
Forschungsreihe des Fachbereichs
Ingenieurwissenschaften und Mathematik

Professor Dr.-Ing. habil.
Klaus

Hofer

Hybrid Modeling
and Optimization
of Biological Processes
Sabrina Proß

Band 1
ISSN 2196-6192

Impressum

Forschungsreihe des Fachbereichs
Ingenieurwissenschaften und Mathematik

ISSN
2196-6192

Erscheinungsort
Bielefeld

Verantwortliche und ausführende Stelle (Herausgeber)
im Sinne des § 55 I RStV und des Presserechts NRW:
Fachhochschule Bielefeld
Fachbereich Ingenieurwissenschaften und Mathematik
Wilhelm-Bertelsmann-Str. 10
33602 Bielefeld

Der Fachbereich wird innerhalb der Fachhochschule
Bielefeld vom Dekan Prof. Dr.-Ing. Prof. h.c. Lothar Budde
geleitet und vertreten.

Verantwortliche Chefredaktion
Prof. Dr.-Ing. Rolf Naumann
Fachhochschule Bielefeld
Fachbereich Ingenieurwissenschaften und Mathematik
Am Stadtholz 24
33609 Bielefeld
Telefon +49.521.106-7483
Telefax +49.521.106-7191
rolf.naumann@fh-bielefeld.de

HYBRID MODELING AND OPTIMIZATION

OF BIOLOGICAL PROCESSES

Dissertation zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

Eingereicht an der Technischen Fakultät der Universität
Bielefeld von

Sabrina Proß

Sabrina Proß
Hybrid Modeling and Optimization
of Biological Processes
Dissertation

Technische Fakultät der Universität Bielefeld
AG Bioinformatik, Prof. Dr. Ralf Hofestädt

Fachbereich Ingenieurwissenschaften und Mathematik der Fachhochschule Bielefeld
Angewandte Mathematik, Prof. Dr. Bernhard Bachmann

Gutachter:
Prof. Dr. Ralf Hofestädt, Universität Bielefeld
Prof. Dr. Bernhard Bachmann, Fachhochschule Bielefeld
Prof. Dr. François Cellier, Eidgenössische Technische Hochschule Zürich

Prüfungsausschuss:
Prof. Dr. Bernhard Bachmann, Fachhochschule Bielefeld
Prof. Dr. Ralf Hofestädt, Universität Bielefeld
Prof. Dr. Thomas Noll, Universität Bielefeld
Dr. Roland Wittler, Universität Bielefeld

Druck: Bielefeld, März 2013
Gedruckt auf alterungsbeständigem Papier (ISO 9706)

III

ACKNOWLEDGEMENTS

This PhD-project was carried out as a part of a cooperation between the Bielefeld University

(Faculty of Technology) and the University of Applied Sciences Bielefeld (Department of

Engineering and Mathematics) and was funded by gender equality policies of the University

of Applied Sciences Bielefeld.

Without the help and support of many people, this thesis could not have been completed.

Herewith, I would sincerely like to thank all of them. First of all, my gratitude goes to my

supervisor Prof. Dr. Ralf Hofestädt for his valuable input and his support throughout my

research for this work. Furthermore, I would like to thank Prof. Dr. Bernhard Bachmann for

many most helpful discussions and suggestions as well as his encouragement.

I would like to thank all my colleagues in the department of Applied Mathematics including

Prof. Dr. Friedrich Biegler-König, Prof. Dr. Claudia Cottin, Dr. Elke Koppenrade, Prof. Dr.

Kruse, Prof. Dr. Svetozara Petrova, Tatiana Schenck, and Jens Schönbohm, for the positive

atmosphere as well as for the motivating and inspiring discussions. Special thanks go to Prof.

Dr. Rainer Ueckerdt for many helpful comments and great suggestions, to Willi Braun for his

excellent Modelica support, and to Ralf Derdau for his outstanding IT-support. In addition, I

would like to thank my colleagues at the Bioinformatics/Medical Informatics Department,

Sebastian Janowski and Benjamin Kormeier, for the close collaboration and their help. In

addition, my gratitude goes to Dr. Perta Lutter, Prof. Dr. Karsten Niehaus, and Dr. Frank

Vorhölter at the Center of Biotechnology for their great help and support in all biological

topics.

Further thanks go to Prof. Dr. Thomas Noll and Dr. Roland Wittler who agreed to be part of

the examination board. I am also grateful to Barbara Davis for the careful proofreading of the

manuscript. In addition, I would like to thank the University of Applied Sciences Bielefeld for

the financial support of this work.

Finally, I am deeply grateful to my parents Bärbel und Horst and my brother Christian for all

their support and encouragement and, most of all, I would like to thank Michael, for all his

patience, understanding, and support during the time of this work.

IV

ABSTRACT

Modern computer techniques and large memory capacities make it possible to produce an

enormous amount of biological data stored in huge databases. This data is indispensable for

scientific progress but does not necessarily lead to insight about the functionality of biological

systems. Hence, an approach is needed to achieve usable information from this huge amount

of data. A mathematical model provides a means for summarizing and structuring

experimental data in order to simplify the communication of knowledge progress with other

researchers. Additionally, it improves the understanding of the living system and allows the

directed design of experiments by predicting system behavior under specific conditions and

proofs with experiments.

To enable the processing of experimental data to usable new insights about biological

systems, a general, universally usable modeling process for biological systems has been

developed in this work. This modeling process requires several mathematical methods to

achieve a “well-working” parameterized model which is able to predict the behavior of the

underlying system and forms the basis for optimizing biological processes. Therefore, an

environment has been developed which comprises mathematical methods and tools for

covering all steps of the established modeling process.

Petri nets with their various extensions are a universal graphical modeling concept for

representing biological systems in nearly all degrees of abstraction. They provide an intuitive

and generally comprehensible way for representing and communicating experimental data and

knowledge of biological systems. Despite several works and publications with Petri net

approaches, there is a serious problem regarding the lacking unity of concepts, notations, and

terminologies. The definition of Petri nets is not standardized; every author has personal

definitions which are partly not accurate enough, not common, or even contradictory. In this

work, to show the research community the power of Petri nets, they are defined precisely

together with the corresponding processes, which are essential for simulation. A formalism

has been developed which is able to represent nearly all kinds of biological processes. It is

called extended Hybrid Petri Nets and abbreviated with xHPN. This formalism has been

V

further extended by providing the Petri net elements with biological meaning and this

extension is called xHPNbio (extended Hybrid Petri Nets for biological applications).

To use Petri nets as a graphical modeling language for biological systems, the Petri nets, for

their part, have been modeled by the object-oriented modeling language Modelica. Modelica

was developed and promoted by the Modelica Association since 1996 for modeling,

simulation, and programming of primarily physical and technical systems and processes and

has become the de-facto standard for hybrid, multidisciplinary modeling. Each Petri net

element, place and transition, is described by a model in the Modelica language defined on the

lowest level by discrete (event-based), differential, and algebraic equations. The developed

Petri net components models are structured in a Modelica library called PNlib (Petri Net

library). An appropriate Modelica-tool then enables graphical and hierarchical modeling,

hybrid simulation, and animation.

To simplify the modeling process and, in addition, to give all involved researchers an adapted

view of the model at a specific level of detail, the models have to be constructed in a

hierarchical structure. The Petri nets on the one hand and the Modelica language on the other,

enables hierarchical modeling concepts by wrapping the basic Petri net elements into sub-

models which represent specific processes or reactions used many times in the same or in

different models. Wrappers for common biological reactions and processes are summarized in

the Modelica library PNproBio (Petri Nets for process modeling of Biological systems).

In addition to the modeling concept (xHPN) and libraries (PNlib and PNproBio), appropriate

mathematical methods are needed for analyzing the established models in order to determine

the model parameters, evaluate their robustness towards small changes, simulate

deterministically as well as stochastically, and optimize and control the underlying biological

processes. All these mathematical methods are available within one MATLAB-tool, called

AMMod (Analysis of Modelica Models). Together with the powerful xHPN formalism and

the PNlib as well as the PNproBio, all steps of the modeling process are covered by this new

environment.

The general modeling procedure as well as the applicability of the developed concepts and

tools is shown exemplarily by modeling the xanthan production of Xanthomonas campestris

bacteria.

VI

TABLE OF CONTENTS

Acknowledgements .. III

Abstract ... IV

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Objectives ... 4

1.3 Structure ... 5

2 Related Works .. 8

2.1 Petri Net Approaches for Modeling Biological Processes ... 8

2.2 Petri Net Tools ... 10

2.3 Petri Nets in Modelica .. 17

3 Basics ... 19

3.1 The Modelica Language ... 19

3.1.1 Variables ... 20
3.1.2 Equations .. 21
3.1.3 Algorithms .. 24
3.1.4 Specialized Classes ... 26
3.1.5 Balanced Models .. 32
3.1.6 Discrete Event and Hybrid Modeling ... 32
3.1.7 Mathematical Representation of Modelica Models .. 36

3.2 Optimization Methods .. 40

3.2.1 Local Optimization Methods .. 43
3.2.2 Global Optimization Methods .. 44
3.2.3 Hybrid Optimization Methods .. 55

3.3 Sensitivity Analysis Methods ... 57

3.3.1 Local approach ... 61
3.3.2 Global approach: Fourier Amplitude Sensitivity Test ... 66
3.3.3 Extended Fourier Amplitude Sensitivity Test .. 72

4 Petri Nets ... 75

4.1 Basic Concepts ... 75

4.2 Abbreviations and Extensions of the Basic Concepts .. 85

4.2.1 Capacitive Petri Nets .. 85
4.2.2 Extended Petri Nets .. 91
4.2.3 Extended Capacitive Petri Nets .. 94
4.2.4 Self-modified Petri Nets ... 95
4.2.5 Functional Petri Nets .. 97

4.3 Non-autonomous Petri Nets ... 98

VII

4.3.1 Conditional Petri Nets .. 98
4.3.2 Timed Petri Nets ... 100
4.3.3 Stochastic Petri Nets ... 103
4.3.4 Conditional Timed Petri Nets ... 105

4.4 Continuous Petri Nets ... 106

4.4.1 Continuous Capacitive Petri Nets ... 115
4.4.2 Continuous Extended Petri Nets ... 124
4.4.3 Continuous Extended Capacitive Petri Nets .. 126
4.4.4 Continuous Functional Petri Nets... 127
4.4.5 Conditional Continuous Petri Nets ... 129

4.5 Hybrid Petri Nets .. 129

4.5.1 Variation of Transitions .. 136
4.5.2 Arc Weight and Maximum Speed Functions Depending on Marking/Time 137
4.5.3 Capacities and Extensions .. 137
4.5.4 Extended Hybrid Petri Nets .. 142

5 Modeling Process of Biological Systems ... 144

5.1 Preprocessing and Relationship Analysis .. 147

5.2 Mathematical Modeling: xHPN for Biological Applications 148

5.3 Parameter Estimation ... 154

5.4 Sensitivity Analysis .. 157

5.5 Deterministic and Stochastic Hybrid Simulation ... 157

5.6 Model Prediction .. 162

5.7 Process Optimization .. 162

6 The Petri Net Library .. 164

6.1 Implementation of the Petri Net Elements ... 166

6.1.1 Connectors .. 172
6.1.2 Places .. 175
6.1.3 Transitions .. 180
6.1.4 Arcs .. 184

6.2 Modeling, Simulation, and Animation with Dymola ... 187

6.3 Connection between Dymola and Matlab/Simulink .. 191

6.4 Petri Net Library for Process Modeling of Biological Systems 194

6.5 Tool for the Analysis of Modelica Models .. 199

6.6 Comparison to other Petri net Tools .. 202

7 Application .. 204

7.1 Step 1: Biological Phenomena ... 205

7.2 Step 2: Experimental Data and Prior Knowledge .. 206

7.2.1 Influence Factors on Growth and Xanthan Production 206
7.2.2 Modeling of Growth and Xanthan Production ... 209

7.3 Step 3: Model Hypotheses .. 217

VIII

7.4 Step 4 and 5: Preprocessing and Relationship Analysis .. 218

7.5 Step 6 und 8: Parameter Estimation and Sensitivity Analysis 222

7.6 Step 9: Process Optimization ... 229

7.7 Step 7: Deterministic and Stochastic Hybrid Simulation 241

8 Discussion and Outlook ... 243

Appendix ... 248

A1 Algorithms .. 248

A2 Connector Variables of the PNlib... 254

A3 Supplements to the AMMod-Tool.. 257

A4 Supplements to the Application.. 260

List of Figures ... 267

List of Tables ... 272

List of Abbreviations .. 273

List of References ... 278

1

1 INTRODUCTION

1.1 MOTIVATION

Conditioned by the huge memory capacity and the possibilities of modern computer

techniques, new data is produced incessantly in all imaginable areas of life. This pertains also

to the biological sciences; modern high throughput experiments generate an enormous

amount of data stored in large databases. This data is indispensable but does not necessarily

lead to insight about the functionality of biological systems. Hence, the question arises: How

is it possible to achieve usable knowledge from this huge amount of data?

One possible approach is to transform the data of biological systems as well as knowledge

about functions, interactions, and relationships into a mathematical model. A mathematical

model provides a means for summarizing and structuring experimental data in order to

simplify the communication of knowledge progresses with other researchers. Additionally, it

improves the understanding of the living system and allows the directed design of

experiments by predicting the system behavior under specific conditions and proving by

experimentation. Models cannot replace experiments but they can help plan them and improve

as such the employment of resources. The modeling approach enables a ranking of the

experiments to execute those where are most economical in terms of both time and financial

costs. This economical aspect of modeling and simulation is of great interest. The in-silico

design of experiments with virtual cells is used, for example, in the development of

pharmaceuticals to reduce animal testing.

Once a model is established, hypotheses about system properties and behavior can be derived.

These hypotheses can be validated in parallel by in-silico and in-vitro experiments.

Simulation data is produced in-silico by simulating the model and experimental data is gained

in-vitro from the wet-lab. Such an iterative process leads to new knowledge about the

regarded systems. But the cycle of simulations and wet-lab experiments can also be

performed successively. Then, the in-silico simulations firstly identify the experiments which

are indeed necessary and optimize the experimental design.

2 1 Introduction

In general, a strong interaction is essential between experimental data collection and

theoretical computer-based modeling and simulation. Hence, investigators from the

disciplines biology, mathematics, informatics, and systems science have to work together

interdisciplinarily. The biologists provide biological phenomena to investigate, the required

experimental data and a first visualization of the model. This first visualization is specified by

system scientists, and mathematicians as well as computer scientists therefore contribute the

necessary modeling, simulation, and analysis tools.

Numerous model formalisms have been proposed for modeling and simulation biological

systems (see e.g. (Wiechert 2002)). Generally, it has to be distinguished between qualitative

and quantitative approaches. Qualitative models represent only the fundamental compounds,

their interaction mechanisms, and the relationships between them while quantitative models

describe, in addition, the time-related changes of the components. Hence, a qualitative model

is the basis for every quantitative model and the mentioned improved data basis enables us to

extend qualitative models to quantitative ones today. Beyond this, quantitative model

formalisms can be further divided into discrete and continuous approaches as well as

deterministic and stochastic techniques.

The decision as to which modeling approach is used is difficult and strongly influenced by the

availability of data. If all kinetic data is known, models consisting of ordinary differential

equations are mostly the first choice while in the absence of kinetic data only qualitative

approaches are usable. An additional difficulty arises in the demand of simultaneously having

a model which is easy to understand and an abstraction of the real system as well as a detailed

and nearly complete description of it. Besides, the modeling process of biological systems is

further complicated by incomplete knowledge, noisy and inaccurate data, and different ways

of representing data and knowledge.

Petri nets with their various extensions are a universal graphical modeling concept for

representing biological systems in nearly all degrees of abstraction. They support the

qualitative modeling approach as well as the quantitative one. Once a qualitative Petri net

model has been established, the quantitative data can be added successively. Furthermore, the

biological processes can be modeled discretely as well as continuously and, in addition,

discrete and continuous processes can also be combined within one Petri net model to so-

called hybrid Petri nets (see e.g. (David and Alla 2001)). The Petri net formalism with all its

extensions is so powerful that all other formalisms are included and, hence, only one

formalism is needed regardless of the approach (qualitative vs. quantitative, discrete vs.

1.1 Motivation 3

continuous, deterministic vs. stochastic) which is appropriate for the respective system. The

Petri net formalism is easy to understand for all researchers from the different disciplines

(biology, mathematics, informatics, and system sciences) which have worked together in the

modeling process and is an ideal way for intuitive representing and communicating

experimental data and knowledge of biological systems. Petri nets allow hierarchical

structuring of models and offer the possibility of different detailed views for every observer of

the model.

To use Petri nets as a graphical modeling concept for biological systems, the Petri nets, for

their part, have to be modeled textually by an appropriate language. The object-oriented

modeling language Modelica, developed and promoted by the Modelica Association since

1996 for modeling, simulation, and programming primarily of physical and technical systems

and processes (Modelica Association 2010), is ideally suited for this task. Modelica has

become the de-facto standard for hybrid, multidisciplinary modeling. Each Petri net element,

place and transition, can be described with the aid of a model in the Modelica language

defined on the lowest level by discrete (event-based), differential, and algebraic equations. An

appropriate Modelica-tool then enables graphical and hierarchical modeling, hybrid

simulation, and animation.

However, model construction based on such a strong formalism alone is not all that is needed

for a good working model which can be simulated. Usually, the constructed model comprises

several parameters like speed constants or yield coefficients which have to be estimated.

Several databases are already available which summarize these specific parameters, for

example, the database BRENDA, which provides a collection of enzyme functional data

(Schomburg et al. 2002). If the required parameters are not listed in databases or publications,

they have to be estimated by experiments. But sometimes these experiments are too

expensive, imprecise, or not even feasible. In these cases, specific mathematical optimization

methods can provide means to adapt the model behavior to the given experimental data as

well as possible. This procedure is called parameter estimation. Direct linked with it is the

sensitivity analysis of model parameters which identify, optimize, reduce, and verify the

model.

Furthermore, particular mathematical optimization methods enable the optimization of

biological processes, called process optimization. This plays an important role in industrial

biotechnology. Based on a model, it is thus possible to control biological processes in the best

possible way and to gain maximum product yields from the cultivated organisms.

4 1 Introduction

1.2 OBJECTIVES

The main objective of this work is the development of a general, universally usable

modeling process for biological systems from observing a phenomenon to a “well-working”

parameterized model which is able to predict the behavior of the underlying system and forms

the basis for optimizing biological processes.

Directly connected to this is the aim to provide researchers from different disciplines an

environment which comprises methods and tools for covering all steps of the developed

modeling process. Therefore, specific adapted mathematical concepts, formalisms, and

methods are of crucial importance to enable

− Data preprocessing and relationship analysis,

− Graphical, hierarchical modeling,

− Deterministic and stochastic hybrid simulation and animation,

− Parameter estimation,

− Sensitivity analysis, and

− Process optimization.

As mentioned before, it has become apparent that Petri nets with their various extensions are

the ideal modeling formalism which is universally applicable for all different kinds of

biological phenomena. They provide an intuitive and generally comprehensible way for

representing and communicating experimental data and knowledge of biological systems.

Despite several works and publications with Petri net approaches, there is a serious problem

regarding the lacking unity of concepts, notations, and terminologies. The definition of Petri

nets is not standardized; every author has his/her own definitions which are partially not

accurate enough, not common, or even contradictory. Hence, to show the research community

the power of Petri nets, they need to be precisely defined together with the corresponding

processes which are essential for the simulation. This has been done within this work; based

on the Petri net initially introduced by Carl Adam Petri in 1962 (Petri 1962), a formalism has

been developed which is able to represent nearly all kinds of biological processes. It is now

called extended Hybrid Petri Nets and abbreviated with xHPN.

This clear and precise definition alone is not sufficient. Once a Petri net model is created, one

would like to simulate it for predicting the behavior under different parameter settings, for

example, to optimize the experimental design. Therefore, the precise definitions of Petri nets

1.3 Structure 5

and their corresponding processes are an imperative necessity. The Petri nets for their part,

have to be modeled with an appropriate language. As mentioned before, the object-oriented

modeling language Modelica is ideally suited for this task. A proper Modelica-tool then

enables the graphical and hierarchical modeling, hybrid simulation and animation of Petri

nets. Within this work, an innovative Modelica Petri net library has been developed called

PNlib (see also Proß and Bachmann 2009, Proß and Bachmann 2011a, Proß and Bachmann

2011b, Proß and Bachmann 2012b).

To simplify the modeling process itself and, in addition, to give all involved researchers an

adapted view of the model at a specific level of detail, the models have to be constructed

within a hierarchical structure. The Petri nets on the one hand and the Modelica language on

the other enables such hierarchical modeling concepts by wrapping the basic Petri net

elements into sub-models which represent specific processes or reactions used many times in

the same or in different models. Wrappers for common biological reactions and processes are

summarized in the Modelica library PNproBio (Petri Nets for process modeling of Biological

systems) (see also Proß et al. 2009, Proß and Bachmann 2011a, Proß and Bachmann 2011b,

Proß and Bachmann 2012a).

In addition to the modeling concept (xHPN) and tool (PNlib and PNproBio), appropriate

mathematical methods are needed for analyzing the established models in order to determine

the model parameters, evaluate their robustness towards small changes, simulate

deterministically as well as stochastically, and optimize and control the underlying biological

processes. All these mathematical methods are available within one MATLAB-tool, called

AMMod (Analysis of Modelica Models). Together with the powerful xHPN formalism and

the PNlib, all steps of the modeling process are covered by this new environment (see also

Proß and Bachmann 2012a).

1.3 STRUCTURE

This work is structured in the following way, which is also depicted in Figure 1.1. At first,

related works are presented to strengthen the demand of a powerful modeling formalism, a

new modeling tool, and analysis methods especially for biological systems.

6 1 Introduction

Chapter 3 comprises the basics which are needed to realize the modeling process. Thereby,

the first section introduces the Modelica language concepts which are essential for modeling

the components of xHPN, places and transitions, for their part with the Modelica language.

The next section comprises optimization methods to enable parameter estimation and process

optimization of biological models. Several local, global, and hybrid optimization methods are

presented which are applicable to solve the respective optimization problem. Additionally,

methods for sensitivity analysis are proposed in Section 3.3 to improve the procedure of

parameter estimation and to reduce the model complexity.

Figure 1.1: The structure of this work

Chapter 4 precisely defines the developed Petri net concepts from the basic one up to the

extended hybrid Petri nets (xHPN) and serves as the basis for the implementation of the

xHPN formalism in order to model and simulate biological processes.

1.3 Structure 7

Chapter 5 describes the developed modeling process and how the basic concepts, presented

in Chapter 3, and the xHPN formalism are particular adapted for biological processes.

In Chapter 6, it is described how the Modelica language is used for implementing the

components of xHPN structured in a Modelica library called PNlib. Additionally, the

modeling, simulation, and animation of xHPN with the Modelica-tool Dymola are described.

Furthermore, the Modelica library PNproBio (Petri Nets for process modeling of Biological

systems) is presented which comprises wrappers for common biological reactions to simplify

the modeling process and, in addition, to improve the view of a model. Thereafter, it is

explained how Dymola and Matlab/Simulink are connected to establish a bridge from PNlib,

the modeling-tool, to AMMod, the analysis tool. The functionality and usage of this analysis

tool for Modelica models is then described in the next section.

Chapter 7 demonstrates exemplarily the modeling process as well as the application of the

tools developed in this work by the xanthan production of Xanthomonas campestris

bacteria. Thereby, the chapter focuses on describing the general procedure of modeling but

not on the selected example. Hence, no new insights about the bacteria and the xanthan

production are presented due to using pseudo experimental data; but rather the usage of the

developed environment is shown as well as the power and suitability is proven. Thereby, all

steps of the modeling process are performed exemplarily by models with different

complexities. Furthermore, the performance of the optimization methods for parameter

estimation and process optimization are tested and rated. Additionally, sensitivity analysis is

applied in order to improve the parameter estimation procedure. Moreover, a stochastic Petri

net model of the xanthan production is constructed to compare the results of the stochastic

hybrid simulation with those of the deterministic hybrid simulation.

Finally, Chapter 8 summarizes and discusses the results of this work and provides an outlook

of ongoing and further extension possibilities. It is shown that the developed modeling and

analysis concepts are not restricted to biological processes; they are universally usable for

nearly all processes like business processes, production processes, traffic processes etc. Most

of all it has come to light that the xHPN formalism in Modelica is an ideal all-round

modeling concept for graphical and hierarchical modeling, simulation, and optimization of

various hybrid processes.

8

2 RELATED WORKS

This chapter comprises related works corresponding to this study. At first, Petri net

approaches for modeling biological processes are introduced and the demand for a precise

definition of Petri nets and their corresponding processes which are necessary for simulation

is clarified. Afterwards, tools dealing with the hybrid Petri net formalism are listed, in

particular, two common tools, Cell Illustrator and Snoopy, are presented which support the

modeling of biological systems by means of the hybrid Petri net formalism. The last section

comprises already existing Petri net approaches in Modelica and makes clear why these

approaches are not sufficient for modeling biological systems.

