. 4. Simple Role System

simple role system based on classes representing CaseWorkers (both as case admins and
regular workers) and CaseRoles in the context of a CaseModel. The structure can be
used to restrict access to Tasks. CaseWorkers can claim Tasks which are then included in
their individual task list.

Fig. 5 shows classes representing the CMMN CaseFileltems associated with a
CaseFile of a CaseModel. SimpleProperties are for primitive data types to structure
data, while CaseFileltemAttachment is added to reference unstructured data such as
document files. The figure also shows how CaseFileltems are referenced by the three
Rule specialisations representing CMMN decorators: RequiredRule, RepetitionRule and
ManualActivationRule. A case specific implementation, RuleExpression, is used by a
Rule to evaluate a referenced CaseFileltem. For this a method is overridden.

Fig. 6 shows classes to build Sentry structures. Not displayed are specialisations
EntrySentry and ExitSentry. Where permissible, these can be attached to Elements. For
example, a CaseModel can only be associated with ExitSentries, while most of the other
elements can have both types of Sentry. ElementOnPart and CaseFileltemOnPart are

SimpleProperty CaseFileltem Element

attachments 0..*

CaseFileltemAttachment

-=a decorated with

RepetitionRule ManualActivationRule

Fig. 5. Data Structure

evaluates b=

sentryRef onFarts 0..*

- updates OnPart

elementhef

clementObservers Q¢

Element ElementOnPart CaseFileltemOnPart

CaseFileltem

cazeFileitempef

evaluates W=

Fig. 6. Sentry Structure

specialisations of abstract class OnPart, used to observe life cycle transitions. A Sentry
can have an IfPart, which like Rules references a CaseFileltem for evaluation.

Names of the directed associations highlight the execution semantics of Sentries:
When an Element or CaseFileltem transitions to another state, the observing ElementOn-
Part or CaseFileltemOnPart updates their Sentry. The notified Sentry then evaluates its
(other) OnParts and IfPart if it exists. If the Sentry conditions are fulfilled, the Element
it is attached to is called and its state transitioned.

How these elements are assembled into a CaseModel blueprint of layer Case Blueprints
and Instances (3) is shown in Ch. 5.

4.3 Case Management Services

The framework provides basic services for CRUD operations, covering all elements mak-
ing up a case, such as CaseModel, Tasks or Milestones. A central CaseService provides
methods to persist, retrieve and transition (specific) case instances. A CaseFileService

provides methods to manipulate case data, i.e. retrieve CaseFileltems, transition them
from one state to another or to manipulate their Properties. Its functions can further be
used for monitoring and reporting purposes.

A TaskService can be used to retrieve a list of (available) (Human)Tasks for a
specific case instance, across all cases, or by role restriction. HumanTasks claimed by
a CaseWorker can also be queried. The service also manages transitions of 7ask states.
Repetition decorators are also managed by the service, i.e. it creates a new instance of a
given task to be repeated.

Working closely with the TaskService is the CaseWorkerService, which covers opera-
tions to manage case workers, i.e. to query either for all, by id or by login credentials, as
well as to create, update and delete them. A CaseWorker object is used in the TaskService
to associate an available HumanTask to a specific worker. Other services are a Milestone-
Service and an EventListenerService, mainly used to retrieve information on their states
or in the latter case to trigger an event.

5 Approach to Implementing Case Management Applications

CMMN Models
' v Y

Blueprints Data Definitions Individual Parts

Fig.7. CMMN Model to CM Application with the Framework

In this section, we show how the elements of a CMMN model are manually translated
to code using the framework. Our aim is not to parse and execute a CMMN mark up with
all the intricate details and abstraction levels of the specification in a generic environment.
We want to enable developers to systematically build and implement case management
applications on top of light-weight core building blocks including basic services.

Fig. 7 shows three main components resulting from CMMN models: case model
blueprints, data definitions and individual parts. These make up the layers 1-4 described
in Sec. 4.1 and build on core classes located in layer 5.