2.1 PETRI NET APPROACHES FOR MODELING

BIOLOGICAL PROCESSES

The Petri net formalism was first introduced by Carl Adam Petri in 1962 for modeling and

visualization of concurrency, parallelism, synchronization, resource sharing, and non-

determinism (Petri 1962). A Petri net is a graph with two different kinds of nodes, called

transitions and places; thereby, places and transitions are connected by arcs. Every place in a

Petri net can contain an integer number of tokens. These tokens initiate transitions to fire

according to specific conditions. These firings lead to changes of the tokens in the places.

Reddy et al. propose firstly to apply this formalism for biological network modeling in order

to represent and analyze metabolic pathways in a qualitative manner (Reddy et al. 1993).

Thereby, places represent biological compounds such as metabolites, enzymes, and cofactors

which are part of biochemical reactions. These biochemical reactions are modeled by

transitions and their stoichiometry is represented by the arc weights. In addition, the tokens

indicate the presence of compounds. Reddy et al. showed that the Petri nets were a suitable

approach for qualitative analysis of metabolic pathways. Properties of Petri nets such as

liveness, reachability, reversibility, fairness, structural reduction, and invariants were applied

to identify characteristics of the modeled systems.

2.1 Petri Net Approaches for Modeling Biological Processes 9

Hofestädt adapted the Petri net formalism to metabolic network modeling (Hofestädt 1994).

His approach allows the combination of analytic and discrete modeling in order to model

metabolic processes in a natural manner by a new specialized graphical representation based

on Petri nets.

Moreover, Hofestädt and Thelen expanded the approach of Reddy by introducing functional

Petri nets to enable quantitative modeling of biochemical networks (Hofestädt and Thelen

1998). Thereby, the arc weights are functions which depend on concrete markings of places in

order to model kinetic effects. The tokens then represent the concentration level of a

biological compound.

Due to the fact that a random behavior of molecular reactions at low concentrations has been

observed in many experiments, Goss and Peccoud introduced stochastic Petri nets (Goss and

Peccoud 1998). A stochastic transition fires not instantaneously but with a time delay

following an exponential distribution which may depend on the token numbers of the places.

They illustrated their method by examples of gene regulation and biochemical reactions.

A reasonable way for modeling concentrations of biological compounds is by places

containing real token numbers instead of integers and transitions which fire as a continuous

flow specified by an assigned speed. The transformation from the discrete to the continuous

Petri net concept was first introduced by David and Alla in 1987 (David and Alla 1987) and

they replaced the term token by mark because tokens relate mostly to integer quantities.

Furthermore, Alla and David proposed combining the discrete and the continuous Petri net

concept to so-called hybrid Petri nets (Alla and David 1998). A hybrid Petri net contains

discrete places with integer tokens and discrete transitions with time delays as well as

continuous places with non-negative real marks and continuous transitions with firing speeds.

Matsuno et al. used this approach for modeling gene regulatory networks by discrete and

continuous processes (Matsuno et al. 2000). They improved this approach further by adding

the properties of functional Petri nets to it so that the arcs as well as the speeds of the

transitions are functions depending on the marks of the places (Matsuno et al 2003). This

modification is called hybrid functional Petri nets. Additionally, they extended the hybrid

functional Petri nets by two specific arcs, called test and inhibitor arcs (Matsuno et al 2003),

to accomplish the modeling of inhibition and activation mechanisms of biological reactions. If

places are connected with test or inhibitor arcs to transitions, their markings are not changed

during the firing processes. The markings are only read to influence the time of firing. In the

10 2 Related Works

case of a test arc, the connected place must have more tokens than the arc weight and in the

case of an inhibitor arc, the connected place needs less tokens than the arc weight to enable

firings of the transition. Chen and Hofestädt as well as Doi et al. demonstrated the

applicability of this approach by modeling molecular networks (Chen and Hofestädt 2003,

Doi et al. 2004).

Moreover, Nagasaki et al. extended the hybrid functional Petri nets further by types with

which various data types can be regarded to model more complex biological processes which

involve various kinds of biological information and data (Nagasaki et al. 2004). They called

this approach hybrid functional Petri nets with extensions (HFPNe).

Despite these mentioned works and publications, there is a serious problem because of the

lacking unity of concepts, notations, and terminologies. The definition of Petri nets is not

standardized; every author has personal definitions which are partly not accurate enough, not

common, or contradictory. Hence, to show the research community the power of Petri nets,

they have to be precisely defined together with the corresponding processes which are

essential for the simulation. This has been done within this work; based on the Petri net

initially introduced by Carl Adam Petri in 1962 (Petri 1962), a formalism has been developed

which is able to represent nearly all kinds of biological processes. It is called extended Hybrid

Petri Nets and abbreviated with xHPN.

2.2 PETRI NET TOOLS

Several tools are available for modeling most differing applications by means of the Petri net

formalism; an overview can be found in (Petri Net World 2012). Only a few of them are able

to simulate hybrid Petri nets; all common tools according to present knowledge are listed in

Table 2.1. Two of them were developed specially for modeling biological processes with the

aid of hybrid Petri net formalism. The first is the commercial tool Cell Illustrator and the

second is the freely available tool Snoopy. They are described in detail hereafter to clarify the

demand for a new environment for modeling and analyzing biological systems. The reasons

why other tools are unsuitable for this work are summarized in Table 2.1.

2.2 Petri Net Tools 11

CELL ILLUSTRATOR

The Cell Illustrator, Genomic Object Net called before, is a commercial, widely-used tool

available as a Java Web Start application which enables the drawing, modeling, elucidating,

and simulating of complex biological processes and systems based on hybrid functional Petri

nets with extensions (Nagasaki et al. 2010). This is an extension of the hybrid functional Petri

net concept by types with which various data types can be regarded to model more complex

biological processes which involve various kinds of biological information and data.

Additionally, discrete and continuous processes can be connected to perform hybrid

simulations.

The models can be created with the standard Petri net elements or specific icons for several

biological entities and processes which allow an ontology representation of the considered

biological system. It is also possible to model ODEs with continuous Petri net elements by

setting all input connector weights to “nocheck”.

The Cell Illustrator offers two simulation engines: a standard engine and a simulation engine

code generator (SECG) (University of Tokyo 2010). Both engines return the same results but

the SECG executes the simulation in a different way. At first, the Java source code is

generated for the model to be simulated and afterwards it is executed as a usual Java program.

Since version 4.0, it is possible to use additional modules that are provided on servers based

on the SaaS (Software as a Service)-technology. One of them is the Pathway Parameter

Search Module which executes multiple simulations at once with many initial conditions.

The drawback of the Cell Illustrator is that the simulation is like a “black box”. There is no

information about the following points:

− how the Petri nets and the corresponding processes are defined which are necessary for

modeling and simulation, e.g. how conflicts in Petri nets are resolved,

− how the hybrid simulation is performed, and

− which integrators are used; in addition, there is no possibility to adapt solver settings in

order to achieve reliable simulation results.

Furthermore, at the decision point to implement a new tool, the simulation of the Cell

Illustrator does not work in a correct manner. Reactions could proceed backward if specific

arc weight functions become negative during simulation. This problem has been investigated

12 2 Related Works

and is solved in the current version 5.0. Additionally, several simulations of continuous test

models show a barely comprehensible undesirable behavior. Moreover, the conversion from

discrete processes to continuous processes and vice versa is interpreted in a different way than

is required and defined in this work. If, for example, a continuous place is connected to a

discrete transition, this discrete transition fires continuously by deducting the arc weight from

the marking at the time of the delay. The discrete transition of the developed PNlib always

fires in a discrete manner regardless of whether it is connected to a continuous or discrete

place (see Figure 2.1).

Figure 2.1: Different results of a hybrid Petri net simulated with the Cell Illustrator (left) and

the PNlib in Dymola (right). A discrete transition connected to a continuous place
fires continuously if the Cell Illustrator is used while it fires discretely if the
PNlib is used.

The analysis methods of the Cell Illustrator are also limited to parameter scans over a desired

range. According to present knowledge, there is no possibility to perform sensitivity analysis,

parameter estimation, process optimization, and stochastic simulation.

SNOOPY

Snoopy is a freely available unifying Petri net framework to investigate biomolecular

networks (Rohr et al. 2010). A Petri net can be modeled time-free (qualitative model) or its

behavior can be associated with time (quantitative model) such as stochastic, continuous, and

hybrid Petri nets; thereby, different models are convertible into each other. It is also possible

to structure the models hierarchically in order to manage complex networks.

http://www.dict.cc/englisch-deutsch/barely.html
http://www.dict.cc/englisch-deutsch/comprehensible.html

2.2 Petri Net Tools 13

A set of stiff and non-stiff solvers are available to perform the deterministic simulation of a

continuous Petri net. The stochastic simulation of a stochastic Petri net is executed by

Gillespie’s exact algorithm (Gillespie 1977). The synchronization of deterministic and

stochastic simulation of a hybrid Petri net is achieved with a specific algorithm detailed by

(Herajy and Heiner 2010).

Petri nets created with Snoopy can be analyzed qualitatively with the aid of the tool Charlie

(BTU Cottbus 2011). The main features of Charlie are: analysis of structural properties,

invariant based analysis, and reachability graph-based analysis.

The drawback of Snoopy is that a continuous Petri net is interpreted as a graphical

representation of a system of ordinary differential equations. Hence, the general Petri net

property of non-negative tokes cannot be maintained during simulation (see Figure 2.2).

Additionally, at the decision point to implement a new tool, hybrid Petri nets were not

supported by Snoopy, which is now possible (Herajy and Heiner 2010). But not all conflict

situations of hybrid Petri nets are trapped and, thus, negative markings can occur.

Furthermore, places cannot be provided with capacities and no functions can be assigned to

arcs in hybrid Petri nets. There are also a limited number of predefined kinetic functions

which complicates the modeling process. Moreover, there is no possibility to perform

sensitivity analysis, parameter estimation, or process optimization with Snoopy according to

present knowledge.

Figure 2.2: Different results of a continuous Petri net simulated by Snoopy (left) and the

PNlib in Dymola (right). Snoopy interprets a continuous Petri net as a graphical
representation of a system of ODEs while the PNlib preserves the Petri net
properties by transforming the discrete concept to a continuous one (see
Section 4.4).

2
R

el
at

ed
 W

or
ks

14

T
ab

le
 2

.1
: O

ve
rv

ie
w

 o
f t

oo
ls

 fo
r

m
od

el
in

g
by

 h
yb

ri
d

Pe
tr

i n
et

s

Fe

at
ur

es

O
ve

rv
ie

w

Pe
tr

i n
et

s s
up

po
rt

ed

C
om

po
ne

nt
s

E
nv

ir
on

m
en

t
D

ra
w

ba
ck

C

el
l I

llu
st

ra
to

r
co

m
m

er
ci

al

(N
ag

as
ak

i e
t a

l.
20

10
)

ht
tp

://
w

w
w

.c
el

lil
lu

st
ra

to
r.c

om
/

Ti
m

ed
 P

et
ri

ne
ts

,
St

oc
ha

st
ic

 P
et

ri
ne

ts
,

C
on

tin
uo

us
 P

et
ri

ne
ts

,
H

yb
rid

 P
et

ri
ne

ts

(H
yb

rid
 fu

nc
tio

na
l P

et
ri

ne
ts

 w
ith

 e
xt

en
si

on
s)

G
ra

ph
ic

al
 e

di
to

r,
A

ni
m

at
io

n
Ja

va

−
Si

m
ul

at
io

n
lik

e
a

“b
la

ck
 b

ox
”.

−

C
on

ve
rs

io
n

of
 d

is
cr

et
e

to
 c

on
tin

uo
us

m

ar
ki

ng
s a

nd
 v

er
se

 v
er

sa
 is

 in
te

rp
re

te
d

in

a
di

ff
er

en
t w

ay
.

−
Po

st
-p

ro
ce

ss
in

g
of

 si
m

ul
at

io
n

re
su

lts
 is

lim

ite
d

to
 p

ar
am

et
er

 sc
an

s.
H

IS
Im

fr

ee
 o

f c
ha

rg
e

(A
m

en
gu

al
 2

00
9)

ht

tp
://

so
ur

ce
fo

rg
e.

ne
t/p

ro
je

ct
s/

hi
si

m
/

Ti
m

ed
 P

et
ri

ne
ts

,
C

ol
or

ed
 P

et
ri

ne
ts

,
H

yb
rid

 P
et

ri
ne

ts

(D
iff

er
en

tia
l P

et
ri

ne
ts

)

G
ra

ph
ic

al
 e

di
to

r,
A

ni
m

at
io

n
Ja

va

−
C

on
tin

uo
us

 p
la

ce
s c

an
no

t b
e

pr
ov

id
ed

w

ith
 c

ap
ac

iti
es

.
−

D
is

cr
et

e
pl

ac
es

 c
an

no
t b

e
pr

ov
id

ed
 w

ith

lo
w

er
 c

ap
ac

iti
es

.
−

Th
e

fir
ab

ili
ty

 o
f d

is
cr

et
e

tra
ns

iti
on

s i
s n

ot

in
flu

en
ce

d
by

 th
e

ca
pa

ci
tie

s o
f d

is
cr

et
e

pl
ac

es
.

−
N

o
co

nf
lic

ts
 a

re
 re

ga
rd

ed
 a

nd
 so

lv
ed

.
−

D
is

cr
et

e
pl

ac
es

 m
us

t n
ot

 b
e

co
nn

ec
te

d
to

co

nt
in

uo
us

 tr
an

si
tio

ns
 e

ve
n

if
th

ey
 a

re

in
pu

t a
s w

el
l a

s o
ut

pu
t o

f t
he

 tr
an

si
tio

n
w

ith
 a

rc
 o

f s
am

e
w

ei
gh

ts
.

−
C

on
tin

uo
us

 p
la

ce
s m

us
t n

ot
 b

e
co

nn
ec

te
d

to
 c

on
tin

uo
us

 tr
an

si
tio

ns
 b

y
in

hi
bi

to
ry

ar

cs
.

−
A

rc
 w

ei
gh

ts
 o

f c
on

tin
uo

us
 p

la
ce

s c
an

 b
e

ne
ga

tiv
e.

−

M
ar

ki
ng

s o
f c

on
tin

uo
us

 p
la

ce
s c

an
 b

e
ne

ga
tiv

e.

−
Th

e
m

ar
ki

ng
s o

f c
on

tin
uo

us
 p

la
ce

s
ca

nn
ot

 b
e

de
co

m
po

se
d.

−

W
he

n
a

di
sc

re
te

 tr
an

si
tio

n
be

co
m

es

http://www.cellillustrator.com/
http://sourceforge.net/projects/hisim/
http://sourceforge.net/projects/hisim/

2.
2

Pe
tri

 N
et

 T
oo

ls

15

ac
tiv

e,
 to

ke
ns

 o
f t

he
 in

pu
t p

la
ce

s a
re

re

se
rv

ed
 fo

r f
iri

ng
.

−
C

on
tin

uo
us

 tr
an

si
tio

ns
 c

an
 o

nl
y

be

in
ac

tiv
at

ed
 b

y
co

nn
ec

tio
ns

 to
 d

is
cr

et
e

pl
ac

es
 v

ia
 te

st
 a

nd
 in

hi
bi

to
ry

 a
rc

s.
H

Y
PE

N
S

fr
ee

 o
f c

ha
rg

e
(S

es
se

go
 e

t a
l.

20
08

)
ht

tp
://

w
w

w
.d

ie
e.

un
ic

a.
it/

au
to

m
at

ic
a/

hy
pe

ns
/

Ti
m

ed
 P

et
ri

ne
ts

,
St

oc
ha

st
ic

 P
et

ri
ne

ts
,

C
on

tin
uo

us
 P

et
ri

ne
ts

,
H

yb
rid

 P
et

ri
ne

ts

(F
irs

t-o
rd

er
 h

yb
rid

 P
et

ri
ne

ts
)

Te
xt

ua
l e

di
to

r
M

A
TL

A
B

−

N
o

gr
ap

hi
ca

l u
se

r i
nt

er
fa

ce
 is

 su
pp

or
te

d.

−
N

o
in

hi
bi

to
ry

 a
nd

 te
st

 a
rc

s a
re

 su
pp

or
te

d.

−
N

o
ca

pa
ci

tie
s a

re
 su

pp
or

te
d.

−

Th
e

fir
in

g
sp

ee
ds

 o
f c

on
tin

uo
us

tra

ns
iti

on
s h

av
e

to
 b

e
co

ns
ta

nt
 b

et
w

ee
n

ev
en

ts
.

Si
m

H
PN

co

m
m

er
ci

al

(J
úl

ve
z

an
d

M
ah

ul
ea

 2
01

2)

ht
tp

://
w

eb
di

is
.u

ni
za

r.e
s/

G
IS

ED
/?

q
=t

oo
l/s

im
hp

n

Ti
m

ed
 P

et
ri

ne
ts

,
St

oc
ha

st
ic

 P
et

ri
ne

ts
,

C
on

tin
uo

us
 P

et
ri

ne
ts

,
H

yb
rid

 P
et

ri
ne

ts

G
ra

ph
ic

al
 e

di
to

r,
St

ru
ct

ur
al

an

al
ys

is

M
A

TL
A

B

R
20

08
a

or

ne
w

er

−
Th

e
fir

in
g

sp
ee

d
of

 c
on

tin
uo

us

tra
ns

iti
on

s c
an

no
t b

e
ar

bi
tra

ry
 fu

nc
tio

ns
.

Th
ey

 a
re

 re
st

ric
te

d
to

 in
fin

ite
 a

nd
 p

ro
du

ct

se
rv

er
 se

m
an

tic
s.

−
O

nl
y

co
nf

lic
t r

es
ol

ut
io

ns
 fo

r d
is

cr
et

e
tra

ns
iti

on
s a

re
 re

ga
rd

ed
. T

hi
s c

on
fli

ct

ty
pe

 is
 so

lv
ed

 p
ro

ba
bi

lis
tic

al
ly

 w
ith

 a
ll

tra
ns

iti
on

s o
f t

he
 sa

m
e

pr
ob

ab
ili

ty
.

−
N

o
in

hi
bi

to
ry

 a
nd

 te
st

 a
rc

s a
re

 su
pp

or
te

d.

−
N

o
ca

pa
ci

tie
s a

re
 su

pp
or

te
d.

−

N
o

in
fo

rm
at

io
n

ab
ou

t p
ro

ce
ss

es

im
po

rta
nt

 fo
r s

im
ul

at
io

n
(f

iri
ng

,
co

nv
er

si
on

 d
is

cr
et

e
to

 c
on

tin
uo

us
 v

.v
.

et
c.

) i
s a

va
ila

bl
e.

Sn

oo
py

fr

ee
 o

f c
ha

rg
e

(R
oh

r e
t a

l.
20

10
)

ht
tp

://
w

w
w

-d
ss

z.
in

fo
rm

at
ik

.tu
-

co
ttb

us
.d

e/
D

SS
Z/

So
ftw

ar
e/

Sn
oo

py

Ti
m

ed
 P

et
ri

ne
ts

,
St

oc
ha

st
ic

 P
et

ri
ne

ts
,

C
on

tin
uo

us
 P

et
ri

ne
ts

,
H

yb
rid

 P
et

ri
ne

ts

G
ra

ph
ic

al
 e

di
to

r,
A

ni
m

at
io

n,

St
ru

ct
ur

al

an
al

ys
is

 (C
ha

rli
e)

Li
nu

s,
W

in
do

w
s,

M
ac

 O
S

X

−
C

on
tin

uo
us

 P
et

ri
ne

t i
s i

nt
er

pr
et

ed
 a

s
sy

st
em

 o
f o

rd
in

ar
y

di
ff

er
en

tia
l e

qu
at

io
ns

.
−

N
ot

 a
ll

co
nf

lic
ts

 si
tu

at
io

ns
 a

re
 tr

ap
pe

d.

−
Pl

ac
es

 c
an

no
t b

e
pr

ov
id

ed
 w

ith

ca
pa

ci
tie

s.
−

N
o

fu
nc

tio
ns

 c
an

 b
e

as
si

gn
ed

 to
 a

rc
s i

n

http://www.diee.unica.it/automatica/hypens/
http://www.diee.unica.it/automatica/hypens/
http://webdiis.unizar.es/GISED/?q=tool/simhpn
http://webdiis.unizar.es/GISED/?q=tool/simhpn
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy

2
R

el
at

ed
 W

or
ks

16

hy
br

id
 P

et
ri

ne
ts

.
−

Li
m

ite
d

nu
m

be
r o

f p
re

de
fin

ed
 k

in
et

ic
s.

−
N

o
po

ss
ib

ili
ty

 to
 u

se
 si

m
ul

at
io

n
re

su
lts

fo

r p
os

t-p
ro

ce
ss

in
g.

V

is
ua

l O
bj

ec
t N

et
++

fr

ee
 o

f c
ha

rg
e

(D
ra

th
 2

00
2)

ht

tp
://

w
w

w
.r-

dr
at

h.
de

/H
om

e/

V
is

ua
l_

O
bj

ec
t_

N
et

++
.h

tm
l

Ti
m

ed
 P

et
ri

ne
ts

,
H

yb
rid

 d
yn

am
ic

 n
et

s,
H

yb
rid

 o
bj

ec
t n

et
s

G
ra

ph
ic

al
 e

di
to

r,
A

ni
m

at
io

n,

St
ru

ct
ur

al

an
al

ys
is

W
in

do
w

s
−

Th
e

up
da

tin
g

is
 st

op
pe

d.
 It

 w
as

 fu
rth

er

de
ve

lo
pe

d
by

 th
e

G
en

om
ic

 O
bj

ec
t N

et
-

Pr
oj

ec
t f

ro
m

 w
hi

ch
 th

e
co

m
m

er
ci

al
 to

ol

C
el

l I
llu

st
ra

to
r a

ris
es

.
−

In
pu

t a
nd

 O
ut

pu
t a

rc
s o

f c
on

tin
uo

us

tra
ns

iti
on

s h
av

e
al

w
ay

s t
he

 w
ei

gh
t o

ne
.

−
Fi

rin
g

sp
ee

ds
 c

an
 b

ec
om

e
ne

ga
tiv

e.

−
Th

e
m

ar
ki

ng
s o

f c
on

tin
uo

us
 p

la
ce

s c
an

be

 n
eg

at
iv

e.

−
D

is
cr

et
e

pl
ac

es
 m

us
t n

ot
 b

e
co

nn
ec

te
d

to

co
nt

in
uo

us
 tr

an
si

tio
ns

 e
ve

n
if

th
ey

 a
re

in

pu
t a

s w
el

l a
s o

ut
pu

t o
f t

he
 tr

an
si

tio
n

w
ith

 a
rc

 o
f s

am
e

w
ei

gh
ts

.
−

C
on

tin
uo

us
 p

la
ce

s m
us

t n
ot

 b
e

co
nn

ec
te

d
to

 c
on

tin
uo

us
 tr

an
si

tio
ns

 b
y

in
hi

bi
to

ry

ar
cs

.

http://www.r-drath.de/Home/%20Visual_Object_Net++.html
http://www.r-drath.de/Home/%20Visual_Object_Net++.html

2.3 Petri Nets in Modelica 17

As Table 2.1 clearly shows, no current tool functions without drawbacks and can interpret the

hybrid Petri net formalism as needed for modeling biological systems in this work. Hence,

these problems led to the development of a new Petri net simulation environment specified by

the xHPN formalism and corresponding definitions for processes important for simulation.

This new environment enables among others

− a simulation like a white box, i.e. all processes are defined precisely,

− that negative markings and arc weights cannot occur during simulation because quantities

of biological compounds cannot become negative,

− the solution all possible conflicts which could occur during simulation in order to get

reliable results; for example, modeling biological processes requires often the solution of

conflicts at random due to the fact that the phenomenon is also a random process in nature

or it has not yet been exactly investigated,

− the support of inhibitory and test arcs to model inhibition and activation mechanisms,

− the possibility to use the arising simulation results for post-processing,

− an object-oriented implementation which allow an easy way to maintain, extend, and

modify the Petri net component models.

2.3 PETRI NETS IN MODELICA

There are already three Petri net libraries available on the Modelica homepage (Modelica

Association 2011). The first was developed by Mosterman et al. and enables the modeling of

a restricted class of discrete Petri nets, called normal Petri nets (Mosterman et al. 1998). The

places of normal Petri nets can only contain zero or one token. Additionally, all arcs have the

weight one and external signals initiate the firing of transitions. If a conflict occurs between

two or more transitions, the transition with the highest priority fires. Hence, only deterministic

behavior is represented by this kind of Petri net.

The second Petri net library is an extension of the previous one and was developed by

Fabricius (Fabricius 2001). The places are able to contain a non-negative integer number of

tokens and can be provided with non-negative integer minimum and maximum capacities.

Furthermore, the transitions are timed with fixed or stochastic delays.

18 2 Related Works

The third library, called StateGraph, is based on Grafcharts which combines the function chart

formalism of Grafcet with the hierarchical states of Statecharts (Johnsson and Årzén 1999).

The StateGraph library is part of the Modelica standard library and was developed by Otter et

al. (Otter et al. 2005).

Figure 2.3: Relationships between the different formalisms

The relationships between the mentioned concepts are displayed in Figure 2.3. To enable

modeling of biological systems with Petri nets in Modelica, the existing libraries have to be

extended by the following aspects:

− Transfer of the discrete Petri net concept to a continuous one,

− Support of arcs with (functional) weightings,

− Support of test-, inhibitor, and read arcs,

− Support of (different) conflict resolutions (random decisions),

− Combination of discrete and continuous Petri net elements to hybrid Petri nets.