111 HumanTask assembleSpecifications = new HumanTask("aS", “"Assemble Specifications™,
112 createTechnicalSpecificationCase);

113 RequiredRule requiredRule = new RequiredRule("assembleReq”, specifications);

114 assembleSpecifications.setRequiredRule(requiredRule);

115
116 HumanTask reviewSpecifications = new HumanTask("rS", "Review Specifications”,
117 createTechnicalSpecificationCase);
112 RepetitionRule repetitionRule = new RepetitionRule("reviewRep”, specifications);
119 reviewSpecifications.setRepetitionRule(repetitionRule);

131 EntrySentry es = new EntrySentry("eSrevS", "eSrevS", reviewSpecifications);
132 new ElementOnPart(es, assembleSpecifications, StageTaskTransitions.complete.toString());

Fig. 8. Model To Code: HumanTasks

Framework building blocks are assembled into blueprints which are used to instanti-
ate case instances. They contain the core structures of a CMMN model. For a complete
example of a blueprint structure see Fig. 11 in Ch. 6. Each element in the model is
represented by a framework class.

10

Fig. 8 shows a code example of two HumanTasks and the resulting code. First, two
HumanTask are created (lines 111 and 116) and references to a RequiredRule (line 113f.)
and RepetitionRule (line 118f.) are added. Their given names will be referenced later in
a factory method to return the correct rule implementation.

The EntrySentry attached to the HumanTask Review Specifications is created and
an ElementOnPart added in line 131f. with the transition seen in the CMMN model as
the connector labelled [complete].

98 CaseFileItem specifications = new CaseFileItem("specifications™,
99 MultiplicityEnum.ExactlyOne.toString(), "Specifications™);
100 caseModel.getCaseFile().addCaseFileItem(specifications);
Specifications

101 SimpleProperty required = new SimpleProperty(“"required”, Boolean.toString(true));
102 specifications.addProperty(required);

Fig. 9. Model To Code: CaseFileltem

Data definitions consist of CaseFileltems and their Properties. These can be included
in blueprints, or added later via services. A reference to the CaseFileltem itself is required
in the blueprint for Sentry references. Fig. 9 shows a code example for a basic definition.
The created CaseFileltem in line 98f. is added to the CaseFile of the CaseModel in line
100. The added Property ‘required’ seen in lines 101f. is used to evaluate the decorator
on the HumanTask seen above on the left hand side in Fig. 8.

13® @override
14 public boolean evaluate() {

15 CaseFileItem caseFileItem = this.rule.getContextRef();
16 boolean dataApproved = Boolean.valueOf(caseFileItem
17 .getProperty("dataApproved").getValue());

18 if(dataApproved) {

19 return false;

20 } else {

21 return true;

22 1

23 }

Fig. 10. Model To Code: Repetition Rule

Individual parts include graphical user interfaces (GUI), IfParts associated with
Sentries, decorator rules and implementations for Process- and CaseTasks. GUI are not
further discussed but can use services provided by the framework to access all case
instance elements, e.g. a GUI of HumanTask Assemble Specification could access the
CaseFileService to upload specification documents.

Fig. 10 shows the code needed to implement the repetition decorator on the shown
HumanTask (note the highlight). The correct instance of the CaseFileltem to be evaluated
is provided by the reference from line 15. Its Property ‘dataApproved’ is accessed and a
boolean value is returned.

Similarly, methods of abstract classes used for IfParts and Process- and Caselasks
are overridden. A factory returns the individual implementation at runtime which is then
used by the framework.

Factory methods called by the framework which are used to return blueprints and
individual parts need to be adjusted. Elements and their contained references, such as a
HumanTask and its reference to its CaseModel, provide the correct context.

11

6 Case Study

Using the approach presented in the previous section, we have implemented a CM
application with the framework!, deployed on a Tomcat 8.5 TomEE PluME application
server with a JTA managed MySQL data source. The presentation layer is implemented
with Vaadin 8 [24] and its CDI plug-in using a HumanTask cmld attribute. Previously
shown Fig. 1 shows the CMMN models used to assemble CaseModel blueprints and
implement required implementations. They capture a small simplified part of a previous
case study in [26].

Fig. 11 shows the blueprint for the upper case Component Release (see Fig. 1): Here,
the CMMN model is directly translated into a Java structure using framework elements
such as CaseModel, CaseFile, Stage, CaseTask or Milestone. First, in line 68, a new
CaseModel is created. Then in line 70ft., a CaseFileltem is created and added to the
CaseModel. Given to the constructors of Elements is a reference to the parent: the Stage
in line 74 is given a reference to the CaseModel, the CaseTask is constructed with a
reference to that Stage, while the other elements such as the Milestone are added directly
to the CaseModel. In the following lines, the whole structure is translated. Of note is
line 90, which transitions the CaseModel from an initial state to state available.

67= public static CaseModel getComponentReleaseCaseModel() {

68 CaseModel model = new CaseModel("Component Release™, "Component Release");
69 model.setAutoComplete(true);

70 CaseFileTtem specifications = new CaseFileTtem("specifications™,

71 MultiplicityEnum.0OneOrMore.toString()," "Specifications");

72 model.getCaseFile().addCaseFileItem(specifications);

73

74 Stage createTechnicalSpecifications = new Stage("createTechSpecs”,

75 "Create Technical Specifications", model);

76 CaseTask createSpecifications = new CaseTask("createSpecs"”,

77 "Create Specifications", createTechnicalSpecifications);

78 Milestone specificationsCreated = new Milestone("specificationsCreated”,
79 "Specifications Created", model);

80 EventListener cancel = new EventlListener("cancel™, "Cancel", model);
81

22 ExitSentry exitCase = new ExitSentry(“"exitCase", "exitCase", model);
23 ElementOnPart cancelCase = new ElementOnPart(exitCase, cancel,

84 EventMilestoneTransitions.occur.toString());

85

86 EntrySentry entryMsSpecsCreated = new EntrySentry(“enterMsSpecsCreated”,

87 "entryMilestone”, specificationsCreated);

88 CaseFileItemOnPart fileltemOnPart = new CaseFileItemOnPart(entryMsSpecsCreated,
89 specifications, CaseFileItemTransition.create.toString());

90 model.getContextState().create();

91

92 return model;

93 }

Fig. 11. Blueprint for sample process (see Fig. 1)

Individual implementations are required for several elements. Both models are
instantiated via factory method calls to get their blueprints. They are then persisted with
the help of a CaseService. The EventListener Cancel can be triggered by a graphical user
interface making use of an EventListenerService in the service layer of the framework.

! The framework and examples are maintained at https://github.com/fhbielefeldagpm

12

Component Release ACTIVE

Create Technical Specifications - Component Release ACTIVE
< >
Delete Case Refresh Start Component Release Case

Back Task List

Fig. 12. Case List View

Case workers instantiate the parent case from an interface which uses a CaseService
provided by the framework. The bottom case is instantiated automatically via activation
of the included CaseTask. It calls the blueprint of the referenced child case at runtime,
which is then persisted and started. Fig. 12 shows the parent and child case in a simple
view listing cases. This view is provided by the framework as part of the presentation
layer based on Vaadin. The referenced CaseTask is notified and completes once the
child case automatically completes after the required ProcessTask is completed. While
the repetition decorators require rule implementations, the AutoComplete decorators
(both cases) do not need individual implementations. Workers have the option to claim
HumanTasks. Fig. 13 shows claimed and completed tasks of a case worker. This view is
also provided by the framework as part of the presentation layer based on Vaadin.

ACTIVE Claim

Fig. 13. Task List View

The structure of CaseFileltem Specifications needs to be defined in the blueprint. A
SimpleProperty with a boolean value expressing its approval state is used to evaluate
RequiredRules and RepetitionRules. The required files are either uploaded via completing
HumanTask Assemble Specifications or via a data viewer component. Both make use of
a CaseFileService.

Fig. 14 shows a PDF file was added as a CaseFileltemAttachments with the help of a
CaseFileService. It is also used to update and transition the CaseFileltem to activate the
HumanTask to review the specifications. [fPart implementations are needed to evaluate
whether a revision and thus repetition of the respective HumanTask is necessary, or if
the last update transition of the data means that it is ready for the ProcessTask to upload
it to the parent case.

13

Please use the form below to upload the specifications.