19

3 BASICS

This chapter comprises all basic techniques and methods that are necessary to accomplish the

developed modeling process as depicted in Figure 5.1. At first, the object-oriented modeling

language Modelica is introduced which is used to build up mathematical models of biological

processes based on the xHPN formalism specified in Chapter 4. The Modelica language

satisfies all requirements (see Section 6) and allows the programming of places and transitions

of xHPNs. The Modelica constructs and principals used to implement the components of

xHPNs are subsequently explained. Afterwards, optimization methods are introduced which

are needed to perform parameter estimation and process optimization. Parameter estimation is

used to find the parameters of a model if the concrete experiments are too expensive, too

inaccurate, or even unfeasible. However, process optimization is performed based on a

verified model to gain an optimal control of the biological process in order to achieve, for

example, maximum product from the cells. Finally, methods for sensitivity analysis are

introduced that help reduce the complexity of the model and give some indication of the

verification.

3.1 THE MODELICA LANGUAGE

This section introduces the Modelica language constructs used to implement places,

transitions, and arcs of the xHPN concept developed for biological applications (xHPNbio,

see Section 5.2). For the syntactic meta symbols the extended Backus-Naur form is used

(Scowen 1993). The object-oriented concept of Modelica is based on classes. From an

implemented class any numbers of objects can be generated which are said to be instances. A

Modelica class usually consists of a variable declaration part and an equation section which

contains the equations for the declared variables. Example 3.1 shows a typical class structure

with an upper part for the declarations and a lower part for the corresponding equations. A

class can also contain annotations. Annotations are additional information associated with

the model to specify, for example, the graphical representation, documentation text, version

20 3 Basics

handling, code generation, simulation, or the graphical user interface. Annotations are

implemented by the following syntax

annotation(annotationElements);

Example 3.1

class className
declaration1
declaration2
...

equation
equation1
equation2
...

end className;

3.1.1 VARIABLES

Variables, also called components, can either be declared by a built-in data type of Modelica

(Boolean, Integer, Real, String, enumeration(…)) or by an instance of another

class. It has to be distinguished between discrete-time and continuous-time variables.

Discrete-time variables can change their values only at event instants (see Section 3.1.6)

while continuous-time variables can change their values at any time.

Variables can be provided with the following prefixes that gives them specific properties:

− constant: the constant prefix determines that the variable never changes its value.

− parameter: the parameter prefix determines that the variable is constant during a

simulation run but can be changed between two simulation runs to modify the model

behavior. It is a static variable that is initialized once and never changed thereafter.

− input: the input prefix determines that the equation for such a variable is not provided in

the model but rather by connected components.

− output: the output prefix determines that the value of such a variable is utilized by

connected components.

− discrete: the discrete prefix determines that such a variable is a discrete-time variable.

− inner: the inner prefix declares a property that should be common to all components of

a model and, hence, accessible from within those components.

− outer: the outer prefix references an element instance with the same name but using the

prefix inner. The lookup is performed through the instance hierarchy instead of through

the class nesting hierarchy. (Inner and outer components are used to define common

3.1 The Modelica Language 21

properties for the animation of a Petri net (see Section 6.2) or to model a fermentation

process by which the volume is changed during fermentation. Then, the current volume is

needed within several model components to recalculate the concentrations of substances

(see Section 6.2).)

The default start values of variables are zero and false in the case of Booleans. Other start

values have to be set by the start attribute within brackets after the name of the variable.

Example 3.2 comprises some variable declarations with prefixes and specified start values.

Example 3.2

parameter Real realA=6.7;
Integer intB(start=8);
parameter String strC="Hello World";
Boolean boolD(start=true);
discrete Integer intE;
constant Real realF=9.81;

Variables can have higher dimensions than one, so-called arrays. Arrays are a collection of

variables all of the same type. They are declared with the dimension size within square

brackets after the variable name. If the size of an array is unknown, the brackets contain

colons. This is mainly used for input arguments of functions (see Section 3.1.4).

Example 3.3

Real v1[3]={1,2,3}; //3-dimensional vector
Real m1[3,3]={{1,2,3},{3,4,5},{7,8,9}}; //3x3 matrix
Real v2[:]; //vector v2 has unknown size

Several built-in functions related to arrays are available. The following table summarizes

some of them.

Table 3.1: Built-in functions related to arrays

zeros(n1,n2,...) Returns a 𝑛1 × 𝑛2 × … matrix with zero-elements.
fill(s,n1,n2,...) Returns a 𝑛1 × 𝑛2 × … matrix which is filled with the scalar s.
size(A,i) Returns the size of the dimension i of the array A.
sum(A) Returns the sum of all elements of the array A.

3.1.2 EQUATIONS

Equations are more powerful than assignment statements known from other programming

languages like C++ or Java. The equation

a+b=c;

22 3 Basics

can be used in three different ways according to assignment statements

a:=c-b;
b:=c-a;
c:=a+b;

i.e. the variable a can be computed from c and b, the variable b can be computed from c and

a, or the variable c can be computed from a and b. To distinguish between equations and

assignment statements, the latter are expressed by := in Modelica and only allowed in

algorithm sections or functions (see Section 3.1.3 and 3.1.4) but not in equation sections.

Equations can be classified into four different groups (Fritzson 2004, Modelica Association

2010):

− Normal equations which are part of equation sections.

− Declaration equations which are part of variable declarations.

− Modification equations which are used to modify attributes of variables.

− Binding equations comprise declaration equations and modification equations.

− Initial equations which are part of initial equation sections or used to modify the start

attribute.

NORMAL EQUATIONS

Normal equations appear in the equation section of a model which begins with the keyword

equation (see Example 3.1). They comprise the following types of equations

− Simple-equality-equations with the syntax
simpleExpression "=" expression

Simple-equality-equations determine an equality relationship between two expressions

which is well-known from mathematics.

− For-equations with the syntax
for forIndices loop

{ equation ";" }
end for ";"

For-equations can express repetitive equation structures in a compact manner.

− Connect-equations with the syntax
connect "(" componentReference "," componentReference ")" ";"

Connect-equations generate connections between two components to enable interaction

(see Section 3.1.4).

− If-equations with the syntax

3.1 The Modelica Language 23

if expression then
{ equation ";" }

{ elseif expression then
{ equation ";" }

}
[else

{ equation ";" }
] end if ";"

If-equations are conditional equations which can contain discrete-time variables as well

as continuous-time variables. If the variables of the if-equations are not specified with

parameter or constant, the else part has to be included. Each part (if, elseif,

else) must have the same number of equations.

− When-equations with the syntax
when expression then

{ equation ";" }
{ elsewhen expression then

{ equation ";" } }
end when ";"

When-equations are conditional equations which can only contain discrete-time variables

in contrast to if-equations. The equations within a when-equation are only active at event

instants (see Section 3.1.6).

DECLARATION EQUATIONS

Declaration equations appear in the declaration part of a model, usually, in term of parameter

and constant declarations, e.g.

parameter Integer a=5;
constant Real g=9.81;

MODIFICATION EQUATIONS

Modification equations also appear in the declaration part of a model. They are used to

modify the default values of attributes of a variable, e.g.

Real b(start=8.87);

(see also Example 3.7).

24 3 Basics

INITIAL EQUATIONS

Initial equations define the values of variables at the initial time, usually time=0, to compute

their evaluation over time. This can either be done by setting the start-attribute (see

Example 3.2) or by equations in the initial equation section (see Example 3.4).

Example 3.4

class className
declaration1
declaration2
...

equation
equation1
equation2
...

initial equation
initialEquation1
initialEquation2;
...

end className;

3.1.3 ALGORITHMS

Besides the mentioned equation and initial equation sections, a model can also have an

algorithm section introduced by the keyword algorithm (see Example 3.5). It consists of a

sequence of statements which are executed in the order of their appearance.

Example 3.5

class className
declaration1
declaration2
...

equation
equation1
equation2
...

algorithm
statement1
statement2;
...

end className;

Additionally, the variable has to be on the left-side of an assignment and the assigned value is

on the right-side. To distinguish between equations and statements, the assignment operator is

chosen to be ":=", e.g. y:=8*x-5, whereby y is the variable and 8*x-5 is the assigned value.

3.1 The Modelica Language 25

The following types of statements can be used within algorithm sections

− Simple-assignment-statements with the syntax
componentReference ":=" expression

Simple-assignment-statements have on the left-side a variable and on the right-side the

assigned value; i.e. the expression is evaluated and stored in the variable

componentReference.

− For-statements with the syntax
for forIndices loop

{ statement ";" }
end for ";"

For-statements are a compact manner to express iterations.

− While-statements with the syntax
while expression loop

{statement ";" }
end while ";"

While-statements are a compact manner to express iterations by which the range of the

iteration variable cannot be expressed in a closed form.

− Break-statements with the syntax
break;

Break-statements terminate the execution of for- and while-statements.

− If-statement with the syntax
if expression then

{ statement ";" }
{ elseif expression then

{ statement ";" }
}
[else

{ statement ";" }
] end if ";"

If-statements express conditional assignments.

− When-statement with the syntax
when expression then

{ statement ";" }
{ elsewhen expression then

{ statement ";" } }
end when ";"

When-statements are conditional assignments. The statements within a when-statement

are only active when the expression becomes true, i.e. they are only executed at event

instants (see Section 3.1.6).

26 3 Basics

3.1.4 SPECIALIZED CLASSES

The key concept of the Modelica language is the previously introduced class. This general

class concept founds the basis for specialized classes which have the same properties as a

class, apart from restrictions, but also additional properties that make them usable under

appropriate conditions. They offer a way to make the Modelica code easier to read and

maintain. The specialized classes are:

− record: a record is a specialized class to define data structures without behavior.

Equations are not allowed within a record definition.

− type: a type is a specialized class to define aliases or extensions of predefined types

(Real, Integer, Boolean, String, enumeration(…)), records, or arrays.

− model: a model is a specialized class that is identical to the basic class concept with no

restrictions or additional properties.

− block: a block is specialized class with the same properties of a model except the

restriction that every variable must be either input or output, i.e. all variables have to be

declared with the prefixes input or output.

− function: a function is a specialized class to implement mathematical functions. The

inputs of a function have to be prefixed by input and the results by output.

− connector: a connector is a specialized class to define the variables that are

interchanged within a connection between two components. No equations are allowed in a

connector.

− package: a package is a specialized class to organize and structure Modelica classes and

specialized classes. It can contain the declarations of classes, specialized classes, and

constants while parameters and variables cannot be declared in a package.

The specialized classes model, block, function, connector, and package are used in

the Petri net library and are discussed in more detail hereafter.

MODEL

The specialized class model has the same properties as a class and is used for modeling

purposes. Three different equation types can occur in a model: discrete, differential, and

algebraic equations. Example 3.6 contains these equation types.

3.1 The Modelica Language 27

Example 3.6

model example
 parameter Real a=0.8;
 parameter Real b=1.78;
 Real c(start=6.7);
 Real d;
 discrete Boolean e;
equation
 der(c)=-a*c/(b+c); //Differential equation
 d=-3*c-7.2; //Algebraic equation
 when c<3.3 then //Discrete equation
 e=true;
 end when;
end example;

The equation

der(c)=-a*c/(b+c);

is a differential equation and the corresponding variable c is a continuous-time variable. The

operator der() accesses the derivative according to time. However, if an equation only

involves algebraic formulas and no derivatives, it is an algebraic equation. In Example 3.6 the

equation

d=-3*c-7.2;

is an algebraic equation while the equation

when c<3.3 then
 e=true;
end when;

is a discrete equation because the discrete-time variable e is only recalculated when the

condition c<3.3 becomes true, i.e. only at event instants (see Section 3.1.6). Equation

systems that contain algebraic as well as differential equations are called differential

algebraic equation systems (DAEs) and if discrete equations also appear they are called

hybrid differential algebraic equation systems (hybrid DAEs) (see Section 3.1.7).

BLOCK

A block has the same properties as a model with the restriction that all variables have to be

either declared by the prefix input or output (see Example 3.7). If a block is used in

another component, a binding equation has to be provided for each variable with the input-

prefix to guarantee a balanced model (see Section 3.1.5). In Example 3.7 an instance of the

block blockExample is used in the model modelExample. The variable s of the block has

28 3 Basics

the output-prefix and, hence, the equation is provided in the block. However, the variable u

has the input-prefix and the equation has to be defined by a binding equation when the block

is used. It is defined in the model by the equation u=time within brackets after the name of

the block instance.

Example 3.7

block blockExample
 input Real u;
 output Real s;
equation
 s=sin(u);
end blockExample;

model modelExample
 Real v;
 blockExample exSin(u=time, s=v); //binding equation for u
end modelExample;

FUNCTION

The specialized class function is used to implement mathematical algorithms with a

sequence of statements. No equation sections are allowed in functions only algorithm

sections. A typical structure of a function is outlined in Example 3.8.

Example 3.8

function functionName
input typeI1 in1;
input typeI2 in2; ...
output typeO1 out1;
output typeO2 out2; ...

protected
<local variables>
...

algorithm
...
<statements>
...

end functionName;

The first part of a function declares inputs and outputs using the keywords input and

output. After the keyword protected, local variables can be declared neither input nor

output of the function. The algorithmic procedure starts with the keyword algorithm;

thereby, all types of statements, mentioned in Section 3.1.3, can be used. The function of

Example 3.9 calculates the sum of vector elements. The input is a vector of unknown size

which is identified with the operator "[:]" and the output is the scalar y.

3.1 The Modelica Language 29

Example 3.9

function functionExample
 input Real x[:];
 output Real y;
algorithm
 y:=0;
 for i in 1:size(x,1) loop
 y:=y+x[i];
 end for;
end functionExample;

A function can be called from within classes, models, blocks, or other functions by the prompt

(out1, out2, ...) = functionName(inp1,inp2,...);

The function of Example 3.9 can be called by

z = functionExample({1,2,3,8});

It is also possible to integrate functions written in C or FORTRAN 77 in the Modelica

environment. This can be done with the aid of the key word external followed by the

respective language within quotation marks. The function random of Example 3.10 generates

a uniformly distributed random number by an external C-function. It has no inputs and returns

the random number x. The Include annotation specifies the C-file that contains the

respective implementation.

Example 3.10

Modelica function:

function random
 output Integer x;
 external "C" annotation(Include = "#include <random.c>",

__Dymola_pure=false);
end random;

C-function:

#include <stdlib.h>
#ifndef RANDOM_C
#define RANDOM_C
int random()
{
 static int called=0;
 int i;
 if (!called) {
 srand((unsigned) time(NULL));
 called=1;
 }
 return rand();
}
#endif

30 3 Basics

Modelica functions are according to the specification (Modelica Association 2010) pure

which means that

− Modelica functions are mathematical functions that always return the same result when

they are called with the same input arguments.

− Modelica functions are side-effect free with respect to the internal Modelica state.

− Exception: An impure function is either an impure external function or a Modelica

function which calls an impure external function. An impure function returns different

values by calling with the same inputs. They can be called from within a when-equation or

a when-statement. The function random of Example 3.10 is an example of an impure

function which has no input arguments and always returns another value when it is

required. The Dymola tool identifies an impure function by the vendor-specific annotation

__Dymola_pure=false.

CONNECTOR

The specialized class connector is used to implement connectors. Connectors declare

variables that are interchanged between components. A possible structure of a connector is

outlined in Example 3.11.

Example 3.11

connector connectorName
input typeI1 in1;
input typeI2 in2;
...
output typeO1 out1;
output typeO2 out2;
...

end connectorName;

Two connectors can be connected by a connector equation (see Section 3.1.2), e.g.

connect(connector1, connector2);

The prefixes input and output define the location of the corresponding equation and

guarantee in this manner balanced modeling (see Section 3.1.5). When a variable is provided

with the input-prefix, the equation is part of the connected component while the equation of

an output variable is located in the component where the connector is used.

3.1 The Modelica Language 31

PACKAGE

The specialized class package is used to structure and organize Modelica classes. The

package of Example 3.12 comprises the examples of this and the previous sections.

Example 3.12

package packageExample

function random
 output Integer x;
 external "C" annotation(Include = "#include <random.c>",

__Dymola_pure=false);
end random;

block blockExample
 input Real u;
 output Real s;
equation
 s=sin(u);
end blockExample;

model modelExample
 Real v;
 example2_6a exSin(u=time, s=v);//binding equation for u
end modelExample;

model example
 parameter Real a=0.8;
 parameter Real b=1.78;
 Real c(start=6.7);
 Real d;
 discrete Boolean e;
equation
 der(c)=-a*c/(b+c); //Differential equation
 d=-3*c-7.2; //Algebraic equation
 when c<3.3 then //Discrete equation
 e=true;
 end when;
end example;

function functionExample
 input Real x[:];
 output Real y;
algorithm
 y:=0;
 for i in 1:size(x,1) loop
 y:=y+x[i];
 end for;
end functionExample;

end packageExample;

32 3 Basics

3.1.5 BALANCED MODELS

A Modelica model can only be simulated if the number of variables is equal to the number of

equations. Since Modelica 3.0 there are additional restrictions so that every model must be

locally balanced, i.e. the number of variables and equations must be identical on every

hierarchical level (Olsson et al. 2008). If instances of locally balanced models are used by

connecting them to a model, this model will automatically have the same number of variables

and equations. It is said to be globally balanced. Every model or block that can be simulated

is globally balanced. To guarantee globally balanced models, the following conditions have to

be maintained:

− The number of flow variables in a connector must be equal to the number of non-causal,

non-flow variables (variables without the prefixes flow, input, output, parameter

and constant).

− The number of equations of a model must be identical to the number of variables,

excluding input and flow variables.

− When a model is used by making an instance of it, all missing equations must be either

provided by connecting connectors or by a modification equation for every non-connector

variable with an input prefix.

A detailed description and definition of locally and globally balanced models can be found in

(Olsson et al. 2008) and (Modelica Association 2010).

3.1.6 DISCRETE EVENT AND HYBRID MODELING

An event is a discrete change when something happens and occurs at a certain point in time.

Additionally, events in Modelica have the following properties (Fritzson 2004)

− An event has zero duration.

− An event occurs when the corresponding event condition switches from false to true.

− When an event occurs, variables that are associated with the event are changed

corresponding to their equations, i.e. a set of equations associated with the event becomes

active.

This event behavior is engendered in Modelica by when-equations and when-statements (see

Section 3.1.2 and 3.1.3).

3.1 The Modelica Language 33

when eventCondition then
eventAction1;
eventAction2;
...

end when;

Figure 3.1: Discrete-time variable 𝒙 and continuous-time variable 𝒚

Variables that change their values at event instants and keep constant otherwise, are called

discrete-time variables. They have to be declared with the discrete-prefix (see

Section 3.1.1). However, continuous-time variables usually change their values continuously

over time. Figure 3.1 shows the time evolution of a discrete-time variable 𝑥 and a continuous-

time variable 𝑦. The discrete-time variable changes its value only at the four event instants

while the continuous-time variable changes its value continuously entire time.

Figure 3.2: The function pre(x) obtains the value of the discrete-time variable x

immediately before the event occurs

Events can be classified according to how they are generated into time events and state

events. Time events are directly associated with Modelica built-in variable time which

contains the current simulation time. An event condition of a time event can be, for example,

time >= eventTime

which triggers a time event when time=eventTime due to the switch of the event condition

from false to true at this point in time. Because their occurrence time can be predicted in

advanced, time events can be handled more efficiently by the simulator.

timeevent 1 event 2 event 3 event 4

x, y

x

y

event
time

x

pre(x)

x

34 3 Basics

However, state events cannot be predicted in advanced because they are associated with

changes in state variables (see Section 3.1.7). An example for event condition of a state event

is

sin(x) > 0.7

which triggers an event each time when sin(x) becomes greater than 0.7, i.e. at the points in

time when the condition switches from false to true.

Figure 3.3: The function edge(x) detects an event when the variable x switches from

false to true (left) and the function change(x) detects an event when the
variable x switches from false to true or from true to false (right)

Furthermore, Modelica offers a way to generate, prevent, and detect events by several built-in

functions. In addition, it is possible to access the value of a variable immediately before the

event occurs. The following table summarizes some of these functions.

Table 3.2: Built-in functions related to events

initial()

Generates a time event at the beginning of a simulation,
i.e. when the variable time is equal to the defined start
time (usually time=0), it returns true and false
otherwise.

terminal()
Generates a time event at the end of a successful
simulation, i.e. when the variable time is equal to the
defined stop time, it returns true and false otherwise.

sample(start, interval) Generates time events at the times
𝑠𝑡𝑎𝑟𝑟𝑡 + 𝑖𝑖 ∗ 𝑖𝑖𝑛𝑡𝑒𝑟𝑟𝑣𝑎𝑙 (𝑖𝑖 = 0,1, …).

noEvent(expr) Prevents the generation of time and state events.

pre(x) Obtains the value of the discrete-time variable x
immediately before the event occurs (see Figure 3.2).

edge(x)

Detects the change of a Boolean variable. It returns
true when x changes from false to true; i.e. it is
equal to the condition x and not pre(x) (see
Figure 3.3, left).

event
time

x

false

true

event
time

x

false

true

event

3.1 The Modelica Language 35

change(x)

Detects the change of a Boolean variable. But in
contrast to the edge()-function, it return true if x
switches from false to true or from true to
false, i.e. it is equal to the condition x<>pre(x) (see
Figure 3.3, right).

reinit(x,expr)
Reinitializes a state variable x with expr at an event
instant. It can only applied within a when clause. (see
also Section 3.1.7 and Example 3.13))

Example 3.13

The model of a bouncing ball below is an example of a hybrid system. Thereby, the

movement of the ball is determined by the variable h which represents the height of the ball

above the ground and the variable v for its velocity. Between two bounces, the ball moves

continuously expressed by the differential equations for h and v while a discontinuous

change occurs at every bounce on the ground modeled by a discrete when equation (see

Figure 3.4). Then the velocity is reversed and slightly decreased which is achieved by the

reinit operator. Moreover, an additional logic disables the bounces when the height is

lower than the simulation tolerances. Then the ball does not fly anymore which is expressed

by the variable flying.

Figure 3.4: A bouncing ball (Example 3.13)

model bouncingBall
 parameter Real e=0.7;
 parameter Real g=9.81;
 Real h(start=1);
 Real v;
 Boolean flying(start=true);
 Boolean impact;
 Real v_new;
equation
 der(h) = v;
 der(v) = if flying then -g else 0;
 impact = h < 0;

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

he
ig

ht

time

36 3 Basics

 when {impact,h < 0 and v < 0} then
 v_new = if edge(impact) then -e*pre(v) else 0;
 flying = v_new > 0;
 reinit(v, v_new);
 end when;
end bouncingBall;

3.1.7 MATHEMATICAL REPRESENTATION OF MODELICA MODELS

Before a Modelica model can be simulated, the hierarchical model has to be translated to a

flat system of differential and algebraic equations (DAEs). The term flat means that the

object-oriented structure is abolished so that no hierarchy remains but rather a set of

equations.

The implicit form of the DAE system is given by

𝑓(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡), 𝑦(𝑡), 𝑡, 𝑝) = 0 Eq. 3-1

The vector 𝑥(𝑡) comprises all variables for which the time-derivative 𝑥̇(𝑡) also occur in the

model, called state variables, 𝑢(𝑡) comprises all input variables, 𝑦(𝑡) comprises all algebraic

output variables, 𝑡 is the time, 𝑝 comprises all parameters, and 𝑓 is a set of differential and

algebraic equations.

Modelica supports not only continuous simulation but also discrete and hybrid modeling.

Hence, a system of DAEs is not sufficient to represent a Modelica model. It has to be

expanded to hybrid DAEs including discrete, differential, and algebraic equations. This can

be obtained by adding the vector 𝑞(𝑡) of discrete-time variables. The continuous-time

behavior of a Modelica model is then described by adding 𝑞(𝑡) to Eq. 3-1

𝑓(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡), 𝑦(𝑡), 𝑞(𝑡), 𝑡, 𝑝) = 0, Eq. 3-2

whereby the discrete variables are constant during the continuous phase. A fixed causality is

achieved by converting the equations in Eq. 3-2 to assignments valid for the continuous phase

𝑧(𝑡) = �
𝑥̇(𝑡)
𝑦(𝑡)
𝑞(𝑡)

� ≔ �
𝑓𝑥̇�𝑥(𝑡), 𝑢(𝑡), 𝑝𝑟𝑟𝑒�𝑞(𝑡)�, 𝑡, 𝑝�
𝑓𝑦�𝑥(𝑡), 𝑢(𝑡), 𝑝𝑟𝑟𝑒�𝑞(𝑡)�, 𝑡, 𝑝�

𝑓𝑞�𝑥(𝑡), 𝑢(𝑡), 𝑝𝑟𝑟𝑒�𝑞(𝑡)�, 𝑡, 𝑝� = 𝑐𝑜𝑛𝑠𝑡
�, Eq. 3-3

whereby 𝑝𝑟𝑟𝑒�𝑞(𝑡)� accesses the predecessor values of the discrete-time variables which are

in the continuous phase equivalent to the values of 𝑞(𝑡) (see Section 3.1.6).

3.1 The Modelica Language 37

The discrete-time behavior is mainly described by events. An event occurs at 𝑡𝑒when at least

one of the condition expressions 𝑐(𝑡𝑒), e.g. from if or when constructs, switches from

false to true. These condition expressions are a subset of the Boolean discrete-time

variables 𝑞𝐵(𝑡𝑒) �𝑐(𝑡𝑒) ⊆ 𝑞𝐵(𝑡𝑒)�. An event is fired by execution of its associated behavior.

Therefore, the whole system has to be determined by the function in Eq. 3-3 at 𝑡𝑒 to ensure

the synchronicity of the equations

𝑧(𝑡𝑒) = �
𝑥̇(𝑡𝑒)
𝑦(𝑡𝑒)
𝑞(𝑡𝑒)

� ≔ �
𝑓𝑥̇�𝑥(𝑡𝑒), 𝑢(𝑡𝑒), 𝑝𝑟𝑟𝑒�𝑞(𝑡𝑒)�, 𝑡𝑒 , 𝑝�
𝑓𝑦�𝑥(𝑡𝑒), 𝑢(𝑡𝑒), 𝑝𝑟𝑟𝑒�𝑞(𝑡𝑒)�, 𝑡𝑒 , 𝑝�
𝑓𝑞�𝑥(𝑡𝑒), 𝑢(𝑡𝑒), 𝑝𝑟𝑟𝑒�𝑞(𝑡𝑒)�, 𝑡𝑒 , 𝑝�

�. Eq. 3-4

It is not sufficient to solely determine the discrete-time variables with the function 𝑓𝑞 (Braun

2010, Braun et al. 2010). Additionally, discontinuous changes of continuous-time variables

can occur caused by the reinit-operator in Modelica (see Section 3.1.6). These

discontinuous changes are only triggered by events at 𝑡𝑒 and the states of the continuous

variables are redetermined with the aid of the following assignment

𝑥(𝑡𝑒) ≔ 𝑓𝑥�𝑝𝑟𝑟𝑒�𝑥(𝑡𝑒)�, 𝑥̇(𝑡𝑒), 𝑢(𝑡𝑒), 𝑦(𝑡𝑒), 𝑞(𝑡𝑒), 𝑝𝑟𝑟𝑒�𝑞(𝑡𝑒)�, 𝑡𝑒 , 𝑝�. Eq. 3-5

Thereby, all variables in 𝑥(𝑡𝑒) that are not affected by the reinit-operator remains unaltered

by the function 𝑓𝑥. Afterwards, a recalculation of the system in Eq. 3-4 is necessary if

𝑝𝑟𝑟𝑒�𝑥(𝑡𝑒)� ≠ 𝑥(𝑡𝑒) or 𝑝𝑟𝑟𝑒�𝑞(𝑡𝑒)� ≠ 𝑞(𝑡𝑒). This procedure is called event iteration.

The hybrid DAE system consists of a combination of Eq. 3-3, Eq. 3-4, and Eq. 3-5 which has

the ability to represent a Modelica model comprising of discrete, differential, and algebraic

equations.

The whole process from a Modelica model to executable simulation code is outlined in

Figure 3.5. After flatting to hybrid DAEs, each of the resulting equations has to be assigned to

a variable and sorted topologically according to their dependencies. Therefore, the equations

are transformed to a Block Lower Triangular (BLT) form by Tarjans algorithm (Tarjan 1972).

This form reveals the structure of the problem and decomposes it to a set of sub-problems

which can be solved in sequence. If there is a non-scalar block on the diagonal of the BLT-

matrix, this indicates the appearance of an algebraic loop, also called strong component.

The equations involved in an algebraic loop have to be solved simultaneously. In the case of

discrete-time variables this is not possible and the algebraic loop has to be cut by hand which

is done by using the pre operator for one or more involved discrete-time variables (see

Example 3.14).

http://www.dict.cc/englisch-deutsch/synchronicity.html

38 3 Basics

Figure 3.5: Necessary steps from a Modelica model to executable simulation code

(Fritzson 2004)

Example 3.14

model algebraicLoop
 Boolean bool1(start=true);
 Boolean bool2(start=false);
equation
 when bool1 then
 bool2=true;
 end when;
 when bool2 then
 bool1=false;
 end when;
end algebraicLoop;

This model generates an algebraic loop because the variable bool1 is needed to calculate

bool2 and vice versa. This loop can be cut, for example, by putting a pre around the when-

condition bool1.

model algebraicLoopCut
 Boolean bool1(start=true);
 Boolean bool2(start=false);
equation
 when pre(bool1) then
 bool2=true;
 end when;
 when bool2 then
 bool1=false;
 end when;
end algebraicLoopCut;

Parser/
Converter

Internal model
representation

TranslatorFlat model

Analyzer Sorted
equations

Optimizer
Optimized

sorted
equations

Code
generator C code

C CompilerSimulation
code

Simulation

Modelica
model

Simulation
results

3.1 The Modelica Language 39

After sorting the equations, optimization methods, like algebraic simplification algorithms

and symbolic index reduction methods, are applied to eliminate equations and solve the

equation system efficiently by numerical methods. Afterwards, the C-code is generated and

compiled to executable simulation code.

Figure 3.6: Solution process of hybrid DAEs (cp. Braun et al. 2010)

The simulation of a hybrid model is based on the solution of the hybrid DAEs which is

performed in the following way (Modelica Association 2010):

1. The consistent set of initial values has to be found according to the given constraints.

2. The continuous DAEs in Eq. 3-3 are solved by a numerical integration method. The

discrete-time variables 𝑞 are kept constant.

3. All condition expressions 𝑐 are observed. If one variable switches its value, the

integration is stopped, the exact event time 𝑡𝑒 is determined, the values of the variables

before the event are calculated, and an event is triggered (time events are scheduled in

advanced and can be treated in another way (see Section 3.1.6)).

4. The hybrid DAEs in Eq. 3-4 and Eq. 3-5 are solved at the event instant. This system is

resolved as long as 𝑝𝑟𝑟𝑒(𝑞) = 𝑞 and 𝑝𝑟𝑟𝑒(𝑥) = 𝑥 (event iteration).

Start

Find consistent
initial values

i=0

Check event
conditions c

Any events?

Solve continuous
DAEs for ti

Eq. 3-3

Fire event and
calculate variables

Eq. 3-4, Eq.3-5

End time?

End

yes no

yes

no

next step
i=i+1

New events?
q≠pre(q)
x≠pre(x)

yes
pre(q):=q
pre(x):=x

Step is valid

Find event time
te

Calculate variables
before the event

Eq. 3-3

40 3 Basics

5. Afterwards the integration is restarted with a consistent set of restart values (go back to

step 2).

The solution algorithm of hybrid DAEs is also depicted in Figure 3.6. Modelica tools usually

offer a wide range of methods to solve the continuous DAEs; the most common and

frequently-used is DASSL (Differential Algebraic System Solver) which was first introduced

by Petzold in 1982 (Petzold 1982).

3.2 OPTIMIZATION METHODS

Once a model is constructed, the task is to estimate the model parameters, hereafter called

structure parameters. Thereby, the parameters have to be chosen so that the model

reproduces the given experimental data in the best possible way. This procedure is called

parameter estimation (PE) or inverse problem; thereby, the latter indicates that the

structure parameters are identified from measurements (Ueckerdt 1978).

Another aspect is the optimization of processes, which underlie the verified model, in such a

way that, for example, a product of the regarded organism is maximized according to the

process parameters. This procedure is called process optimization (PO).

Both steps, PE and PO, of the modeling process engender an optimization problem:

PE: Minimize an objective function 𝑄(𝓅) which represents the goodness of a structure

parameter set 𝓅,

PO: Maximize/Minimize an objective function 𝑄(𝓏) which represents the goodness of a

process parameter set 𝓏.

These objective functions in combination with an xHPN model are not only non-linear but

also usually discontinuous and not-differentiable because of the discrete changes of hybrid

Petri nets. Due to the non-differentiability, the usage of methods which determine decent

directions from derivatives of the objective function is not possible. However, derivative-free

methods do not require derivatives to minimize the objective function and, hence, such

methods are applicable and used within this study.

It has to be distinguished between local and global methods. Local methods try to find the

minimum starting from a given point. Thereby, only local information about the objective

function from the neighborhood of the current approximation is used to update the

3.2 Optimization Methods 41

approximation; hence, the global structure of an objective function is unknown to a local

method. Additionally, it is usually expected that such methods converge to the local minimum

which is nearest to the starting point.

However, the objective of global methods is to find the global minimum of the optimization

problem usually in the presence of multiple local minima by seeking the whole search space.

Global methods can be further divided into deterministic and stochastic methods.

Deterministic methods always achieve the same result starting from the same setting while

stochastic methods involve random mechanisms.

Local and global methods can also be combined to hybrid methods which should avoid the

high computational costs of global methods due to their slow convergence near the minimum.

Additionally, the entrapment in a local minimum should be prevented which is often the

drawback of local methods.

Hereafter some selected local and global derivative-free optimization methods are introduced

which are used within this study. Moreover, these methods are combined to hybrid

optimization approaches to enhance the optimization process. All methods can be applied for

PE as well as for PO so that a general optimization problem is expressed by

𝑚𝑖𝑖𝑛 𝑄(𝓍) 𝓍 ∈ 𝒳 ⊆ ℝ𝑛, 𝑄: 𝒳 → ℝ
subject to

𝓍𝑙 ≤ 𝓍 ≤ 𝓍𝑢

𝑚𝑜𝑑𝑒𝑙,
whereby

𝓍 = �𝓅 𝑖𝑖𝑓 𝐴𝐴𝐸 𝑖𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑖𝑒𝑑 𝒳 = 𝒫 ⊆ ℝ𝑛

𝓏 𝑖𝑖𝑓 𝐴𝐴𝑂𝑂 𝑖𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑖𝑒𝑑 𝒳 = 𝒵 ⊆ ℝ𝑛.

Eq. 3-6

Thereby, it is assumed that the objective function is minimized; in the case of PO, a

maximization is also possible, then the problem is converted to a minimum problem by

changing the signs. Furthermore, the objective function is subject to the constructed model

and to upper and lower bounds for each parameter, known from, for example, experiments,

literature or laws. Regarding the optimization process, it has to be distinguished between local

and global minima. Therefore, the following definition is introduced.

Definition 3.1 ((strict) local/global minimum)

Suppose 𝑄: 𝒳 → ℝ with 𝒳 ⊆ ℝ𝑛 is an objective function. A parameter set 𝓍∗ ∈ 𝒳 is a

− global minimum of 𝑄, if 𝑄(𝓍∗) ≤ 𝑄(𝓍) ∀ 𝓍 ∈ 𝒳.

42 3 Basics

− strict global minimum of 𝑄, if 𝑄(𝑥∗) < 𝑄(𝑥) ∀ 𝓍 ∈ 𝒳 with 𝓍 ≠ 𝓍∗.

− local minimum of 𝑄 if there is a neighborhood 𝒩 of 𝓍∗ such that

𝑄(𝓍∗) ≤ 𝑄(𝓍) ∀𝓍 ∈ (𝒳 ∩ 𝒩).

− strict local minimum of 𝑄 if there is a neighborhood 𝒩 of 𝓍∗ such that

𝑄(𝓍∗) < 𝑄(𝓍) ∀𝓍 ∈ (𝒳 ∩ 𝒩) with 𝓍 ≠ 𝓍∗.

To recognize a local minimum, the following necessary and sufficient conditions are proven.

These conditions use information about the gradient

𝛻𝑄(𝓍) = �
𝜕𝑄(𝓍)

𝜕𝓍1

𝜕𝑄(𝓍)
𝜕𝓍2

⋯
𝜕𝑄(𝓍)

𝜕𝓍𝑛
� Eq. 3-7

and the Hessian of the objective function

𝛻2𝑄(𝓍) =

⎝

⎜
⎜
⎜
⎜
⎛

𝜕2𝑄(𝓍)
𝜕𝓍1

2
𝜕2𝑄(𝓍)
𝜕𝓍1𝜕𝓍2

⋯
𝜕2𝑄(𝓍)
𝜕𝓍1𝜕𝓍𝑛

𝜕2𝑄(𝓍)
𝜕𝓍2𝜕𝓍1

𝜕2𝑄(𝓍)
𝜕𝓍2

2 ⋯
𝜕2𝑄(𝓍)
𝜕𝓍2𝜕𝓍𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑄(𝓍)
𝜕𝓍𝑛𝜕𝓍1

𝜕2𝑄(𝓍)
𝜕𝓍𝑛𝜕𝓍2

⋯
𝜕2𝑄(𝓍)

𝜕𝓍𝑛
2 ⎠

⎟
⎟
⎟
⎟
⎞

. Eq. 3-8

Theorem 3.1 (first-order necessary conditions (Nocedal and Wright 1999))

If 𝓍∗ is a local minimizer and 𝑄 is continuously differentiable in an open neighborhood of 𝓍∗,

then ∇𝑄(𝓍∗) = 0.

Theorem 3.2 (second-order necessary conditions (Nocedal and Wright 1999))

If 𝓍∗ is a local minimizer of 𝑄 and ∇2𝑄(𝓍) is continuous in an open neighborhood of 𝓍∗, then

∇𝑄(𝓍∗) = 0 and ∇2𝑄(𝓍) is positive semi-definite.

Theorem 3.3 (second-order sufficient conditions (Nocedal and Wright 1999))

Suppose that ∇2𝑄(𝓍) is continuous in an open neighborhood of 𝓍∗ and that ∇𝑄(𝓍∗) = 0 and

∇2𝑄(𝓍) is positive definite. Then 𝓍∗ is a strict local minimizer of 𝑄.

Example 3.15

Figure 3.7 shows the six-hump camel back function (Dixon and Szegö 1978)

𝑓(𝑥) = �4 − 2.1 · 𝑥1
2 +

𝑥1
4

3
� · 𝑥1

2 + 𝑥1 · 𝑥2 + (−4 + 4 · 𝑥2
2) · 𝑥2

2

3.2 Optimization Methods 43

which is an example of a so-called multimodal function, i.e. a function with several minima.

Within the bounded region

−3 ≤ 𝑥1 ≤ 3, −2 ≤ 𝑥2 ≤ 2

there are six minima, two of them are global

𝑥1
∗ = (−0.0898, 0.7126), 𝑥2

∗ = (0.0898, −0.7126).

Figure 3.7: Six-hump camel back function with six minima in the bounded region; two of

them are global minima; left: surface plot, right: contour plot

3.2.1 LOCAL OPTIMIZATION METHODS

In this section two local methods are introduced to find the minimum of the optimization

problem in Eq. 3-6 starting from a given parameter set 𝓍0. Both algorithms cope without

derivatives and, thus, belong to the general class of direct search methods which can be

further divided to pattern search methods and simplex methods. At first, a pattern search

method, the Hooke-Jeeves method, is introduced and afterwards a simplex method, the

Nelder-Mead simplex method, is presented.

HOOKE-JEEVES METHOD

The direct search method of Hooke and Jeeves was introduced in 1961 (Hooke and Jeeves

1961). It consists of two procedures: exploratory moving and pattern search. In the first, the

parameter vector is changed locally by a positive and negative variation of one parameter at a

time to obtain information in which direction the objective function decreases. This

information is used in the second procedure to find the best direction for the minimization

process. If the exploratory move was successful, i.e. the function value decreases, further

44 3 Basics

progress may be possible in this direction; otherwise, the step size of the exploratory move

has to be reduced.

The algorithm is outlined in Algorithm A1 (Appendix A1) which is taken from (Bell and Pike

1966). A detailed description of the Hooke-Jeeves method can be found in (Hooke and Jeeves

1961) and (Kolda et al. 2003). Furthermore, Torczon show global convergence of the Hooke-

Jeeves method under specific assumptions (Torczon 1997).

NELDER-MEAD SIMPLEX METHOD

The Nelder-Mead simplex method was introduced in 1965 (Nelder and Mead 1965). It

maintains at each step a non-degenerate simplex. This is a 𝑛-dimensional figure with 𝑛 + 1

vertices forming the convex hull. Each iteration starts with a simplex specified by its 𝑛 + 1

vertices and the associated values of the objective function. One or more test points are

computed and a new simplex is generated according to the function values of these test points.

The function values of the vertices of the new simplex satisfy then some form of descent

condition compared to the previous simplex.

The algorithm is outlined in Algorithm A2 (Appendix A1) which is taken from (Lagarias et

al. 1999). A detailed description of the Nelder-Mead simplex method can be found in

(Lagarias et al. 1999). The Nelder-Mead simplex algorithm is one of the most popular

optimization methods and is used in many numerical software packages like Matlab.

However, no general convergence results are proven till now; only those for strictly convex

functions in dimensions 1 and 2 are presented in (Lagarias et al. 1999) with various

limitations for the 2-dimensional case. Furthermore, several negative examples are known for

which the algorithm converge to a non-stationary point (McKinnon 1999).

3.2.2 GLOBAL OPTIMIZATION METHODS

In this section two global optimization methods are introduced which try to find the global

minimum of the optimization problem in Eq. 3-6 by seeking the whole search space. The first

- DIRECT method - is a deterministic approach and the second - evolution strategy - is

performed in a stochastic manner. Thereby, the basic evolution strategy (ES), introduced by

Schwefel (Schwefel 1995), is considered as well as a modified variant of it - covariance

3.2 Optimization Methods 45

matrix adaption evolution strategy (CMAES) - which was introduced by Hansen and

Ostermeier (Hansen and Ostermeier 2001).

DIRECT METHOD

The DIRECT (DIviding RECTangles) method was introduced by Jones et al. in 1993 (Jones

et al. 1993). It is a deterministic method for seeking the global minimum of an objective

function. The algorithm is a modification of the standard Lipschitz approach (e.g. Shubert

1972) which eliminates the specification of the Lipschitz constant, improves the convergence

speed, and reduces the computational complexity. The main idea is to carry out simultaneous

searches using all possible Lipschitz constants from zero to infinite to determine if a region of

the search space should be broken into sub-regions during the current iteration. The Lipschitz

constant can then be viewed as a weight between global and local search because the DIRECT

method operates on both levels to enhance the convergence speed. When the global part finds

the basin of convergence of the minimum, the local part exploits it, hence, the DIRECT

method is also a hybrid approach.

The first step is to transform the search space to a 𝑛-dimensional unit hypercube by the lower

and upper bounds of the parameters given in Eq. 3-6, thus, the algorithm works in a

normalized space, and the original space is only used when the objective function is called.

Then the objective function value of the midpoint 𝑐1 of this hypercube is evaluated. This

hypercube is divided into smaller hyper-rectangles by evaluating the objective function at the

points

𝑐1 ± 𝛿𝑒𝑖, 𝑖𝑖 = 1, … , 𝑛 Eq. 3-9

where 𝛿 is one-third of the side length of the hyper cube and 𝑒𝑖 is the 𝑖𝑖th unit vector. Thereby,

the points with best function values should be located in the largest rectangles. This leads to

the following rule: Let

𝑤𝑖 = 𝑚𝑖𝑖𝑛�𝑄(𝑐1 + 𝛿𝑒𝑖), 𝑄(𝑐1 − 𝛿𝑒𝑖)� 𝑖𝑖 = 1, … , 𝑛 Eq. 3-10

be the best function value sampled along dimension 𝑖𝑖. Divide the dimension with the smallest

𝑤𝑖 into thirds so that c1 ± 𝛿𝑒𝑖 are the centers of the new hyper rectangles. This pattern is

continued until all dimensions are split. Thereby, the next dimension is chosen by determining

the next smallest 𝑤𝑖.

Afterwards the iteration loop begins with the identification of potentially optimal rectangles

which are divided and sampled at their midpoints.

46 3 Basics

Definition 3.2 (potentially optimal (Jones et al. 1993))

Suppose that a unit hypercube is divided into 𝑚 hyperrectangles. Let 𝑐𝑖 denote the center

point of the 𝑖𝑖th hyperrectangle, let 𝑑𝑖 denote the distance from the center to the vertices, and

let 𝑄𝑚𝑖𝑛 denote the current best objective function value. Let 𝜀 > 0 be a positive constant. A

hyperrectangle 𝑗 is said to be potentially optimal if there exists some 𝐾 > 0 such that

𝑄�𝑐𝑗� − 𝐾𝑑𝑗 ≤ 𝑄(𝑐𝑖) − 𝐾𝑑𝑖, ∀ 𝑖𝑖, and

𝑄�𝑐𝑗� − 𝐾𝑑𝑗 ≤ 𝑄𝑚𝑖𝑛 − 𝜀|𝑄𝑚𝑖𝑛|.

Thereby, the parameter 𝜀 is used to gurantee that the new best solution exceeds the current

best solution by a specific amount. Experiments have shown that the value of 𝜀 has a minor

effect on the results. A good setting should be 10−4 (Jones et al. 1993).

The potentially optimal rectangles are again divided into smaller rectangles and the

corresponding function values are evaluated as just described. The process continues until at

least one of the predefined abort criteria is fulfilled. An efficient implementation to identify

potential optimal rectangles according to Definition 3.2 can be found in (Finkel 2003).

The algorithm is outlined in Algorithm A3 (Appendix A1) which is taken from (Jones et al.

1993). For a detailed description of the algorithm including its convergence and performance

properties, refer to (Jones et al. 1993). Furthermore, the DIRECT method guarantees

convergance to the globally optimal objective function value if the objective function is

continuous – or at least continuous in a neighborhood of a global optimum. Due to the fact

that if the number of iterations goes to infinity, the set of points sampled by the DIRECT

method form a dense subset of a unit hypercube (Jones et al. 1993).

EVOLUTION STRATEGY

The evolution strategy (ES) is a biologically inspired method founded by Rechenberg and

Schwefel in the early 1970s (Rechenberg 1971, Schwefel 1975). It belongs to the class of

evolutionary algorithms whose general structure is depicted in Figure 3.8.

ES bases on a collective learning process within a population of individuals. Each of these

individuals represents a possible parameter set 𝓍 of the optimization problem in Eq. 3-6. The

initialization of the population is arbitrary and it is increasingly improved by the

(probabilistic) processes selection, mutation, and recombination. The selection process

prefers individuals with a higher fitness value to reproduce more often than those of lower

3.2 Optimization Methods 47

fitness. The fitness value of an individual is identical to the value of the objective function

𝑄(𝓍) with the corresponding parameter set (individual) 𝓍. Based on this information, ES

makes use of Darwin’s principle: “Survival of the fittest”. The recombination process

combines two or more parental individuals to produce new individuals and the mutation

process changes the individuals at random to innovate the population.

Figure 3.8: The general structure of evolutionary algorithms (Beyer 2001)

The following notions are used in this section

− 𝑄: 𝒳 → ℝ is the objective function (Eq. 3-6),

− 𝐼 is the space of individuals,

− Φ: 𝐼 → ℝ is the fitness function,

− 𝑎 ∈ 𝐼 is an individual,

− 𝓍 ∈ 𝒳 ⊆ ℝ𝑛 is the vector of parameters,

− 𝜇 ≥ 1 is the size of the parent population,

− 𝜆 ≥ 1 is the size of offspring population, i.e. the number of individuals that are created by

recombination and mutation at each generation,

− 𝑁𝑁(𝑔) = �𝑎1(𝑔), 𝑎2(𝑔), … , 𝑎𝜇(𝑔)� is the population at generation 𝑔 with the individuals

𝑎𝑖(𝑔) ∈ 𝐼,

− 𝑟𝑟Φ𝑟: 𝐼𝜇 → 𝐼𝜆 is the recombination operator which generates the offspring of a population,

− 𝑚Φ𝑚: 𝐼𝜆 → 𝐼𝜆 is the mutation operator which modifies the offspring of a population,

Parents
properties encoded in genes

→ fitness

Reproduction
genetic information to be copied,

mixed, mutated

Offspring
new properties by changed genes

→ new fitness

Selection
„survival of the fittest“

ne
xt

 g
en

er
at

io
n

ExtinctionSurvival

48 3 Basics

− 𝑠Φ𝑠: 𝑊 → 𝐼𝜇 is the selection operator which selects the parent population of the next

generation, where 𝑊 = 𝐼𝜆 or 𝑊 = 𝐼𝜇+𝜆, and

− 𝜄: 𝐼𝜇 → {𝑡𝑟𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} is the termination criterion.

Subsequently the algorithmic description of ES is outlined by means of these notations (Bäck

and Schwefel 1993).

Set 𝑔 = 0

Initialize 𝑁𝑁(0) = �𝑎1(0), 𝑎2(0), … , 𝑎𝜇(0)� ∈ 𝐼𝜇

Evaluate 𝑁𝑁(0): �Φ�𝑎1(0)�, Φ�𝑎2(0)�, … , Φ �𝑎𝜇(0)��

while not 𝜄�𝑁𝑁(𝑔)� do

 Recombine: 𝑁𝑁′(𝑔) = 𝑟𝑟Φ𝑟�𝑁𝑁(𝑔)�

 Mutate: 𝑁𝑁′′(𝑔) = 𝑚Φ𝑚�𝑁𝑁′(𝑔)�

 Evaluate 𝑁𝑁′′(𝑔): �Φ�𝑎1(𝑔)�, Φ�𝑎2(𝑔)�, … , Φ �𝑎𝜇(𝑔)��

 Select: 𝑁𝑁(𝑔 + 1) = 𝑠Φ𝑠(𝑁𝑁′′(𝑔) ∪ 𝑊), where 𝑊 ∈ {∅, 𝑁𝑁(𝑔)}

 Set 𝑔 = 𝑔 + 1

end while

Hereafter the fitness evaluation, the representation of individuals, and the three main

processes - recombination, mutation, and selection - are discussed in more detail.