Upload Attachment Download Selected Delete Selected
Complete

Back Task List

Fig. 14. Attachment Upload

To give a sense of the amount of work needed to implement the case study application,
Table 1 lists the lines of code needed to create working blueprints based on the framework.
These include an implementation to execute the CaseTask, two RepetitionRules, one
implementation for the execution of the ProcessTask and one for the IfPart. They do
not include lines of code for user interfaces, but these range from 100 to 200 lines per
Vaadin view, including controller logic.

Artifact Lines of Code
Assembled Blueprints 60
Implemented Decorator Rules |20
Implementation of CaseTask |4
Implementation of ProcessTask|10
Implementation of IfPart 10
Total 114
Table 1. Lines of Code required to provide working CaseModels

The framework has about 4.700 lines of code organised in about 130 classes (in-
cluding specialisations) in 15 packages. Graphical user interfaces were built on the
framework services. These include a case list overview to instantiate and access cases,
task lists to view and claim tasks, as well as GUIs for HumanTasks. Provided services
are used to access elements such as CaseModel and Task instances, trigger transitions of
Elements, or to retrieve and manipulate data in CaseFiles.

The example shows how flexible work flows can be designed with CMMN: paths
can react to data changes as well as state changes of elements without being bound to an
imperative sequence flow. The implementation is supported by the framework to realize
CM applications based on the models.

7 Related Work

Most research on case management with CMMN focusses on modeling aspects. Research
on CMMN based implementations is available to a lesser extent.

The Darwin Wiki [13] uses a subset of CMMN in an extended wiki platform imple-
mentation to empower non-expert end-users to structure processes for knowledge work.

14

It integrates a graphical editor using a sub-set of CMMN elements to model case work
in the wiki.

A reference architecture for model-based collaborative information systems is pre-
sented in research related to the Connecare project [18]. It integrates process and data
modelling in a fully model-based system enabling non-technical end-users to create
case-based processes. It includes process models and a case execution engine based on
an extended CMMN sub-set, though it does not further detail how.

An approach to utilize a Content Management Interoperability System (CMIS) to
implement an information model based on CMMN is presented in [17]. Its focus is on
using a CMIS folder as the CMMN CaseFile containing the case instance data, linking
CMMN data concepts to existing document management systems.

Camunda [2] and flowable [11] partially support CMMN. In contrast to our frame-
work, which focusses on creating light-weight CM applications, their main focus is on a
BPMN engine and platform.

Another approach to implementing CM concepts is FLOWer, but unlike our frame-
work it is not based in CMMN. [25] shows a simplified internal structure of FLOWer,
representing artefacts such as case and activity. Activities are directly associated with
data objects, forms and roles.

A fragment-based CM (fCM) case engine is presented in the Chimera project [12].
Based on the PCM approach to CM, a process is split into smaller fragments and
combined with domain models, object life cycles for data objects as well as goal states.
Fragments are modeled with a separate modeler (‘Gryphon’). Unlike our framework, it
uses elements based on a BPMN sub-set. The fragments are dynamically combined and
executed depending on data states.

A data-centric business process management approach similar to but not based in
CMMN is presented in research related to the PHILharmonicFlows project [16]. Users
can define case-like structures and propagate ad-hoc changes of these and data to already
running instances.

8 Conclusion and Future Work

Designing and implementing case management applications is a challenging and complex
task. In this paper, we have presented a case management implementation framework
based on Java which allows the rapid realization of case management applications based
on widely available Java and open source technologies. The framework makes use of
Java EE technologies and includes support for major CMMN elements. A first evaluation
of our framework has demonstrated that the effort for creating a CM application using
our framework is then concentrated on designing user interfaces and implementing
the logic of the CMMN model. Other aspects such as case instance management and
execution semantics are provided for by the framework.

Future work includes the extension of our framework to cover further elements of
CMMN such as discretionary items to support an ACM approach. Other work includes
the automatic generation of blueprint skeletons and specialisation stubs, the implemen-
tation of fine grained security and user management layers as well as integration with
existing systems.