Fitness Evaluation and Individual Representation

The fitness value of an individual is identical to the objective function value of the

corresponding parameter set, i.e. Φ(𝑎𝑘) = 𝑄(𝓍𝑘), where 𝓍𝑘 is the parameter set

corresponding to individual 𝑎𝑘. An individual 𝑎𝑘 is comprised of a set of objective

parameters 𝓍𝑘 and, additionally, a set of endogenous strategy parameters 𝑠𝑘

𝑎𝑘 = (𝓍𝑘, 𝑠𝑘) ∈ 𝐼 Eq. 3-11

The endogenous strategy parameters are used to control the statistics of the mutation process.

Recombination

The recombination process produces one new individual from two randomly selected parent

individuals or the global form which allows taking components for one new individual from

potentially all individuals of the parent population. Recombination is performed for objective

parameters as well as for the endogenous strategy parameters, and different mechanisms may

be used for objective and strategy parameters. The mechanisms are only presented for the

3.2 Optimization Methods 49

objective parameters (Bäck and Schwefel 1993), whereby the operator 𝑟𝑟′: 𝐼𝜇 → 𝐼 is used for

producing one new individual 𝑟𝑟′�𝐴𝐴(𝑡)� = 𝑎′ = (𝓍′, 𝑠′) ∈ 𝐼

𝓍𝑖
′ =

⎩
⎪
⎨

⎪
⎧

𝓍𝑆,𝑖
𝓍𝑆,𝑖 𝑜𝑟𝑟 𝓍𝑇,𝑖

𝓍𝑆,𝑖 + 𝜒 ⋅ �𝓍𝑇,𝑖 − 𝓍𝑆,𝑖�
𝓍𝑆𝑖,𝑖 𝑜𝑟𝑟 𝓍𝑇𝑖,𝑖

𝓍𝑆𝑖,𝑖 + 𝜒𝑖 ⋅ �𝓍𝑇𝑖,𝑖 − 𝓍𝑆𝑖,𝑖�

𝑛𝑜 𝑟𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑖𝑛𝑎𝑡𝑖𝑖𝑜𝑛
𝑑𝑖𝑖𝑠𝑐𝑟𝑟𝑒𝑡𝑒

𝑔𝑒𝑛𝑒𝑟𝑟𝑎𝑙𝑖𝑖𝑧𝑒𝑑 𝑖𝑖𝑛𝑡𝑒𝑟𝑟𝑚𝑒𝑑𝑖𝑖𝑎𝑡𝑒
𝑔𝑙𝑜𝑏𝑎𝑙, 𝑑𝑖𝑖𝑠𝑐𝑟𝑟𝑒𝑡𝑒

𝑔𝑙𝑜𝑏𝑎𝑙, 𝑔𝑒𝑛𝑒𝑟𝑟𝑎𝑙𝑖𝑖𝑧𝑒𝑑 𝑖𝑖𝑛𝑡𝑒𝑟𝑟𝑚𝑒𝑑𝑖𝑖𝑎𝑡𝑒

∀ 𝑖𝑖 = 1, 2, … , 𝑛

Eq. 3-12

The indices 𝑆 and 𝐴𝐴 denote two parent individuals randomly selected from the population

𝑁𝑁(𝑔) and 𝜒 ∈ [0,1]. For global recombination, new parents 𝑆𝑖 and 𝐴𝐴𝑖 are selected for each

component 𝓍𝑖 as well as values for the variable 𝜒𝑖. Fixing 𝜒 = 1/2 and 𝜒𝑖 = 1 2⁄ , ∀ 𝑖𝑖 =

1, 2, … , 𝑛, respectively, reduces the (global) generalized intermediate recombination to

intermediate recombination.

Empirical studies showed best results for discrete recombination on objective parameters and

intermediate recombination on strategy parameters and, additionally, the necessity of

recombination on strategy parameters for a well-performing ES (Bäck and Schwefel 1993).

Mutation

The mutation process modifies the offspring generated by one of the recombination

mechanisms. Thereby, several methods can be applied which all use a specific number of

endogenous strategy parameters. The simplest mutation operation functions with only one

strategy parameter 𝜎 for the mutation strength. The objective parameters are then modified by

𝓍′ = 𝓍 + 𝑧 Eq. 3-13

𝑧 = 𝜎 ⋅ 𝒩, 𝒩 = �𝒩1(0,1), 𝒩2(0,1), … , 𝒩𝑛(0,1)� Eq. 3-14

where 𝒩𝑖(0,1) is a normally distributed random number. Hence, the mutation operator favors

small changes which depend on the choice of the mutation strength 𝜎. The samples are

isotropically distributed around the parental parameter set. This method has the advantage

that only one endogenous strategy parameter is needed for mutation control and is sufficient

for objective functions which have spherical surfaces. However, if the surface of an objective

function is ellipsoidal, it is beneficial to have mutation vectors whose surfaces of constant

density are also ellipsoidal (Beyer and Schwefel 2002). The simplest form of ellipsoidal

mutation is the axes-parallel ellipsoid mutation which requires 𝑛 endogenous strategy

parameters. These are 𝑛 standard deviations 𝑠 = (𝜎1, 𝜎2, … , 𝜎𝑛) each associated with one

50 3 Basics

component of the objective parameter vector to represent an own mutation strength for each

parameter

𝑧 = �𝜎1𝒩1(0,1), 𝜎2𝒩2(0,1), … , 𝜎𝑛 𝒩𝑛(0,1)�. Eq. 3-15

The mutation process can be further modified by rotating the mutation ellipsoid arbitrarily in

the search space, called rotated ellipsoid mutation

𝑧 = 𝑀 ⋅ �𝜎1𝒩1(0,1), 𝜎2𝒩2(0,1), … , 𝜎𝑛 𝒩𝑛(0,1)�
𝑡

= 𝑀𝑁𝑁𝒩(𝑂𝑂, 𝐼)

= 𝒩(𝑂𝑂, 𝑀𝑁𝑁2𝑀𝑡) = 𝑁𝑁𝒩(0, 𝐶)
Eq. 3-16

where 𝑀 is a rotation matrix which represents the correlations between the components of 𝑧,

𝑁𝑁 is a diagonal matrix with the standard deviations 𝜎𝑖 on its diagonal, and 𝐶 is the covariance

matrix. The usage of this mutation mechanism requires 𝑛(𝑛 + 1)/2 strategy parameters.

All introduced mutation mechanisms require an appropriate adaptation of the endogenous

strategy parameters. This can be achieved by the so-called self-adaptation (Schwefel 1987).

Therefore, the strategy parameters may undergo the recombination process and always the

mutation process. The mutated strategy parameters are then used to control the mutation

process of the objective parameters as previously mentioned.

One single strategy parameter is then mutated isotropically by

𝜎′ = 𝜎 ⋅ 𝑒𝑥𝑝�𝜏 ⋅ 𝒩(0,1)�, Eq. 3-17

where 𝜏 is the so-called learning parameter which determines the rate and precision of self-

adaption. Theoretical and experimental results (Beyer 1995, Schwefel 1975) suggest to

choose

𝜏 ∝
1

√𝑛
 Eq. 3-18

(the first guess might be 𝜏 = 1/√𝑛; in highly multimodal fitness landscapes smaller learning

rates should be tried, e.g. 𝜏 = 1/√2𝑛 (Beyer and Schwefel 2002)).

This technique can be extended for axes-parallel ellipsoid mutation with one strategy

parameter for each objective parameter (Schwefel 1977)

𝜎𝑖′ = 𝜎𝑖 ⋅ 𝑒𝑥𝑝�𝜏′ ⋅ 𝒩(0,1) + 𝜏 ⋅ 𝒩𝑖(0,1)� , 𝑖𝑖 = 1, 2, … , 𝑛 Eq. 3-19

Thereby, a general mutation is combined with a mutation for each component. The following

values are recommended for the learning parameters 𝜏′ and 𝜏 (Schwefel 1977)

3.2 Optimization Methods 51

𝜏′ ∝
1

√2𝑛
 𝜏 ∝

1
�2√𝑛

 Eq. 3-20

Usually, the proportional constant is chosen to be 1 (Schwefel 1995).

If the rotated ellipsoidal mutation is applied, 𝑛(𝑛 − 1)/2 additional elements of the matrix 𝑀

have to be modified by

𝑚𝑗
′ = 𝑚𝑗 + 𝛽 ⋅ 𝑁𝑁𝑗(0,1), 𝑗 = 1, 2, … , 𝑛(𝑛 − 1)/2, Eq. 3-21

whereby 𝛽 ≈ 0.0873 (Schwefel 1977). The mutation of the standard deviation is performed

in the same manner as mentioned in Eq. 3-19.

The recombination of the endogenous strategy parameters can be performed by the

mechanisms in Eq. 3-12. Thereby, the intermediate recombination is highly recommended

(Beyer and Schwefel 2002).

Selection

The selection process is a complete deterministic process with two possible strategies (Bäck

and Schwefel 1993)

− (𝜇, 𝜆)-selection (comma-selection): the 𝜇 best individuals out of the set of 𝜆 offspring

individuals are selected.

− (𝜇 + 𝜆)-selection (plus-selection): the 𝜇 best individuals out of the union of parents and

offspring are selected.

The disadvantage of the plus-selection is the inability to react on changing environmental

conditions. Additionally, it hinders the self-adaption mechanism efficiently working because

mismatched strategy parameters may survive for many generations. The capability of the

comma-selection to forget good solutions allows, in principle, the leaving of local minima and

is, therefore, advantageous for multimodal objective functions (Bäck 1996). The (𝜇, 𝜆)-

selection method is recommended today and experiments indicate that the optimal ratio of the

number of parents and offspring is 𝜇 𝜆⁄ = 1/7 (Schwefel 1987).

Based on the introduced recombination, mutation, and selection mechanisms as well as the

self-adaption process of the endogenous strategy parameters, the mentioned algorithm can be

more specified. This conceptual algorithm can be found in Algorithm A4 (Appendix A1).

Thereby, the algorithm could be terminated when the distance between the best parameter sets

found in subsequent iterations fall below a determined boundary

52 3 Basics

𝜄�𝑁𝑁(𝑡)� = �𝑡𝑟𝑟𝑢𝑒 ‖𝓍𝑚𝑖𝑛(𝑔) − 𝓍𝑚𝑖𝑛(𝑔 − 1)‖ ≤ 𝜀
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑟𝑤𝑖𝑖𝑠𝑒 Eq. 3-22

but this criterion guarantees no sufficient convergence because small steps occur not only if

the current parameter set is near the minimum but also if the search is moving through a

narrow valley (Schwefel 1995). It is better to compare the objective function values. Then the

algorithm ends when the difference between the worst objective function value of the parent

population and the best objective function value so far Q𝑚𝑖𝑛 becomes arbitrarily small (Bäck

1996)

In this manner the objective function values of the parents in a generation must fall closely

together before the convergence is accepted.

Another aspect is global convergence and the convergence order, i.e. the time complexity of

ES. To prove global convergence, it has to be shown that the probability of reaching a specific

neighborhood of the global optimum 𝑄∗ = 𝑄(𝓍∗) by a sequence of search points is one if the

number of generations goes to infinity

A sketched proof of Eq. 3-24 for (1 + 1)-ES with constant mutation strength can be found in

(Rechenberg 1971) which should be easily accomplished for (𝜇 + 𝜆)-ES according to (Beyer

2001). However, (𝜇, 𝜆)-ES are generally not convergent. They require an appropriate control

of the mutation strength to converge at least locally. The global convergence property of an

ES is good to know but no one can wait indefinitely so the relevance is rather low. More

important is the convergence order. Rechenberg calculates the convergence order exemplary

for two basic functions by applying the (1 + 1)-ES (Rechenberg 1971). General

considerations about global convergence and convergence order are rather difficult and,

according to current knowledge, not yet published.

Hereafter, an extension of this basic ES procedure is introduced. The covariance matrix

adaptation evolution strategy (CMAES) modifies the update of the covariance matrix 𝐶 in

case of the rotated ellipsoidal mutation in Eq. 3-16.

𝜄�𝑁𝑁(𝑔)� = �𝑡𝑟𝑟𝑢𝑒 𝑚𝑎𝑥 �𝑄�𝓍1(𝑔)�, 𝑄�𝓍2(𝑔)�, … , 𝑄 �𝓍𝜇(𝑔)�� − 𝑄𝑚𝑖𝑛 ≤ 𝜀
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑟𝑤𝑖𝑖𝑠𝑒

 Eq. 3-23

∀𝜀 > 0: 𝑙𝑖𝑖𝑚
𝑔→∞

𝐴𝐴𝑟𝑟�𝑄�𝓍(𝑔)� − 𝑄∗ ≤ 𝜀� = 1. Eq. 3-24

3.2 Optimization Methods 53

COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY

CMAES was introduced by Hansen and Ostermeier (Hansen and Ostermeier 2001) to update

the covariance matrix of the multivariate normal distribution for the mutation process in

Eq. 3-16. The covariance matrix describes the pairwise dependencies between the objective

parameters, hence, the adaptation process is similar to learning about the second order

information of the underlying objective function. The update method is, additionally,

improved by cumulation, i.e. evolution paths are utilized instead of single search steps.

CMAES starts with the mutation process to generate offspring by sampling a multivariate

normal distribution

𝓍𝑘(𝑔 + 1) = 𝑚(𝑔) + 𝑧𝑘(𝑔)
𝑧𝑘(𝑔) = 𝜎(𝑔) ⋅ 𝒩�0, 𝐶(𝑔)�, 𝑘 = 1, 2, … , 𝜆,

Eq. 3-25

whereby 𝜎(𝑔) is the “overall” standard deviation (step size) at generation 𝑔.

Afterwards, the 𝜇 best individuals of the 𝜆 offspring individuals are selected for the

recombination process, i.e. 𝓍𝑘:𝜆(𝑔 + 1) is the 𝑘th best parameter set such as

𝑄�𝓍1:𝜆(𝑔 + 1)� ≤ 𝑄�𝓍2:𝜆(𝑔 + 1)� ≤ ⋯ ≤ 𝑄�𝓍𝑘:𝜆(𝑔 + 1)� ≤ ⋯ ≤ 𝑄�𝓍𝜆:𝜆(𝑔 + 1)�.

The recombination is performed by the so-called weighted intermediate recombination, i.e.

the weighted average of the 𝜇 best individuals

𝑚(𝑔 + 1) = � 𝑤𝑘𝓍𝑘:𝜆(𝑔 + 1)
𝜇

𝑘=1

� 𝑤𝑘

𝜇

𝑘=1

= 1, 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝜇 > 0.

Eq. 3-26

The measure

𝜇𝑒𝑓𝑓 = �
‖𝑤‖1

‖𝑤‖2
�

2

=
∑ |𝑤𝑘|𝜇

𝑘=1
∑ (𝑤𝑘)2𝜇

𝑘=1
=

1
∑ (𝑤𝑘)2𝜇

𝑘=1
 Eq. 3-27

is called variance effective selection mass with 1 ≤ 𝜇𝑒𝑓𝑓 ≤ 𝜇. Usually, 𝜇𝑒𝑓𝑓 ≈ 𝜆/4 indicates

a reasonable setting of 𝑤𝑘, and typical values are 𝑤𝑘 ∝ (𝜇 − 𝑘 + 1) and 𝜇 ≈ 𝜆/2 (Hansen

2006).

The next step is to adapt the covariance matrix by applying two methods, rank-one-update and

rank-𝜇-update, which are combined to use the advantages of both. In this manner the

information of the current population is exploited efficiently by the rank-𝜇-update and the

rank-one-update considers the correlations between the generations

54 3 Basics

𝐶(𝑔 + 1) =

�1 − 𝑐1 − 𝑐𝜇�𝐶(𝑔) + 𝑐1𝑞𝑐(𝑔 + 1)𝑞𝑐(𝑔 + 1)𝑡 + 𝑐𝜇 � 𝑤𝑘𝑦𝑘:𝜆(𝑔 + 1)𝑦𝑘:𝜆(𝑔 + 1)𝑡
𝜇

𝑘=1

𝑞𝑐(𝑔 + 1) = (1 − 𝑐𝑐)𝑞𝑐(𝑔) + �𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓 ⋅ �
𝑚(𝑔 + 1) − 𝑚(𝑔)

𝜎(𝑔) �

Eq. 3-28

where 𝑦𝑘:𝜆(𝑔 + 1) = 𝓍𝑘:𝜆(𝑔+1)−𝑚(𝑔)
𝜎(𝑔) , 𝑐𝜇 ≤ 1 and 𝑐1 ≤ 1 are the learning parameters, and 𝑞𝑐 is

the evolution path, also called cumulation, which is expressed by a sum of consecutive

steps.

The last step is the control of the overall step size 𝜎. This is also done by constructing an

evolutionary path

𝑞𝜎(𝑔 + 1) = (1 − 𝑐𝜎)𝑞𝜎(𝑔) + �𝑐𝜎(2 − 𝑐𝜎)𝜇𝑒𝑓𝑓 ⋅ 𝐶(𝑔)−1
2 ⋅ �

𝑚(𝑔 + 1) − 𝑚(𝑔)
𝜎(𝑔) �, Eq. 3-29

where 𝑐𝜎 is the learning parameter. The length of the evolution path provides information for

the update of the step size. If the evolution path is short, single steps cancel out each other and

the step size should be decreased. However, if the evolutionary path is long, single steps point

to similar directions and the step size should be increased. To decide whether the evolutionary

path is long or short, it is compared with its expected length under random selection

𝐸(‖𝑁𝑁(0, 𝐼)‖)

𝜎(𝑔 + 1) = 𝜎(𝑔) 𝑒𝑥𝑝 �
𝑐𝜎

𝑑𝜎
�

‖𝑞𝜎(𝑔 + 1)‖
𝐸(‖𝑁𝑁(0, 𝐼)‖) − 1��

𝐸(‖𝑁𝑁(0, 𝐼)‖) ≈ √𝑛 �1 −
1

4𝑛
+

1
21𝑛2�,

Eq. 3-30

where 𝑑𝜎is the damping parameter.

The mentioned mechanisms lead to the algorithm outlined in Algorithm A5 (Appendix A1)

which is taken from (Hansen 2006). The default values for the exogenous strategy parameters

of the algorithm are also given in Table A1 (Appendix A1). Hansen does not recommend

changing the default values of the exogenous strategy parameters because they are

particularly chosen to be a robust setting (Hansen 2006). The only exception is the population

size 𝜆 which can be increased due to its significant influence on the global search

performance (Hansen and Kern 2004). Increasing the population size usually causes an

improvement of the global search capability and the robustness of CMAES but, additionally,

the convergence speed is reduced.

3.2 Optimization Methods 55

Thereby, it is assumed that the algorithm converge to a minimum when the difference

between the worst objective function value of the parent population and the best objective

function value so far Q𝑚𝑖𝑛 fall below a determined accuracy

𝒶1 = �𝑡𝑟𝑟𝑢𝑒 𝑚𝑎𝑥 �𝑄�𝓍1(𝑔)�, 𝑄�𝓍2(𝑔)�, … , 𝑄 �𝓍𝜇(𝑔)�� − 𝑄𝑚𝑖𝑛 ≤ 𝜀
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑟𝑤𝑖𝑖𝑠𝑒

 Eq. 3-31

However, according to present knowledge no global convergence results are proven till now;

but experimental studies have shown that a large class of function converges fast to the global

optimum. Some functions converge with the probability of one, independent of the initial

settings. But others have a probability less than one which normally depends on the initial

values for 𝑚0 and 𝜎0. Additionally, no general results of the convergence order have been

published thus far. Furthermore, the step-size control in Eq. 3-30 prevents the algorithm from

converging prematurely but it does not avoid allowing the search to end up in a local

minimum. Large populations help avoid local minima but with slower convergence rate. For a

detailed description of CMAES and performance considerations, refer to (Hansen 2006),

(Hansen and Ostermeier 2001), and (Hansen and Kern 2004).

3.2.3 HYBRID OPTIMIZATION METHODS

The main drawback of ES approaches is the high computation cost due to the slow

convergence rates. They work generally well to explore the parameter space but they are slow

in accurately finding the minimum of the objective function. However, local methods are

much faster in finding a minimum once in the right neighborhood but they can be entrapped

in a local minimum. Hence, the optimization process can be enhanced by combining a global

and a local method to a so-called hybrid method. The purpose of hybrid methods is to speed

up the convergence rate while retaining the ability to avoid being easily entrapped at a local

minimum. Thereby, the ES method localizes a promising region within the parameter space

and the local optimizer reaches the best solution in this region accurately and quickly. Yen et

al. divided hybrid methods into four groups (Yen et al. 1998):

1. Pipeline hybrids: ES and a local method are applied sequentially. They can be further

classified to (see Figure 3.9):

a. Preprocessor: ES is applied at first and afterwards the local method.

b. Primary: The local method is applied at first and afterwards ES.

56 3 Basics

c. Staged pipeline: ES and the local method are interleaved with each other.

1. Asynchronous hybrids: ES and the local method proceed and cooperate asynchronously

using a shared population.

2. Hierarchical hybrids: ES and the local method operate on different level on the

optimization problem.

3. Additional operators: An additional reproduction operator is introduced that perform the

local search. There are two architectures to integrate this new operator:

a. Partition-based hybrid architecture: the current population is divided into several

disjoint subgroups. Each subgroup can reproduce their offspring by the conventional

mechanisms mentioned previously or by the new operator. Thereby, the new operator

is selected with a specific probability.

b. Elite-based hybrid architecture: the new operator is applied to the top-ranking

individuals to generate a portion of offspring.

This study focuses on pipeline hybrids especially those with ES and CMAES, respectively, as

preprocessor. Thereby, the general hybrid algorithm is performed in two phases:

diversification and intensification (Chelouah and Siarry 2003). In the diversification phase

the mechanism of ES are applied repeatedly: recombination, mutation, and selection. It stops

when one of the following abort criteria is fulfilled:

S1 A given number of generations (𝑔𝑚𝑎𝑥) is reached.

S2 A given accuracy which corresponds to the objective function values is reached, i.e. the

difference between the worst objective function value of the current population and the

best objective function value so far 𝑄𝑚𝑖𝑛 is smaller than a given accuracy 𝜀

max �Q�𝓍1(𝑔)�, Q�𝓍2(𝑔)�, … , Q �𝓍𝜇(𝑔)�� − Q𝑚𝑖𝑛 ≤ 𝜀

S3 A given accuracy which corresponds to the localization of the objective parameters in the

current population is reached, i.e. the average distance between the best parameter set up

till now 𝓍𝑚𝑖𝑛 and the remaining parameter sets of the population is smaller than a given

neighborhood radius 𝜌

1
𝜇

�‖𝓍𝑘 − 𝓍𝑚𝑖𝑛‖
𝜇

𝑘=1

≤ 𝜌.

Then it is assumed that the individuals are all in the same area, called promising area. If the

diversification phase stops with individuals all in the promising area, the parameter set of the

best individual is the initial value 𝓍0 of the local method. In this study the Nelder-Mead

simplex method and the Hooke-Jeeves method serve as local optimizer (see Section 3.2.1).

The hybrid approach is outlined in Algorithm A6 (Appendix A1).

3.3 Sensitivity Analysis Methods 57

Figure 3.9: The classes of pipeline hybrids; left: preprocessor, middle: primary, and right:

staged pipelining (Yen et al. 1998)

3.3 SENSITIVITY ANALYSIS METHODS

The sensitivity analysis evaluates the contribution of each model parameter to the variation of

the model output, i.e. it reveals the effects of changes in the model parameters. Saltelli et al.

give the following definition (Saltelli et al. 2004): The study of how uncertainty in the output

of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in

the model input.

Within this study, the inputs are a subset of the model parameters 𝓍, either the structure

parameters 𝓍 = 𝓅 or the process parameters 𝓍 = 𝓏 (see Section 3.2), and the vector 𝓎(𝑡, 𝓍)

comprises the considered model outputs. The model output and, thus, the sensitivity

information have also been summarized by the objective function value 𝑄(𝓍) in Eq. 3-6.

The sensitivities of model parameters which correspond to the model output can either be

evaluated by local or global methods. Local methods carry out the local impact of model

parameters on the model output at some fixed point in the parameter space.

However, global methods offer possibilities to obtain parameter sensitivities which are valid

for the entire considered parameter range. Additionally, no assumptions according to

continuity and differentiability of the model output have to be made. Global methods are

usually performed by the following steps (see Figure 3.10):

START

Local
Method

END

START

Local
Method

Evolution
 Strategy

END

Evolution
 Strategy

START

Evolution
 Strategy

Local
Method

END

Abort
 criteria?

58 3 Basics

1. Specify the model outputs of interest and possibly an objective function to summarize the

sensitivities.

2. Assign a probability density function to each model parameter of interest which covers its

uncertainty range in Eq. 3-6. This range is determined by experimental measurements,

theoretical assumptions, e.g. physical laws, scientific literature, or expert judgment.

3. Generate a sample according to the defined probability density functions in step 2.

4. Simulate the model for all parameter sets of the sample generated in step 3 (and calculate

the corresponding value of the objective function in Eq. 3-6.).

5. Explore the impact of each model parameter on the objective function by an appropriate

method.

Figure 3.10: General scheme of a global SA (Saltelli et al. 1999)

Several global SA methods are available. An overview of most methods can be found in

(Saltelli et al. 2000). Generally, they can be classified into two groups:

− Sample-based methods: based on a generated sample of the model parameter. The

sensitivities are determined by specific coefficients. Possible coefficients are the

standardized regression coefficient, (partial) correlation coefficient, or their rank-

transformed variants (Saltelli et al. 2000).

− Variance-based methods: aim at decomposing the variance of the model output as the

sum of contributions of each model parameter and parameter combinations. Sometimes,

they are also called ANOVA (ANalysis Of VAriance) methods. The FAST method

(Fourier Amplitude Sensitivity Test) (Cukier et al. 1973) and Sobol’s method (Sobol

1993) are possible techniques.

3.3 Sensitivity Analysis Methods 59

According to Saltelli et al., an ideal global SA method has to fulfill four properties (Saltelli et

al. 2004, Saltelli et al. 2000):

1. The inclusion of influence of scale and shape: The sensitivity estimates of individual

model parameters should incorporate the effect of the range and shape of the assigned

probability density functions, i.e. it matters if the underlying probability density function

of a model parameter corresponds to a uniform or to a normal distribution and how the

corresponding distribution parameters are.

2. Multidimensional averaging: The sensitivity estimates of individual model parameters

are evaluated by varying all other model parameters as well. In contrast, local methods

are based on the OAT (one-at-a-time) approach, i.e. only one parameter is varying at a

time while the others are kept constant at their actual values.

3. Model independence: The method should work regardless of the characteristics of the

underlying objective function and the model, respectively. These characteristics are

a. Linearity: The model output 𝒴 depends linearly on the input parameters 𝓍

𝒴 = 𝑐0 + � 𝑐𝑖𝓍𝑖

𝑛

𝑖=1

.

b. Additivity: The model output 𝒴 is additive if

𝒴 = 𝑓(𝓍1, 𝓍2, … , 𝓍𝑛) = � 𝑓𝑖(𝓍𝑖)
𝑛

𝑖=1

.

c. Monotony: The model output 𝒴 depends monotonically on the input parameter 𝓍𝑖

𝒴𝑘 ≥ 𝒴𝑘+1 𝑖𝑖𝑓 𝓍𝑖
𝑘 ≥ 𝓍𝑖

𝑘+1 𝑜𝑟𝑟 𝒴𝑘 ≤ 𝒴𝑘+1 𝑖𝑖𝑓 𝓍𝑖
𝑘 ≤ 𝓍𝑖

𝑘+1.

4. Parameter groups: The method should treat grouped model parameters as if they were

single model parameters. This is important for interpreting of the results.

The sample-based methods fulfill only property 1 and 2 but they are not model independent;

they are only applicable when model input and output behave monotonically and, in addition,

the parameters cannot be summarized into groups. However, variance-based methods satisfy

all four properties and are, thus, ideal global SA techniques.

Within this study the relationships between the objective function in Eq. 3-6 and the (structure

or process) parameters of an xHPN model should be analyzed. These relationships are usually

non-monoton and, hence, only variance-based methods are considered hereafter.

60 3 Basics

Variance-based methods decompose the variance of the objective function to the model

parameters. Therefore, the objective function is rewritten as a HDMR (High Dimensional

Model Representation) (Sobol 1993)

𝑄(𝓍) = 𝑞0 + � 𝑞𝑖(𝓍𝑖)
𝑛

𝑖=1

+ � � 𝑞𝑖𝑗�𝓍𝑖 , 𝓍𝑗�
𝑗>𝑖

𝑛

𝑖=1

+ ⋯ + 𝑞12…𝑛(𝓍1, 𝓍2, … , 𝓍𝑛)

𝑞𝑖(𝓍𝑖) = 𝐸(𝑄|𝓍𝑖) − 𝑞0, 𝑞0 = 𝐸(𝑄)

𝑞𝑖𝑗�𝓍𝑖, 𝓍𝑗� = 𝐸�𝑄�𝓍𝑖, 𝓍𝑗� − 𝑞𝑖 − 𝑞𝑗 − 𝑞0.

Eq. 3-32

This is a decomposition of the objective function into terms of increasing dimensionality,

whereby 𝐸(𝑄|𝓍𝑖) = 𝐸(𝑄|𝓍𝑖 = 𝓍𝑖
∗) is the conditional expectation value, i.e. the expectation

value of 𝑄(𝓍) if the parameter 𝓍𝑖 is fixed at 𝓍𝑖
∗.

If the model parameters are independent of each other, it is possible to decompose the

variance of 𝑄(𝓍) also into terms of increasing dimensionality

𝑉𝑎𝑟𝑟(𝑄) = � 𝑉𝑖

𝑛

𝑖=1

+ � � 𝑉𝑖𝑗
𝑗>𝑖

𝑛

𝑖=1

+ ⋯ + 𝑉12…𝑛

𝑉𝑖 = 𝑉𝑎𝑟𝑟�𝑞𝑖(𝓍𝑖)� = 𝑉𝑎𝑟𝑟(𝐸(𝑄|𝓍𝑖) − 𝑞0) = 𝑉𝑎𝑟𝑟�𝐸(𝑄|𝓍𝑖)�

𝑉𝑖𝑗 = 𝑉𝑎𝑟𝑟 �𝑞𝑖𝑗�𝓍𝑖 , 𝓍𝑗�� = 𝑉𝑎𝑟𝑟�𝐸�𝑄�𝓍𝑖, 𝓍𝑗� − 𝑞𝑖 − 𝑞𝑗 − 𝑞0�

= 𝑉𝑎𝑟𝑟 �𝐸�𝑄�𝓍𝑖, 𝓍𝑗�� − 𝑉𝑖 − 𝑉𝑗 ,

Eq. 3-33

where 𝑉𝑖, 𝑉𝑖𝑗, … , 𝑉12…𝑛 are called partial variances and 𝑉𝑖 = 𝑉𝑎𝑟𝑟�𝐸(𝑄|𝓍𝑖)� is variance taken

over all possible values of 𝓍𝑖
∗. It expresses the expected amount of variance that would be

removed from the total variance 𝑉𝑎𝑟𝑟(𝑄) if the true value of the model parameter 𝓍𝑖 would be

known, called main effect (Saltelli et al. 2008), hence, a large value of 𝑉𝑖 implies that 𝓍𝑖 is an

important parameter.

Dividing both sides of Eq. 3-33 by the variance of the objective function leads to

1 = � 𝑆𝑖

𝑛

𝑖=1

+ � � 𝑆𝑖𝑗
𝑗>𝑖

𝑛

𝑖=1

+ ⋯ + 𝑆12…𝑛

𝑆𝑖 =
𝑉𝑎𝑟𝑟�𝐸(𝑄|𝓍𝑖)�

𝑉𝑎𝑟𝑟(𝑄)

Eq. 3-34

3.3 Sensitivity Analysis Methods 61

𝑆𝑖𝑗 =
𝑉𝑎𝑟𝑟 �𝐸�𝑄�𝓍𝑖, 𝓍𝑗�� − 𝑉𝑖 − 𝑉𝑗

𝑉𝑎𝑟𝑟(𝑄) ,

where 𝑆𝑖, 𝑆𝑖𝑗 , … , 𝑆12…𝑛 are called first-order sensitivity indices, second-order sensitivity

indices, …,and 𝒏𝒕𝒉-order sensitivity indices, respectively. The first order sensitivity index

represents the main effect contribution of each model parameter to the variance of the

objective function; thus, it is a measure of the relative importance of an individual parameter

𝓍𝑖 and can be used to rank the parameters (Saltelli et al. 2008, Sobol 1993).

The total effect of a parameter 𝓍𝑖 comprises its first-order effect and, additionally, all higher-

order effects due to interactions. This is associated with the fact that the variance is composed

of

𝑉𝑎𝑟𝑟(𝑄) = 𝐸�𝑉𝑎𝑟𝑟(𝑄|𝓍~𝑖)� + 𝑉𝑎𝑟𝑟�𝐸(𝑄|𝓍~𝑖)� Eq. 3-35

according to the law of total variance and 𝓍~𝑖 is comprised of all parameters expect 𝓍𝑖, hence,

𝐸�𝑉𝑎𝑟𝑟(𝑄|𝓍~𝑖)� = 𝑉𝑎𝑟𝑟(𝑄) − 𝑉𝑎𝑟𝑟�𝐸(𝑄|𝓍~𝑖)� is the expected amount of variance that would

remain unexplained if only 𝓍𝑖 were left to vary within its uncertainty range and all other

parameters are known. The total sensitivity index is then given by

𝑆𝑇𝑖 =
𝐸�𝑉𝑎𝑟𝑟(𝑄|𝓍~𝑖)�

𝑉𝑎𝑟𝑟(𝑄) =
𝑉𝑎𝑟𝑟(𝑄) − 𝑉𝑎𝑟𝑟�𝐸(𝑄|𝓍~𝑖)�

𝑉𝑎𝑟𝑟(𝑄) = 1 −
𝑉𝑎𝑟𝑟�𝐸(𝑄|𝓍~𝑖)�

𝑉𝑎𝑟𝑟(𝑄) . Eq. 3-36

First-order sensitivity coefficients can be estimated by using methods such as FAST (Fourier

Sensitivity Amplitude Test) (Cukier et al. 1973) or the method of Sobol (Sobol 1993). To

carry out the total sensitivity indices Sobol’s method can also be used or an extended version

of the FAST method called eFAST (extended FAST) introduced by Saltelli et al. (Saltelli et

al. 1999). This study concerns the FAST and eFAST method.

Hereafter the local approach for calculating sensitivities of the model parameters with respect

to the model outputs 𝓎(𝓍, 𝑡) and objective function value 𝑄(𝓍) is introduced first. Afterwards

the FAST and eFAST method are described in detail.

3.3.1 LOCAL APPROACH

A local SA is usually performed by computing partial derivatives of the model outputs with

respect to the model parameters and, thus, it is only applicable when the model outputs are

62 3 Basics

differentiable in a neighborhood of the actual value 𝓍∗. The partial derivatives of the model

output 𝓎𝑗(𝑡, 𝓍∗), 𝑗 = 1, … , 𝑛𝑦 with respect to the model parameters 𝓍𝑖
∗

𝜕𝓎𝑗(𝓍∗, 𝑡)
𝜕𝓍𝑖

𝑖𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛𝑦

Eq. 3-37

are called first-order sensitivity coefficients and form the Jacobian, also called sensitivity

matrix, in this context

𝑆(𝓍∗, 𝑡) =

⎝

⎜
⎜
⎜
⎜
⎛

𝜕𝓎1(𝓍∗, 𝑡)
𝜕𝓍1

⋯
𝜕𝓎1(𝓍∗, 𝑡)

𝜕𝓍𝑛
𝜕𝓎2(𝓍∗, 𝑡)

𝜕𝓍1
⋯

𝜕𝓎2(𝓍∗, 𝑡)
𝜕𝓍𝑛

⋮ ⋱ ⋮
𝜕𝓎𝑛𝑦

(𝓍∗, 𝑡)
𝜕𝓍1

⋯
𝜕𝓎𝑛𝑦

(𝓍∗, 𝑡)
𝜕𝓍𝑛 ⎠

⎟
⎟
⎟
⎟
⎞

. Eq. 3-38

If the analytical solution of the model output 𝓎(𝓍∗, 𝑡) is known, the sensitivity matrix 𝑆 can

be obtained by differentiation. This is usually not the case and, therefore, numerical methods

have to be applied. The simplest method to calculate local sensitivities numerically is the

finite-difference approximation. Thereby, one parameter is changed slightly at a time while

the others are held fixed and the model is rerun

𝜕𝓎𝑗(𝓍∗, 𝑡)
𝜕𝓍𝑖

≈
𝓎𝑗(𝓍∗ + ℎ𝑒𝑖, 𝑡) − 𝓎𝑗(𝓍∗, 𝑡)

ℎ

 𝑖𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛𝑦,

Eq. 3-39

where 𝑒𝑖 is the 𝑖𝑖𝑡ℎ unit vector. This approximation is called forward difference. It is also

possible to approximate the partial derivatives by backward or central differences,

respectively:

𝜕𝓎𝑗(𝓍∗, 𝑡)
𝜕𝑥𝑖

≈
𝓎𝑗(𝓍∗, 𝑡) − 𝓎𝑗(𝓍∗ − ℎ𝑒𝑖, 𝑡)

ℎ

 𝑖𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛𝑦

Eq. 3-40

𝜕𝓎𝑗(𝓍∗, 𝑡)
𝜕𝑥𝑖

≈
𝓎𝑗(𝓍∗ + ℎ𝑒𝑖, 𝑡) − 𝓎𝑗(𝓍∗ − ℎ𝑒𝑖, 𝑡)

2ℎ

 𝑖𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛𝑦

Eq. 3-41

The calculation of the sensitivity matrix requires 𝑛 + 1 simulations of the model if forward or

backward differences are applied and 2𝑛 simulations in the case of central differences. The

3.3 Sensitivity Analysis Methods 63

advantage of this method is that no extra code beyond the original ODE-solver is needed for

the calculation of sensitivities; but on the other hand, it is difficult to find the right level of the

parameter change ℎ because the accuracies of the sensitivities depend on it. If the change is

too small, the difference between original and perturbed solution is too small and the round-

off error is too high and if it is too large, the linear approximation fails. To consider different

magnitudes of the parameters, it is advisable to choose the parameter change as a percentage

from the actual value

ℎ𝑖 = 𝑟𝑟 ⋅ 𝓍𝑖
∗ Eq. 3-42

where 0 < 𝑟𝑟 < 1.

To compare the local sensitivities, the entries of the sensitivity matrix have to be normalized.

One possible way to do this, is to evaluate the partial derivatives of the logarithm of the model

outputs and multiply them with the actual values

𝑆̃(𝓍∗, 𝑡) = �𝓍∗
𝑖 ⋅

𝜕 𝑙𝑛��𝓎𝑗(𝓍∗, 𝑡)� + 1�
𝜕𝓍𝑖

�

𝑖𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛𝑦

Eq. 3-43

Thereby, the model output is shifted by one to avoid negative values of the logarithm if the

model output is less than one.

However, a practical difficulty of the sensitivity matrix is often its size. If a model may

consist of 25 variables and 20 parameters, the matrix has 500 elements and if, in addition, 100

time points are studied, then 5000 sensitivities have to be compared. Thus, it is necessary to

summarize the sensitivity information. This can be achieved by using an objective function

(Eq. 3-6) which converts the multivariate output of a model to a single value. The partial

derivatives of the objective function, with respect to the model parameters, are then given by

𝛻𝑄(𝓍∗) = �
𝜕𝑄(𝓍∗)

𝜕𝓍∗
𝑖

�

𝑖𝑖 = 1, … , 𝑛

Eq. 3-44

which is also known as the gradient of 𝑄(𝓍∗).

First-order local sensitivity coefficients of the objective function only give information about

the change of single parameters; but it is also important to analyze the effect of changing

several parameters, simultaneously. The principal component analysis is based on local

sensitivities and can be used to estimate the effect of simultaneous parameter changes (Vajda

et al. 1985, Bard 1974).

64 3 Basics

Assuming that 𝑄(𝓍) is twice continuous differentiable in an open neighborhood 𝒩 of 𝓍∗,

then 𝑄(𝓍) can be expanded to its Taylor series at the actual point 𝓍∗

𝑄(𝓍) ≈ 𝑄(𝓍∗) + 𝛻𝑄(𝓍∗)∆𝓍 +
1
2

∆𝓍𝑡𝛻2𝑄(𝓍∗)∆𝓍 Eq. 3-45

where ∆𝓍 = 𝓍 − 𝓍∗, ∇𝑄(𝓍∗) is the gradient of 𝑄(𝓍) at 𝓍∗, and ∇2𝑄(𝓍∗) is the Hessian of

𝑄(𝓍) at 𝓍∗. If 𝓍∗ is a minimum of 𝑄(𝓍), then is ∇𝑄(𝓍∗) = 0 (see Theorem 3.1) and the

objective function can be approximated by

𝑄�(𝓍) = 𝑄(𝓍∗) +
1
2

∆𝓍𝑡𝛻2𝑄(𝓍∗)∆𝓍. Eq. 3-46

Hereafter it is simplified assuming that 𝑄(𝓍∗) = 0 if 𝓍∗ is a minimizer of 𝑄. The expression

in Eq. 3-46 is then a quadratic approximation of the real shape of the objective function so

that at any fixed 𝜀 > 0 the inequality

0 ≤ 𝑄�(𝓍) =
1
2

∆𝓍𝑡𝛻2𝑄(𝓍∗)∆𝓍 ≤ 𝜀 Eq. 3-47

defines an ellipsoid in the parameter space with the principal axes defined by the Hessian (see

Figure 3.11). The orientation of the ellipsoid with respect to the parameter axes is defined by

the eigenvectors of the Hessian 𝑁𝑁 = 𝛻2𝑄(𝓍∗) while the relative lengths of the axes are

revealed by the eigenvalues of this matrix. The function 𝑄�(𝓍) is most sensitive to a change in

𝓍 along the principal axis corresponding to the largest eigenvalue and is least sensitive to a

change in 𝓍 along the principal axis corresponding to the smallest eigenvalue. If all principal

axes of the ellipsoid are parallel to the axes of the parameter space, there is no synergistic

effect among the parameters.

Figure 3.11: An approximated region defined by 𝑸�(𝒙) ≤ 𝜺

Q(x)≤ε

Δ x1

Δ x2

v1

v2

3.3 Sensitivity Analysis Methods 65

This interpretation can be concretized by using the term principal component. A principal

component is a new parameter obtained via linear combination of the original parameters

𝜓 = 𝑈𝑡𝓍, Eq. 3-48

where 𝑈 is the matrix of normalized eigenvectors obtained by diagonalization (eigenvalue-

eigenvector decomposition) of the Hessian 𝑁𝑁:

𝑁𝑁 = 𝑈𝛬𝑈𝑡 Eq. 3-49

with the diagonal matrix Λ formed by the eigenvalues of 𝑁𝑁. The objective function 𝑄(𝓍) can

be rewritten in dependency of the new parameters 𝜓:

𝑄�(𝓍) = ∆𝓍𝑡𝑁𝑁∆𝓍 = ∆𝓍𝑡𝑈𝛬𝑈𝑡∆𝓍 = ∆𝜓𝑡𝛬∆𝜓 = � 𝜆𝑖∆𝜓𝑖
2

𝑛

𝑖=1

= 𝑄�(𝜓). Eq. 3-50

This equation provides another explanation of why the eigenvectors of the matrix 𝑁𝑁 reveal the

related parameters and why the corresponding eigenvalues show the relative weights of these

parameter groups. It clearly displays the inverse relationship between the lengths of the axes

and the square roots of the eigenvalues. The largest eigenvalue indicates the parameter group

with the largest sensitivity to a change in 𝜓 corresponding to 𝑄�(𝜓) and the smallest

eigenvalue indicates the parameter group with the smallest sensitivity to a change in 𝜓

corresponding to 𝑄�(𝜓).

Example 3.16 (Bard 1974)

Consider, the two-dimensional case with

𝑁𝑁 = � 0.505 −0.495
−0.495 0.505 �

and 𝜀 = 1. Thereby, Eq. 3-47 reduces to

𝑄�(𝓍) = 0.505∆𝓍1
2 − 0.99∆𝓍1∆𝓍2 + 0.505∆𝓍2

2 ≤ 1. Eq. 3-51

The normalized eigenvectors of the matrix 𝑁𝑁 are 𝑣1 = (0.7071 −0.7071)𝑡 and 𝑣2 =

(0.7071 0.7071)𝑡 with the corresponding eigenvalues 𝜆1 = 1 and 𝜆2 = 0.01. From this

follows

∆𝜓 = 𝑈𝑡∆𝓍 = �0.7071 −0.7071
0.7071 0.7071 � ∙ �∆𝓍1

∆𝓍2
� = �0.7071(∆𝓍1 − ∆𝓍2)

0.7071(∆𝓍1 + ∆𝓍2)�

𝑄�(𝜓) = � 𝜆𝑖∆𝜓𝑖
2

2

𝑖=1

= ∆𝜓1
2 + 0.01∆𝜓2

2

Hence, the principal axes have the lengths �𝜀 𝜆1⁄ = 1 and �𝜀 𝜆2⁄ = 10. It is clear from

Figure 3.12 that if the parameters are changed simultaneously, large changes can be made

before the boundary of 𝑄�(𝓍) = 1 is exceeded. In fact, ∆𝓍1 = ∆𝓍2 = 7.701 satisfies Eq. 3-51.

66 3 Basics

On the other hand, if the changes in ∆𝓍1 and ∆𝓍2 are taken in opposite directions, the

boundary is lower ∆𝓍1 = −∆𝓍2 = 0.701. Thus, the principal component Δ𝜓2 is very sensitive

to changes and Δ𝜓1 is less sensitive.

Figure 3.12: The approximated region for the matrix 𝑯 with 𝑸�(𝔁) = 𝟏

3.3.2 GLOBAL APPROACH: FOURIER AMPLITUDE SENSITIVITY TEST

The FAST method was developed by Cukier et al. in the 1970s (Cukier et al. 1973) and

provides a way to estimate the first-order sensitivity indices in Eq. 3-34. It follows the general

scheme of a global method depicted in Figure 3.10. At first, each considered model parameter

𝓍𝑖 is provided with a probability density function 𝓅𝑖(𝓍𝑖). If the model parameters are not

correlated, the probability density function 𝒫(𝓍) is given by

𝒫(𝓍) = � 𝓅𝑖(𝓍𝑖)
𝑛

𝑖=1

. Eq. 3-52

The investigated model output is the value of the objective function in Eq. 3-6. The expected

objective function value is then defined as

𝐸(𝑄) = � … � 𝑄(𝓍1, 𝓍2, … , 𝓍𝑛) ⋅ 𝒫(𝓍1, 𝓍2, … , 𝓍𝑛) 𝑑𝓍1 … 𝑑𝓍𝑛

= � … � 𝑄(𝓍) ⋅ 𝒫(𝓍) 𝑑𝓍.
Eq. 3-53

Q(x)=1

Δx1

Δx2

v1

v2
7.071

0.7071

Δx1=Δx2

Δx1=-Δx2

3.3 Sensitivity Analysis Methods 67

The main idea of the FAST method is to convert this 𝑛-dimensional integral into an

equivalent one-dimensional integral. Therefore, the parameters are transformed by a set of

known transformation functions 𝐺, so-called search curves

𝓍𝑖 = 𝐺𝑖(𝑠𝑖𝑖𝑛(𝜔𝜔𝑖𝑠)), 𝑖𝑖 = 1, 2, … , 𝑛, Eq. 3-54

whereby {𝜔𝜔𝑖} is a set of frequencies and 𝑠 is a scalar variable, called search variable, which

varies over the range −∞ < 𝑠 < +∞.

According to the ergodic theorem, Weyl shows that the expression for the expected objective

function value in Eq. 3-53 is identical to the following one-dimensional integral (Weyl 1938)

𝐸(𝑄) = 𝑙𝑖𝑖𝑚
𝑇→∞

1
2𝐴𝐴

� 𝑄�𝓍1(𝑠), 𝓍2(𝑠), … , 𝓍𝑛(𝑠)� 𝑑𝑠
𝑇

−𝑇
. Eq. 3-55

One demand on the search curve is that it is space-filling, i.e. it passes arbitrarily close to any

point in the 𝑛-dimensional parameter space. To ensure this, the frequencies 𝜔𝜔𝑖 have to be

selected properly so that they are incommensurate, i.e.

� 𝛼𝑖

𝑛

𝑖=1

𝜔𝜔𝑖 ≠ 0, 𝛼𝑖 − 𝑖𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑟𝑠. Eq. 3-56

However, the space-filling curve is only an ideal which cannot be realized numerically due to

the fact that the frequencies cannot be truly incommensurate; therefore, at most one of the

incommensurate frequencies can be rational and all others have to be irrational. The

numerical value of these irrational numbers cannot be stored exactly in a computer and,

hence, an approximation of the incommensurate frequencies by a rational number is required.

To calculate these frequencies, Schaibly and Shuler propose an appropriate set of integer

frequencies which implies that the parameters 𝓍𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛 are periodic in 𝑠 on the finite

interval (−𝜋, 𝜋) (Schaibly and Shuler 1973). Hence, Eq. 3-55 can be modified to

𝐸(𝑄) =
1

2𝜋
� 𝑄�𝓍1(𝑠), 𝓍2(𝑠), … , 𝓍𝑛(𝑠)�𝑑𝑠

𝜋

−𝜋
. Eq. 3-57

and the variance of the objective function is then given by

𝑉𝑎𝑟𝑟(𝑄) = 𝐸(𝑄2) − 𝐸(𝑄)2

=
1

2𝜋
� 𝑄2�𝓍1(𝑠), 𝓍2(𝑠), … , 𝓍𝑛(𝑠)� 𝑑𝑠

𝜋

−𝜋
− 𝐸(𝑄)2. Eq. 3-58

Hereafter 𝑄�𝓍1(𝑠), 𝓍2(𝑠), … , 𝓍𝑛(𝑠)� is denoted by 𝑄(𝑠).

68 3 Basics

FREQUENCY SELECTION

The integer frequencies are selected according to Schaibly and Shuler (Schaibly and Shuler

1973) such that they are approximately incommensurate to order 𝑀, i.e.