15

References

—_

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

. OMG. Business Process Model and Notation (BPMN) Specification, 2011. Version 2.0.
. Camunda. Workflow and decision automation platform. https://camunda. com.
. C. Di Ciccio, A.Marrella, and A. Russo. Knowledge-intensive processes: Characteristics,

requirements and analysis of contemporary approaches. JoDS, 4(1):29-57, 2015.

. OMG. Case Model Management and Notation (CMMN) Specification, 2016. Version 1.1.
. A. Meyer et al. Implementation framework for production case management: Modeling and

execution. In IEEE 18th EDOC, pages 190-199. IEEE, 2014.

. M. Kurz et al. Leveraging cmmn for acm: examining the applicability of a new omg standard

for adaptive case management. In S-BPM ONE, 2015.

. M.A. Marin et al. Case management: An evaluation of existing approaches for knowledge-

intensive processes. In M. Reichert and H.A. Reijers, editors, BPM Workshops, LNBIP 256,
pages 5—16. Springer, 2016.

. R. Hull et al. Introducing the guard-stage-milestone approach for specifying business entity

lifecycles. In M. Bravetti and T. Bultan, editors, Web Services and Formal Methods, LNCS
6551, pages 1-24. Springer, 2011.

. T.T.K. Tran et al. Setup and maintenance factors of acm systems. In D. Hutchison et al.,

editor, OTM Workshops, LNCS 8186, pages 172—-177. Springer, 2013.

L. Fischer and T. Koulopoulos. Taming the unpredictable: Real world adaptive case manage-
ment: case studies and practical guidance. Future Strategies, 2011.

flowable. flowable java business process engines. https://www.flowable.org/.

BPT group. Chimera. https://bpt.hpi.uni-potsdam.de/Chimera.

M. Hauder, R. Kazman, and F. Matthes. Empowering end-users to collaboratively structure
processes for knowledge work. In BIS, LNBIP 208. Springer, 2015.

N. Herzberg, K. Kirchner, and M. Weske. Modeling and monitoring variability in hospital
treatments: A scenario using cmmn. In F. Fournier and J. Mendling, editors, BPM Workshops,
LNBIP 202, pages 3—-15. Springer, 2015.

IBM. Case management overview. https://www.ibm.com/support/knowledgecenter/
SSCTJ4_5.3.2/com.ibm.casemgmt.installing.doc/acmov0®®0®.htm. [Online; ac-
cessed 25-January-2019].

V. Kiinzle and M. Reichert. Philharmonicflows: Towards a framework for object-aware
process management. J SOFTW MAINT EVOL-R, 23:205-244, 2011.

M.A. Marin and J.A. Brown. Implementing a case management modeling and notation
(CMMN) system using a content management interoperability services (CMIS) compliant
repository. CoRR, abs/1504.06778, 2015.

F. Michel and F. Matthes. A holistic model-based adaptive case management approach for
healthcare. In IEEE 22nd EDOCW, pages 17-26. IEEE, 2018.

H.R. Motahari-Nezhad and K.D. Swenson. Adaptive case management: Overview and
research challenges. In IEEE 15th CBI, pages 264-269. IEEE, 2013.

Oracle. Java EE 7 Technologies. https://www.oracle.com/technetwork/java/
javaee/tech/index- jsp-142185.html. [Online; accessed 25-January-2019].

D. Schuerman, K. Schwarz, and B. Williams. Dynamic Case Management for Dummies: Pega
Special Edition. John Wiley & Sons, Inc., 2014.

Papyrus Software. Adaptive case management. https://www.isis-papyrus.com/, 2019.
K.D. Swenson and L. Fischer. How Knowledge Workers Get Things Done: Real-World
Adaptive Case Management. Future Strategies, 2012.

vaadin. Vaadin framework 8. https://vaadin.com/, 2019.

W. M. P. van der Aalst and M. Weske. Case handling: A new paradigm for business process
support. volume 53(2) of Data Knowl. Eng., pages 129—-162. Elsevier, 2005.

A. Zensen and J. Kiister. A comparison of flexible bpmn and cmmn in practice: A case study
on component release processes. In IEEE 22nd EDOC, pages 105-114. IEEE, 2018.

16