� 𝛼𝑖

𝑛

𝑖=1

𝜔𝜔𝑖 ≠ 0, 𝛼𝑖 − 𝑖𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑟𝑠

𝑓𝑜𝑟𝑟 �|𝛼𝑖|
𝑛

𝑖=1

≤ 𝑀 + 1,

Eq. 3-59

whereby the order 𝑀 can be determined by the investigator. The larger the chosen value of 𝑀,

the better the coverage of the space. If 𝑀 → ∞, then the frequencies are completely

incommensurate.

The frequency set {𝜔𝜔𝑖} can be calculated by a trial and error procedure (Cukier et al. 1973)

(Cukier, et al., 1973). Schaibly et al. present a set of frequencies which are free of

interferences to the fourth order for systems with 5 to 19 considered parameters (Schaibly and

Shuler 1973). The listed frequencies have the smallest 𝜔𝜔max that still satisfies the conditions

from Eq. 3-59 and are so-called minimal sets.

FOURIER EXPANSION

The objective function is expanded to Fourier series

𝑄(𝑠) = � 𝑁𝑁𝑘 𝑐𝑜𝑠(𝑘𝑠) +
∞

𝑘=−∞

𝐵𝑘 𝑠𝑖𝑖𝑛(𝑘𝑠). Eq. 3-60

The Fourier coefficients 𝑁𝑁𝑘 and 𝐵𝑘 are given by

𝑁𝑁𝑘 =
1

2𝜋
� 𝑄(𝑠) ∙ 𝑐𝑜𝑠 (𝑘𝑠)

𝜋

−𝜋
𝑑𝑠

𝐵𝑘 =
1

2𝜋
� 𝑄(𝑠) ∙ 𝑠𝑖𝑖𝑛 (𝑘𝑠)

𝜋

−𝜋
𝑑𝑠,

Eq. 3-61

whereby 𝑁𝑁−𝑘 = 𝑁𝑁𝑘 and 𝐵−𝑘 = −𝐵𝑘.

From Parseval’s theorem, it can be obtained under certain conditions that

𝐸(𝑄2) =
1

2𝜋
� 𝑄2(𝑠) 𝑑𝑠

𝜋

−𝜋
= � 𝑁𝑁𝑘

2 +
∞

𝑘=−∞

𝐵𝑘
2. Eq. 3-62

The squared mean value of 𝑄 can be simplified by using Eq. 3-60

3.3 Sensitivity Analysis Methods 69

𝐸(𝑄)2 = �
1

2𝜋
� 𝑄(𝑠)𝑑𝑠

𝜋

−𝜋
�

2

=
1

4𝜋2 �� � 𝑁𝑁𝑘 𝑐𝑜𝑠(𝑘𝑠) +
∞

𝑘=−∞

𝐵𝑘 𝑠𝑖𝑖𝑛(𝑘𝑠) 𝑑𝑠
𝜋

−𝜋
�

2

= 𝑁𝑁0
2.

Eq. 3-63

Inserting Eq. 3-62 and Eq. 3-63 into Eq. 3-58 leads to an expression of the variance in terms

of the Fourier coefficients

𝑉𝑎𝑟𝑟(𝑄) = 𝐸(𝑄2) − 𝐸(𝑄)2 = � 𝑁𝑁𝑘
2 +

∞

𝑘=−∞

𝐵𝑘
2 − 𝑁𝑁0

2 = 2 � 𝑁𝑁𝑘
2 +

∞

𝑘=1

𝐵𝑘
2. Eq. 3-64

The part of the variance which corresponds to the uncertainty in the 𝑖𝑖th parameter, the partial

variance from Eq. 3-33, can be determined by evaluating the effect of the frequency 𝜔𝜔𝑖 on the

total variance. Therefore, the Fourier coefficients for the frequency 𝜔𝜔𝑖 and its higher

harmonics are summed up

𝑉𝑖 = 2 � 𝑁𝑁𝑞𝜔𝑖
2 +

∞

𝑞=1

𝐵𝑞𝜔𝑖
2 . Eq. 3-65

The Fourier amplitudes decreases as 𝑞 increases so that 𝑉𝑖 can be approximated by

𝑉𝑖 ≈ 2 � 𝑁𝑁𝑞𝜔𝑖
2 +

𝑀

𝑞=1

𝐵𝑞𝜔𝑖
2 , Eq. 3-66

whereby 𝑀 is the maximum harmonic that is considered and equals the order chosen for the

integer frequencies in Eq. 3-59.

The first-order sensitivity indices of Eq. 3-34 are then given by the ratio

𝑆𝑖 =
𝑉𝑖

𝑉𝑎𝑟𝑟(𝑄) ≈
∑ 𝑁𝑁𝑞𝜔𝑖

2 +𝑀
𝑞=1 𝐵𝑞𝜔𝑖

2

∑ 𝑁𝑁𝑘
2 +∞

𝑘=1 𝐵𝑘
2 . Eq. 3-67

The FAST method requires one model evaluation for each parameter combination which is

the main component of the computational cost. Thus, it is desired to minimize the required

number of model evaluations. This can be achieved by utilizing the symmetry properties of

the search curve. If the frequency set {𝜔𝜔𝑖} only comprises odd integers, the search curves

𝐺𝑖�sin (𝜔𝜔𝑖𝑠)�, 𝑖𝑖 = 1, 2, … , 𝑛 in Eq. 3-54 become symmetric about ± 𝜋
2
 so that the following

symmetry properties hold:

𝑄(𝜋 − 𝑠) = 𝑄(𝑠)

𝑄(−𝜋 + 𝑠) = 𝑄(−𝑠)
Eq. 3-68

70 3 Basics

𝑄 �
𝜋
2

+ 𝑠� = 𝑄 �
𝜋
2

− 𝑠�

𝑄 �−
𝜋
2

+ 𝑠� = 𝑄 �−
𝜋
2

− 𝑠� .

The range of the search variable s can then be restricted to − 𝜋
2

≤ 𝑠 ≤ 𝜋
2
 and the Fourier

coefficients in Eq. 3-61 are given by

𝑁𝑁𝑘 = �
0 𝑖𝑖𝑓 𝑘 𝑜𝑑𝑑

1
𝜋

� �𝑄(𝑠) + 𝑄(−𝑠)� 𝑐𝑜𝑠(𝑘𝑠) 𝑑𝑠
𝜋
2

0
 𝑖𝑖𝑓 𝑘 𝑒𝑣𝑒𝑛

𝐵𝑘 = �
0 𝑖𝑖𝑓 𝑘 𝑒𝑣𝑒𝑛

1
𝜋

� �𝑄(𝑠) − 𝑄(−𝑠)� 𝑠𝑖𝑖𝑛(𝑘𝑠) 𝑑𝑠
𝜋
2

0
 𝑖𝑖𝑓 𝑘 𝑜𝑑𝑑

Eq. 3-69

Applying these symmetry properties reduces the required model evaluations by one half.

FAST SAMPLING

The search curve given in equation Eq. 3-54 cannot be utilized in real problems because the

number of points on the search curve is infinite. Hence, a finite subset of these points has to

be selected. From the Nyquist criteria follows that the minimum number of points 𝑁𝑁 has to be

taken corresponding to the maximum frequency 𝜔𝜔𝑚𝑎𝑥 of the frequency set {𝜔𝜔𝑖} (Cukier et al.

1975)

𝑁𝑁 = 2𝑀𝜔𝜔𝑚𝑎𝑥 + 1. Eq. 3-70

In this manner, harmonics up to an order of 𝑀 can be considered by the analysis. The larger

the chosen value of the order 𝑀, the greater the likelihood that the Fourier amplitude of each

input frequency reflects solely the uncertainty of the corresponding parameter. On the other

hand, the larger the chosen 𝑀, the larger the maximum value 𝜔𝜔max of the frequency set which

still satisfies Eq. 3-59 and the larger the number of sample points 𝑁𝑁 required for the

evaluation of the Fourier amplitudes. The order 𝑀 is mostly chosen to be 4 or higher. A

symmetric and uniformly spaced sample of the search variable 𝑠 in the interval �− 𝜋
2

, 𝜋
2

�,

including 𝑠 = 0, is achieved by (Cukier et al. 1978)

𝑠𝑗 =
𝜋
2

�
2𝑗 − 𝑁𝑁 − 1

𝑁𝑁
� , 𝑗 = 1, 2, … , 𝑁𝑁 Eq. 3-71

3.3 Sensitivity Analysis Methods 71

SEARCH CURVE

The search curve in Eq. 3-54 should provide a uniformly distributed sample of the model

parameter 𝓍𝑖. Therefore, several transformation functions have been proposed (see Cukier et

al. 1973, Koda et al. 1979, Saltelli et al. 1999). Within this work, the search curve suggested

by Saltelli et al. is used (Saltelli et al. 1999)

𝓍𝑖 =
1
2

+
1
𝜋

𝑎𝑟𝑟𝑐𝑠𝑖𝑖𝑛(𝑠𝑖𝑖𝑛(𝜔𝜔𝑖𝑠)) , 𝑖𝑖 = 1,2, … , 𝑛 Eq. 3-72

This is a set of straight lines which oscillate between 0 and 1 and the empirical distribution

can be regarded as more or less uniform.

Saltelli et al. proposed, additionally, a modification of Eq. 3-72 to obtain more flexible

sampling schemes. The disadvantage of all these transformations is that they always return the

same points. This can be avoided by a random phase-shift 𝜑𝑖 chosen uniformly from the

interval [0, 2𝜋[

𝓍𝑖 =
1
2

+
1
𝜋

𝑎𝑟𝑟𝑐𝑠𝑖𝑖𝑛(𝑠𝑖𝑖𝑛(𝜔𝜔𝑖𝑠 + 𝜑𝑖)) , 𝑖𝑖 = 1,2, … , 𝑛 Eq. 3-73

However, the random shift causes that the symmetry properties of 𝑄(𝑠) in Eq. 3-68 no longer

hold. Hence, the search curve has to be sampled over the interval (−𝜋, 𝜋). By selecting

various sets {𝜑𝑖}, different search curves can be realized. This procedure is called resampling

and 𝑁𝑁𝑟 denotes the number of curves used per parameter. The minimum sample size from

Eq. 3-70 has to be redefined by

WORKING EQUATIONS

For a numerical calculation of the Fourier coefficients, the integrals in Eq. 3-69 have to be

approximated by sums to realize their computation. The computational procedure of the

FAST method is performed by steps outlined in Figure 3.13 as suggested in (Koda et al.

1979).

𝑁𝑁 = (2𝑀𝜔𝜔𝑚𝑎𝑥 + 1)𝑁𝑁𝑟 . Eq. 3-74

72 3 Basics

Figure 3.13: Implementation of the FAST-method without random phase-shift

3.3.3 EXTENDED FOURIER AMPLITUDE SENSITIVITY TEST

The FAST method provides a way to estimate the first-order sensitivity indices in Eq. 3-34.

But it is also desirable to get knowledge about the residual variance 𝑉𝑎𝑟𝑟(𝑄) − ∑ 𝑉𝑖
𝑛
𝑖=1 the

part of the variance that is not caused by first-order effects, i.e. it includes all higher-order

effects of the interactions between the parameters. The apportion of this residual variance to

various parameter combinations demands the analysis of all linear combinations among the

frequencies. The computational complexity of this procedure is the reason why the FAST

3.3 Sensitivity Analysis Methods 73

method has never be exploited for higher-order indices. Instead Saltelli et al. have proposed

an extension of the FAST method to evaluate the total sensitivity indices in Eq. 3-36. This

total sensitivities give indeed not a full characterization of the underlying system but they

allow a full quantification of the impact of each parameter 𝓍𝑖 (Saltelli et al. 1999).

The basic idea is to assign a frequency 𝜔𝜔𝑖 to a parameter 𝓍𝑖 and a set of almost identical

frequencies 𝜔𝜔~𝑖, but different from 𝜔𝜔𝑖, to all other parameters 𝓍~𝑖. The partial variance 𝑉~𝑖

can then be estimated by means of Eq. 3-66

𝑉~𝑖 = 2 � 𝑁𝑁𝑞𝜔~𝑖
2 +

𝑀

𝑞=1

𝐵𝑞𝜔~𝑖
2 . Eq. 3-75

This partial variance 𝑉~𝑖 comprises all effects of any order that do not involve the parameter

𝓍𝑖. The total sensitivity indices according to Eq. 3-36 are then given by

𝑆𝑇𝑖 = 1 −
𝑉~𝑖

𝑉𝑎𝑟𝑟(𝑄) = 1 −
2 ∑ 𝑁𝑁𝑞𝜔~𝑖

2 +𝑀
𝑞=1 𝐵𝑞𝜔~𝑖

2

𝑉𝑎𝑟𝑟(𝑄) . Eq. 3-76

This approach has the advantage that for each parameter 𝓍𝑖 only two frequencies 𝜔𝜔𝑖 and 𝜔𝜔~𝑖

have to be selected. The total number of model evaluations that is needed for a complete

sensitivity analysis is given by

𝑁𝑁 = 𝑛(2𝑀𝜔𝜔𝑚𝑎𝑥 + 1)𝑁𝑁𝑟 , Eq. 3-77

where 𝜔𝜔max = max(𝜔𝜔𝑖, 𝜔𝜔~𝑖) = 𝜔𝜔𝑖.

Usually, a high value is assigned to 𝜔𝜔𝑖 and a low value to 𝜔𝜔~𝑖; the best choice would be

𝜔𝜔~𝑖 = 1 but then the curve is very sparse space-filling. Saltelli et al. developed an algorithm

to select these frequencies (Saltelli et al. 1999). At first, the maximum allowable frequency of

the complementary set {𝜔𝜔~𝑖} is set to

𝑚𝑎𝑥{𝜔𝜔~𝑖} =
𝜔𝜔𝑖

2𝑀
. Eq. 3-78

The frequencies of the complementary set are then chosen so that the whole range [1, 𝜔𝜔~𝑖] is

covered according to the conflicting requirements:

1. the step between two consecutive frequencies must be as large as possible, and

2. the number of parameters assigned with the same frequency must be as low as possible.

It can be shown that the lowest sample size that can be used is 65 with 𝜔𝜔𝑖 = 8. Saltelli et al.

recommended choosing the values for the frequency 𝜔𝜔𝑖 and the resampling size 𝑁𝑁𝑟

corresponding to Figure 3.14 by a given sample size 𝑁𝑁 (Saltelli et al. 1999). Within the

suggested region, the ratio 𝜔𝜔𝑖/𝑁𝑁𝑟 varies between 16 and 64 and all possible choices are

74 3 Basics

equivalent for a given 𝑁𝑁. To take values outside of this suggested region is not recommended

because

− if 𝜔𝜔𝑖 is low and 𝑁𝑁𝑟 is high, then the sample over each curve is too sparse, and

− if 𝜔𝜔𝑖 is high and 𝑁𝑁𝑟 is low, then the sample is too dense over a small number of closed

paths.

Figure 3.14: Recommended region for choosing the values of the frequency 𝝎𝒊 and the

resampling size 𝑵𝒓 by a given sample size 𝑵 (Saltelli et al. 1999)

1 2 3 4

8

16

32

48

64

N = 337

N = 513

N = 770

𝜔𝜔𝑖𝑖

𝑁𝑁𝑟𝑟

forbidden region

suggested region

75

4 PETRI NETS

The implementation and programming of the Petri net elements by means of the Modelica

language demands a clear definition of the underlying formalism and the corresponding

processes such as activation, enabling, and firing. Despite several works and publications with

Petri net approaches, there is a serious problem according to the lacking unity of concepts,

notations, and terminologies. Every author personal definitions which are partly not precise

enough, not common, or contradictory. Hence, this section comprises all definitions of the

necessary Petri nets concepts, abbreviations, and extensions as well as the definitions of the

corresponding processes which are essential for the simulation. Beginning with the Petri net

introduced firstly by Carl Adam Petri in 1962 (Petri 1962), the formalism is successively

extended and simplified through to extended Hybrid Petri Nets for biological applications

(xHPN) to model nearly all kinds of biological reactions.

Thereby, it is always mentioned who proposed the respective Petri net concept and afterwards

the corresponding definitions used in this work are given. These can differ from the original

ones to meet the requirements of biologists and retain the basic Petri net logics at every

expansion step (see Section 5.2).

4.1 BASIC CONCEPTS

The Petri net formalism for graphical modeling and visualization of concurrency, parallelism,

synchronization, resource sharing, and non-determinism was first introduced by Carl Adam

Petri in 1962 (Petri 1962). A Petri net is mathematically a directed and bipartite graph. The

property bipartite implies the division into two unique sets of nodes, called transitions and

places; thereby, places and transitions are connected by arcs. An arc is a directed edge that

connects either places to transitions or transitions to places; however, connections between

transitions or places among each other are not allowed according to the bipartite attribute.

Places are graphically represented by circles and the transitions by boxes (see Figure 4.1).

76 4 Petri Nets

Petri nets can be found in many different application fields like computer communications,

business or production processes, operating systems, traffic light crossings, or systems

biology. In this connection, a place models a state, for example, of an object or a condition

while a transition models the change of several states, for example, activities or events.

Figure 4.1: Graphical representation of a place (left) and a transition (right)

This section serves as a basis for the implementation of the ordinary Petri net concept and its

abbreviations and extensions which are necessary to model biological processes.

Abbreviations simplify the Petri net representation but can always be transformed to an

ordinary Petri net. On the other hand, extensions cannot be represented by ordinary Petri nets

and allow the usage of the Petri net formalism in a wider range of applications.

Definition 4.1 (net)

A net is the tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺) of a finite set of places 𝐴𝐴 = �𝑝1, 𝑝2, … , 𝑝𝑝�, a finite set of

transitions 𝐴𝐴 = {𝑡1, 𝑡2, … , 𝑡𝑡}, where 𝐴𝐴 ∩ 𝐴𝐴 = ∅, a set 𝐹𝐹 ⊆ (𝐴𝐴 × 𝐴𝐴) of arcs from places to

transitions, and a set 𝐺 ⊆ (𝐴𝐴 × 𝐴𝐴) of arcs from transitions to places.

Definition 4.2 (Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓) is a Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺) is a net and 𝑓: (𝐹𝐹 ∪ 𝐺) → ℕ0 is an arc

weight function which assigns each arc a non-negative integer, whereby (𝑝𝑖 → 𝑡𝑗) denotes the

arc from a place 𝑝𝑖 ∈ 𝐴𝐴 to a transition 𝑡𝑗 ∈ 𝐴𝐴 and 𝑓(𝑝𝑖 → 𝑡𝑗) is the corresponding weight and

(𝑡𝑗 → 𝑝𝑖) denotes the arc from 𝑡𝑗 to 𝑝𝑖 with the weight 𝑓(𝑡𝑗 → 𝑝𝑖).

Every place in a Petri net can contain an integer number of tokens. These tokens are

graphically represented by little black dots or numbers in the places (see Figure 4.2). A

concrete determination of the token number of a place is called marking of the place and a

concrete determination of the token numbers of all places in a Petri net is called marking of

the Petri net. If a Petri net contains only marked places, then it is called initially marked Petri

net or following just Petri net.

4.1 Basic Concepts 77

Definition 4.3 (marking)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓) is a Petri net. A map 𝑚: 𝐴𝐴 → ℕ0 is called marking of the Petri net

and assigns each 𝑝𝑖 ∈ 𝐴𝐴 a concrete token number 𝑚(𝑝𝑖), called marking of the place 𝑝𝑖. The

map 𝑚0: 𝐴𝐴 → ℕ0 is the initial marking of the Petri net and the tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0) is

called (initially marked) Petri net.

Figure 4.2: Tokens can be graphically represented by dots (left) or by numbers (right) in the

places

Definition 4.4 (input, output)

The set of inputs of a Petri net element 𝑥 ∈ (𝐴𝐴 ∪ 𝐴𝐴) are defined as 𝑌𝑖𝑛(𝑥) ≔ {𝑦 ∈

(𝐴𝐴 ∪ 𝐴𝐴)|(𝑦 → 𝑥) ∈ 𝐹𝐹 ∪ 𝐺} and the set of outputs are 𝑌𝑜𝑢𝑡(𝑥) ≔ {𝑦 ∈ (𝐴𝐴 ∪ 𝐴𝐴)|(𝑥 → 𝑦) ∈

𝐹𝐹 ∪ 𝐺}. The set of all input places of a transition 𝑡𝑗 ∈ 𝐴𝐴 is noted with 𝐴𝐴𝑖𝑛�𝑡𝑗� ⊆ 𝐴𝐴 and the set

of all output places is noted with 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗� ⊆ 𝐴𝐴. Similarly, the set 𝐴𝐴𝑖𝑛(𝑝𝑖) ⊆ 𝐴𝐴 contains all

input transitions of a place 𝑝𝑖 ∈ 𝐴𝐴 and the set 𝐴𝐴𝑜𝑢𝑡(𝑝𝑖) ⊆ 𝐴𝐴 contains all output transitions (see

Figure 4.3). The number of inputs is noted by 𝑛𝑖𝑛 and the number of outputs by 𝑛𝑜𝑢𝑡.

Figure 4.3: Input and output places, and input and output transitions

A transition is said to be active with regard to a concrete marking if all input places have at

least as many tokens as their arc weights.

78 4 Petri Nets

Definition 4.5 (activation Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0) is a Petri net. A transition 𝑡𝑗 ∈ 𝐴𝐴 is active with regard to a

concrete marking 𝑚 if and only if

∀𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛(𝑡) ∶ 𝑚(𝑝𝑖) ≥ 𝑓(𝑝𝑖 → 𝑡𝑗).

The set of all active input transitions of a place 𝑝𝑖 ∈ 𝐴𝐴 is denoted by 𝐴𝐴𝑁𝑁𝑖𝑛(𝑝𝑖) and the set of

all active output transitions is denoted by 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖).

Active transitions can be enabled by connected places; if a transition is enabled by all its input

places, it is firable and can fire tokens. Possibly, a place has not enough tokens to enable all

output transitions. This is the case when its token number is less than the sum of output arc

weights and a general conflict arises that has to be resolved.

Different possible approaches are available; two of them, priority and probabilistic choice

are used within this work which accordingly have been defined and adapted based on the

suggestions in (David and Alla 2005).

Definition 4.6 (general conflict)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0) is a Petri net. A place 𝑝𝑖 ∈ 𝐴𝐴 has a general conflict with regard

to a concrete marking 𝑚 if

𝑚(𝑝𝑖) < � 𝑓(𝑝𝑖 → 𝑡𝑗)
𝑡𝑗∈𝑇𝐴𝑜𝑢𝑡(𝑝𝑖)

,

whereby the set 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖) contains two or more active output transitions.

Example 4.1

The places 𝐴𝐴1 and 𝐴𝐴2 of the Petri net in Figure 4.4 have a general conflict. 𝐴𝐴1 can either

enable 𝐴𝐴1 or 𝐴𝐴2 and 𝐴𝐴2 can either enable 𝐴𝐴2 or 𝐴𝐴3. Transition 𝐴𝐴4 is not an option because it is

not active due to missing tokens in 𝐴𝐴3.

Figure 4.4: General conflicts of discrete places (Example 4.1)

4.1 Basic Concepts 79

Definition 4.7 (Petri net with priorities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0, 𝓊) is a Petri net with priorities if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0) is a Petri net

and 𝓊: 𝐹𝐹 → {1,2, … , max(𝑛𝑜𝑢𝑡)} is a priority function which assigns every arc from a place

𝑝𝑖 ∈ 𝐴𝐴 to a transition 𝑡𝑗 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑝) an enabling priority 𝓊(𝑝𝑖 → 𝑡𝑗) under the condition that

each priority from 1 to 𝑛𝑜𝑢𝑡 is only used once for each place

𝓊(𝑝𝑖 → 𝑡𝑗) ≠ 𝓊(𝑝𝑖 → 𝑡𝑘) ∀𝑡𝑗, 𝑡𝑘 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑝𝑖)

and that 1 is the best priority and 𝑛𝑜𝑢𝑡 is the worst priority.

Definition 4.8 (Petri net with probabilities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0, 𝓌) is a Petri net with probabilities if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0) is a Petri

net and 𝓌: 𝐹𝐹 → [0,1] is a probability function which assigns every arc from a place 𝑝𝑖 ∈ 𝐴𝐴 to a

transition 𝑡𝑗 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑝𝑖) an enabling probability 𝓌(𝑝𝑖 → 𝑡𝑗) under the condition that the sum

of probabilities is equal to one

� 𝓌�𝑝𝑖 → 𝑡𝑗� = 1 ∀𝑝𝑖 ∈ 𝐴𝐴
𝑡𝑗∈𝑇𝑜𝑢𝑡(𝑝𝑖)

.

The deterministic conflict resolution with priorities requires that all output transitions of a

place are provided with a priority from 1 to 𝑛𝑜𝑢𝑡. The transition with the priority 1 is proven

at first. If it is active and the arc weight does not exceed the marking of the place, it is enabled

by the place. Then the second prioritized transition is checked; if it is active and the arc

weight sum is not greater than the marking, it is also enabled. The next transition proven is the

one provided with the third priority and so on.

Definition 4.9 (enabling process Petri net with priorities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0, 𝓊) is a Petri net with priorities. A place 𝑝𝑖 ∈ 𝐴𝐴 enables with

regard to a concrete marking 𝑚 a subset, denoted by 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖), of the transitions in

𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖). If 𝑝𝑖 has no general conflict according to Definition 4.6, it enables all transitions

in 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖), i.e.

𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖) ≡ 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖).

Otherwise, 𝑝𝑖 enables as many transitions of the set 𝐴𝐴𝑁𝑁𝑝𝑎𝑠𝑡(𝑝𝑖) as possible according to the

priorities 𝓊(𝑝𝑖 → 𝑡𝑗) so that the condition

𝑚(𝑝𝑖) ≥ � 𝑓(𝑝𝑖 → 𝑡𝑗)
𝑡𝑗∈𝑇𝐸𝑜𝑢𝑡(𝑝𝑖)

is still fulfilled.

80 4 Petri Nets

The conflict resolution by probabilities proceeds non-deterministically. A probability is

assigned to every output transition of a place. The enabled transitions are selected by a

random process with due regard to the probabilities; thereby, it always has to be ensured that

the current arc weight sum does not exceed the token number of the place.

Definition 4.10 (enabling process Petri net with probabilities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0, 𝓌) is a Petri net with probabilities. A place 𝑝𝑖 ∈ 𝐴𝐴 enables with

regard to a concrete marking 𝑚 a subset, denoted by 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖), of the transitions in

𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖). If 𝑝𝑖 has no general conflict according to Definition 4.6, it enables all transitions

in 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖), i.e.

𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖) ≡ 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖).

Otherwise, 𝑝𝑖 enables randomly as many transitions of the set 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖) as possible

according to the probabilities 𝓌�𝑝𝑖 → 𝑡𝑗� so that the condition

𝑚(𝑝𝑖) ≥ � 𝑓(𝑝𝑖 → 𝑡𝑗)
𝑡𝑗∈𝑇𝐸𝑜𝑢𝑡(𝑝𝑖)

is still fulfilled.

Remark 4.1

All output transitions of a place are provided with a probability and the sum is equal to one. If

not all output transitions are active, the probabilities have to be scaled by the following

expression

𝓌� �𝑝𝑖 → 𝑡𝑗� =
𝓌�𝑝𝑖 → 𝑡𝑗�

∑ 𝓌(𝑝𝑖 → 𝑡𝑘)𝑡𝑘∈𝑇𝐴𝑜𝑢𝑡(𝑝𝑖)
.

It is also possible to mix the two concepts; then one part of the places enables their output

transitions deterministically according to the assigned priorities and the other part randomly

according to the assigned probabilities. Petri nets with priorities and probabilities are called

simplified resolved Petri nets hereafter.

Definition 4.11 (resolved Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is a Petri net with priorities and probabilities, simplified

called resolved Petri net hereafter, if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0) is a Petri net, ℯ: 𝐴𝐴 → {𝑝𝑟𝑟𝑖𝑖𝑜, 𝑝𝑟𝑟𝑜𝑏} is

the resolution function that assigns every place either the resolution type priority or

probability, and 𝓅: 𝐹𝐹 → �{1,2, … , max(𝑛𝑜𝑢𝑡)}: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜, [0,1]: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏� is an

http://www.dict.cc/englisch-deutsch/with.html
http://www.dict.cc/englisch-deutsch/due.html
http://www.dict.cc/englisch-deutsch/regard.html

4.1 Basic Concepts 81

enabling function which assigns every arc from a place 𝑝𝑖 ∈ 𝐴𝐴 to a transition 𝑡𝑗 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑝)

either an enabling priority or a probability 𝓅(𝑝𝑖 → 𝑡𝑗) according to the resolution type of the

place and under the condition that each priority from 1 to 𝑛𝑜𝑢𝑡 is only used once for each

place 𝑝𝑖 with ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜

𝓅(𝑝𝑖 → 𝑡𝑗) ≠ 𝓅(𝑝𝑖 → 𝑡𝑘) ∀𝑡𝑗 , 𝑡𝑘 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑝𝑖)

and that 1 is the best priority and 𝑛𝑜𝑢𝑡 is the worst priority and that the sum of probabilities is

equal to one for each place 𝑝𝑖 with ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏

� 𝓅�𝑝𝑖 → 𝑡𝑗� = 1
𝑡𝑗∈𝑇𝑜𝑢𝑡(𝑝𝑖)

.

An active transition is firable if it is enabled by all input places. It fires by removing as much

tokens as the arc weights from all input places and by adding as many tokens as the arc

weights to all output places.

Definition 4.12 (firability Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is a resolved Petri net. An active transition 𝑡𝑗 ∈ 𝐴𝐴 is firable if

and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�: 𝑡𝑗 ∈ 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖).

When one or more transitions of a Petri net fire, the markings of the involved places have to

be recalculated; thereby, the output firing sum is subtracted from the token number and the

input firing sum is added to it.

Definition 4.13 (firing process Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is a resolved Petri net. A firable transition 𝑡𝑗 ∈ 𝐴𝐴 fires with

regard to a concrete marking 𝑚 by removing as many tokens as the arc weights from all input

places

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) − 𝑓(𝑝𝑖 → 𝑡𝑗) ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�

and by adding as many tokens as the arc weights to all output places

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) + 𝑓(𝑝𝑖 → 𝑡𝑗) ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗�.

The new marking 𝑚′(𝑝𝑖) of the place 𝑝𝑖 ∈ 𝐴𝐴 is recalculated by the following algebraic

equation

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) − � 𝑓(𝑝𝑖 → 𝑡𝑗)
𝑡𝑗∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖)

+ � 𝑓(𝑡𝑗 → 𝑝𝑖)
𝑡𝑗∈𝑇𝐹𝑖𝑛(𝑝𝑖)

,

82 4 Petri Nets

whereby 𝐴𝐴𝐹𝐹𝑜𝑢𝑡(𝑝𝑖) ⊆ 𝐴𝐴 is the set of all firing output transitions and 𝐴𝐴𝐹𝐹𝑖𝑛(𝑝𝑖) ⊆ 𝐴𝐴 is the set of

all firing input transitions. The sums ∑ 𝑓(𝑝𝑖 → 𝑡𝑗)𝑡𝑗∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖) and ∑ 𝑓(𝑡𝑗 → 𝑝𝑖) 𝑡𝑗∈𝑇𝐹𝑖𝑛(𝑝𝑖) are

called output firing sum and input firing sum, respectively.

Example 4.2

Figure 4.5 displays an example of a Petri net with seven places {𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝐴𝐴4, 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7}

and four transitions {𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝐴𝐴4}. The numbers at the arcs are the weights and the black

dots in the places are the tokens. Place 𝐴𝐴1 has two tokens (𝑚0(𝐴𝐴1) = 2), 𝐴𝐴2 has five tokens

(𝑚0(𝐴𝐴2) = 5), 𝐴𝐴4 has one token (𝑚0(𝐴𝐴4) = 1), and 𝐴𝐴7 has two tokens (𝑚0(𝐴𝐴7) = 2). All

others have no tokens (𝑚0(𝐴𝐴3) = 𝑚0(𝐴𝐴5) = 𝑚0(𝐴𝐴6) = 0) and, hence, the initial marking of

this Petri net is 𝑚0 = (2,5,0,1,0,0,2).

Figure 4.5: Petri net (Example 4.2)

Activation:

- 𝐴𝐴1: The input places are 𝐴𝐴1 and 𝐴𝐴2. 𝐴𝐴1 must have at least two tokens (weight of the arc

from 𝐴𝐴1 to 𝐴𝐴1 (𝑓(𝐴𝐴1 → 𝐴𝐴1) = 2)) which it actually has and 𝐴𝐴2 must have at least one token

(𝑓(𝐴𝐴2 → 𝐴𝐴1) = 1) and it has five; hence, transition 𝑻𝟏 is active.

- 𝐴𝐴2: The only input place is 𝐴𝐴2. 𝐴𝐴2 must have at least one token (𝑓(𝐴𝐴2 → 𝐴𝐴2) = 1) which is

fulfilled; hence, transition 𝑻𝟐 is active.

- 𝐴𝐴3: The input places are 𝐴𝐴4 and 𝐴𝐴5. 𝐴𝐴4 must have at least one token (𝑓(𝐴𝐴4 → 𝐴𝐴3) = 1)

which it actually has but 𝐴𝐴5 must have at least two tokens and it has none; hence,

transition 𝑻𝟑 is not active.

- 𝐴𝐴4: The input places are 𝐴𝐴3 and 𝐴𝐴6. Both places have no tokens; hence, transition 𝑻𝟒 is

not active.

Enabling:

- 𝐴𝐴1 enables its only output transition 𝐴𝐴1.

4.1 Basic Concepts 83

- 𝐴𝐴2 has enough tokens to enable both output transitions 𝐴𝐴1 and 𝐴𝐴2 (𝑚(𝐴𝐴2) = 5 ≥

𝑓(𝐴𝐴2 → 𝐴𝐴1) + 𝑓(𝐴𝐴2 → 𝐴𝐴2) = 2). There is no general conflict.

Firing: T1 and T2 are firable and fire by

- Removing 2 �= 𝑓(𝐴𝐴1 → 𝐴𝐴1)� tokens from 𝐴𝐴1

- Removing 2 �= 𝑓(𝐴𝐴2 → 𝐴𝐴1) + 𝑓(𝐴𝐴2 → 𝐴𝐴2)� tokens from 𝐴𝐴2

- Adding 3 �= 𝑓(𝐴𝐴1 → 𝐴𝐴3)� tokens to 𝐴𝐴3

- Adding 2 �= 𝑓(𝐴𝐴1 → 𝐴𝐴4)� tokens to 𝐴𝐴4

- Adding 2 �= 𝑓(𝐴𝐴2 → 𝐴𝐴5)� tokens to 𝐴𝐴5.

The new marking of the Petri net is 𝑚′ = (0,3,3,3,2,0,2) and it is displayed in Figure 4.6. Now

the transitions 𝐴𝐴2 and 𝐴𝐴3 are active and can be enabled by all their input places. Hence, 𝐴𝐴2

and 𝐴𝐴3 are firable and the firing of 𝐴𝐴2 and 𝐴𝐴3 leads to the new marking 𝑚′′ = (0,2,3,2,2,1,2).

Figure 4.6: Petri net of Figure 4.5 after firing 𝑻𝟏 and 𝑻𝟐 (Example 4.2)

Example 4.3

Both transitions of the Petri net example in Figure 4.7 are active because of

𝑚(𝐴𝐴1) = 2 ≥ 𝑓(𝐴𝐴1 → 𝐴𝐴1) = 1

and

𝑚(𝐴𝐴1) = 2 ≥ 𝑓(𝐴𝐴1 → 𝐴𝐴2) = 2.

But 𝐴𝐴1 can only enable one of them due to its token number (𝑚(𝐴𝐴1) = 2 ≱ 𝑓(𝐴𝐴1 → 𝐴𝐴1) +

𝑓(𝐴𝐴1 → 𝐴𝐴2) = 3). Hence, 𝐴𝐴1 has a general conflict. If the enabling is performed by priorities

and 𝐴𝐴2 has priority 1 (𝓅(𝐴𝐴1 → 𝐴𝐴2) = 1) and 𝐴𝐴1 has priority 2 (𝓅(𝐴𝐴1 → 𝐴𝐴1) = 2), 𝐴𝐴1 enables

𝐴𝐴2. 𝐴𝐴2 is firable and fires by removing two tokens from 𝐴𝐴1 and adding one to 𝐴𝐴3. If the

enabling is performed at random, one of the transitions is enabled according to their assigned

probabilities, e.g. 𝐴𝐴1 has the probability 𝓅(𝐴𝐴1 → 𝐴𝐴1) = 0.7 and 𝐴𝐴2 has the probability

𝓅(𝐴𝐴1 → 𝐴𝐴2) = 0.3.

84 4 Petri Nets

Figure 4.7: Petri net with a general conflict (Example 4.3)

Example 4.4

All transitions of the Petri net in Figure 4.8 are active but 𝐴𝐴1 and 𝐴𝐴2 can only enable one of

their output transitions due to their token numbers. Four cases can occur if probabilistic

enabling is applied:

- Case 1: 𝐴𝐴1 enables 𝐴𝐴1 and 𝐴𝐴2 enables 𝐴𝐴3

𝐴𝐴1 and 𝐴𝐴3 are firable and fire by removing one token from 𝐴𝐴1 and 𝐴𝐴2 and adding one to 𝐴𝐴3

and 𝐴𝐴5. The new marking of the Petri net is 𝑚′ = (0,0,1,0,1).

- Case 2: 𝐴𝐴1 enables 𝐴𝐴1 and 𝐴𝐴2 enables 𝐴𝐴2

Only 𝐴𝐴1 is firable and fires by removing one token from 𝐴𝐴1 and adding one to 𝐴𝐴3. The new

marking of the Petri net is 𝑚′ = (0,1,1,0,0).

- Case 3: 𝐴𝐴1 enables 𝐴𝐴2 and 𝐴𝐴2 enables 𝐴𝐴3

Only 𝐴𝐴3 is firable and fires by removing one token from 𝐴𝐴2 and adding one to 𝐴𝐴5. The new

marking of the Petri net is 𝑚′ = (1,0,0,0,1).

- Case 4: 𝐴𝐴1 enables 𝐴𝐴2 and 𝐴𝐴2 enables 𝐴𝐴2

𝐴𝐴2 is firable and fires by removing one token from 𝐴𝐴1 and 𝐴𝐴2 and adding one to 𝐴𝐴4. The

new marking of the Petri net is 𝑚′ = (0,0,0,1,0).

Figure 4.8: Petri net with general conflicts (Example 4.4)

4.2 Abbreviations and Extensions of the Basic Concepts 85

4.2 ABBREVIATIONS AND EXTENSIONS OF THE

BASIC CONCEPTS

Abbreviations and extensions of the mentioned Petri net concepts are introduced and defined

to use the formalism within a wider range of biological applications and to simplify the

modeling process and the visualization. Thereby, abbreviations simplify the graphical

representation of a Petri net, i.e. they can be also modeled with the basic concept but improve

the visualization. Extensions, however, enhance the basic concept in order to extend the

application field (cf. (David and Alla 2005)).

4.2.1 CAPACITIVE PETRI NETS

The basic Petri net concept is modified such that every place is provided with a lower and

upper limit of tokens that it can contain. By this modification, the firing of transitions is only

possible if these minimum and maximum capacities are not infringed upon. All capacitive

Petri nets can be converted to basic Petri nets but the introduction of capacities simplifies the

representation of the Petri net model and is, thus, an abbreviation of the basic concept (cf.

(David and Alla 2005)).

This abbreviation offers, for example, a simpler way for integrating biological knowledge

about minimum and maximum quantities of biological compounds.

Definition 4.14 (capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑚0) is called capacitive Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑚0) is Petri

net, the map 𝑐𝑙: 𝐴𝐴 → ℕ0 assigns a minimum capacity 𝑐𝑙(𝑝𝑖) to every place 𝑝𝑖 ∈ 𝐴𝐴 and the

map 𝑐𝑢: 𝐴𝐴 → ℕ0 assigns a maximum capacity 𝑐𝑢(𝑝𝑖) to every place 𝑝𝑖 ∈ 𝐴𝐴, whereby the

initial marking 𝑚0 must satisfy the condition

𝑐𝑙(𝑝𝑖) ≤ 𝑚0(𝑝𝑖) ≤ 𝑐𝑢(𝑝𝑖) ∀ 𝑝𝑖 ∈ 𝐴𝐴.

Capacitive Petri nets require a redefinition of the basic activation process (Definition 4.5) to

take the capacities into account. A transition of a capacitive Petri net is active if the token

numbers of all input places do not fall below their minimum capacities after removing the arc

86 4 Petri Nets

weights. Additionally, the maximum capacities of all output places may not be exceeded by

adding the arc weights.

Definition 4.15 (activation capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a capacitive Petri net. A transition 𝑡𝑗 ∈ 𝐴𝐴 is active with

regard to a concrete marking 𝑚 if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�: 𝑚(𝑝𝑖) − 𝑓(𝑝𝑖 → 𝑡𝑗) ≥ 𝑐𝑙(𝑝𝑖)

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗�: 𝑚(𝑝𝑖) + 𝑓�𝑡𝑗 → 𝑝𝑖� ≤ 𝑐𝑢(𝑝𝑖).

A place in a capacitive Petri net can have two different conflicts, called general input conflict

and general output conflict. A general output conflict occurs when the place has not enough

tokens to enable all output transitions due to its minimum capacity and a general input conflict

can appear when the place cannot receive tokens from all active input transitions due to its

maximum capacity.

Definition 4.16 (general output conflict, general input conflict)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a capacitive Petri net. A place 𝑝𝑖 ∈ 𝐴𝐴 has a general

output conflict with regard to a concrete marking 𝑚 if

𝑚(𝑝𝑖) − � 𝑓(𝑝𝑖 → 𝑡𝑗)
𝑡𝑗∈𝑇𝐴𝑜𝑢𝑡(𝑝𝑖)

< 𝑐𝑙(𝑝𝑖),

whereby the set 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖) contains two or more active output transitions.

A place 𝑝𝑖 ∈ 𝐴𝐴 has a general input conflict with regard to a concrete marking 𝑚 if

𝑚(𝑝𝑖) + � 𝑓(𝑡𝑗 → 𝑝𝑖)
𝑡𝑗∈𝑇𝐴𝑖𝑛(𝑝𝑖)

> 𝑐𝑢(𝑝𝑖),

whereby the set 𝐴𝐴𝑁𝑁𝑖𝑛(𝑝𝑖) contains two or more active input transitions.

These conflict situations are resolved in this work by priorities or probabilities as previously

mentioned (Definition 4.7 and Definition 4.8). Therefore, the enabling processes of

Definition 4.9 and Definition 4.10 have been redefined to include the capacities.

Definition 4.17 (capacitive Petri net with priorities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝓊, 𝑚0) is a capacitive Petri net with priorities if

(𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a capacitive Petri net, 𝓊: (𝐹𝐹 ∪ 𝐺) → {1,2, … , max(𝑛𝑜𝑢𝑡, 𝑛𝑖𝑛)} is a

4.2 Abbreviations and Extensions of the Basic Concepts 87

priority function which assigns every arc from and to a place 𝑝𝑖 ∈ 𝐴𝐴 an enabling priority

𝓊(𝑝𝑖 → 𝑡𝑗) and 𝓊(𝑡𝑗 → 𝑝𝑖), respectively, under the condition that each priority from 1 to 𝑛𝑜𝑢𝑡

is only used once for the output transtions of a place

𝓊�𝑝𝑖 → 𝑡𝑗� ≠ 𝓊(𝑝𝑖 → 𝑡𝑘), ∀𝑡𝑗 , 𝑡𝑘 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑝𝑖),

that each priority from 1 to 𝑛𝑖𝑛 is only used once for the input transtions of a place

𝓊�𝑡𝑗 → 𝑝𝑖� ≠ 𝓊(𝑡𝑘 → 𝑝𝑖), ∀𝑡𝑗 , 𝑡𝑘 ∈ 𝐴𝐴𝑖𝑛(𝑝𝑖)

and that 1 is the best priority and 𝑛𝑜𝑢𝑡 and 𝑛𝑖𝑛, respectively, is the worst priority.

Definition 4.18 (capacitive Petri net with probabilities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝓌, 𝑚0) is a capacitive Petri net with probabilities if

(𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a capacitive Petri net, 𝓌: (𝐹𝐹 ∪ 𝐺) → [0,1] is a probability function

which assigns every arc from and to a place 𝑝𝑖 ∈ 𝐴𝐴 an enabling probability 𝓌(𝑝𝑖 → 𝑡𝑗) and

𝓌(𝑡𝑗 → 𝑝𝑖), respectively, under the condition that the sum of probabilities for the output and

input transitions, respectively, is equal to one for every place 𝑝𝑖

� 𝓌�𝑝𝑖 → 𝑡𝑗� = 1
𝑡𝑗∈𝑇𝑜𝑢𝑡(𝑝𝑖)

, � 𝓌�𝑡𝑗 → 𝑝𝑖� = 1
𝑡𝑗∈𝑇𝑖𝑛(𝑝𝑖)

.

In a capacity Petri net with priorities, all output transitions of a place are provided with a

priority from 1 to 𝑛𝑜𝑢𝑡. The transition with the priority 1 is proven at first. It has to be active

and the arc weight may not infringe the minimum capacity. Then, the second prioritized

transition is checked. It has to be active and the removing of the arc weight sum may not

violate the minimum capacity. The transition with the third priority is proven next and so on.

When all places have enabled their output transitions, they enable a subset of their active

input transitions; but only those can be enabled which are already enabled by all input places.

All input transitions of a place are provided with a priority from 1 to 𝑛𝑖𝑛. The transition with

the priority 1 is proven at first. It has to be enabled by all input places and the arc weight may

not infringe on the maximum capacity. Then, the second prioritized transition is checked. It

has to be enabled by all input places and the addition of the arc weight sum may not violate

the maximum capacity. Afterwards the transition with the third priority is proven and so on.

Definition 4.19 (enabling process capacitive Petri net with priorities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝓊, 𝑚0) is a capacitive Petri net with priorities. A place 𝑝𝑖 ∈ 𝐴𝐴

enables with regard to a concrete marking 𝑚 a subset, denoted by 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖), of the

88 4 Petri Nets

transitions in 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖). If 𝑝𝑖 has no general output conflict according to Definition 4.16, it

enables all transitions in 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖), i.e.

𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖) ≡ 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖).

Otherwise, 𝑝𝑖 enables as many transitions of the set 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖) as possible according to the

priorities 𝓊(𝑝𝑖 → 𝑡𝑗) so that the condition

𝑚(𝑝𝑖) − � 𝑓(𝑝𝑖 → 𝑡𝑗)
𝑡𝑗∈𝑇𝐸𝑜𝑢𝑡(𝑝𝑖)

≥ 𝑐𝑙(𝑝𝑖)

is still fulfilled.

After the enabling of output transitions, all places 𝑝𝑖 ∈ 𝐴𝐴 enable with regard to a concrete

marking 𝑚 a subset, denoted by 𝐴𝐴𝐸𝑖𝑛(𝑝𝑖), of their active input transitions restricted to those

that are already enabled by all their input places

𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖) = �𝑡𝑗 ∈ 𝐴𝐴𝑁𝑁𝑖𝑛(𝑝𝑖) ∧ 𝑡𝑗 ∈ 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑘) ∀ 𝑝𝑘 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗��.

If 𝑝𝑖 has no general input conflict according to Definition 4.16, it enables all transitions in

𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖), i.e.

𝐴𝐴𝐸𝑖𝑛(𝑝𝑖) ≡ 𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖).

Otherwise, 𝑝𝑖 enables as many transitions of the set 𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖) as possible according to the

priorities 𝓊(𝑡𝑗 → 𝑝𝑖) so that the condition

𝑚(𝑝𝑖) + � 𝑓(𝑡𝑗 → 𝑝𝑖)
𝑡𝑗∈𝑇𝐸𝑖𝑛(𝑝𝑖)

≤ 𝑐𝑢(𝑝𝑖)

is still fulfilled.

The enabling process with probabilities is performed in a similar manner as that with

priorities. The only difference is that the order by which the transitions are proven is

determined at random. Thereby, the transition with the highest probability has the highest

chance to be proven first.

Definition 4.20 (enabling process capacitive Petri net with probabilities)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝓌, 𝑚0) is a capacitive Petri net with probabilities. A place

𝑝𝑖 ∈ 𝐴𝐴 enables with regard to a concrete marking 𝑚 a subset, denoted by 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖), of the

transitions in 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖). If 𝑝𝑖 has no general output conflict according to Definition 4.16, it

enables all transitions in 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖), i.e.

𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖) ≡ 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖).

Otherwise, 𝑝𝑖 randomly enables as many transitions of the set 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖) as possible

according to the probabilities 𝓌(𝑝𝑖 → 𝑡𝑗) so that the condition

4.2 Abbreviations and Extensions of the Basic Concepts 89

𝑚(𝑝𝑖) − � 𝑓�𝑝𝑖 → 𝑡𝑗�
𝑡𝑗∈𝑇𝐸𝑜𝑢𝑡(𝑝𝑖)

≥ 𝑐𝑙(𝑝𝑖)

is still fulfilled.

After the enabling of output transitions, all places 𝑝𝑖 ∈ 𝐴𝐴 enable with regard to a concrete

marking 𝑚 a subset, denoted by 𝐴𝐴𝐸𝑖𝑛(𝑝𝑖), of their active input transitions restricted to those

that are already enabled by all their input places

𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖) = �𝑡𝑗 ∈ 𝐴𝐴𝑁𝑁𝑖𝑛(𝑝𝑖) ∧ 𝑡𝑗 ∈ 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑘) ∀ 𝑝𝑘 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗��.

If 𝑝𝑖 has no general input conflict according to Definition 4.16, it enables all transitions

in 𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖), i.e.

𝐴𝐴𝐸𝑖𝑛(𝑝𝑖) ≡ 𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖).

Otherwise, 𝑝𝑖 enables randomly as many transitions of the set 𝐴𝐴𝑁𝑁𝑒𝑖𝑛(𝑝𝑖) as possible

according to the probabilities 𝓌�𝑡𝑗 → 𝑝𝑖� so that the condition

𝑚(𝑝𝑖) + � 𝑓(𝑡𝑗 → 𝑝𝑖)
𝑡𝑗∈𝑇𝐸𝑖𝑛(𝑝𝑖)

≤ 𝑐𝑢(𝑝𝑖)

is still fulfilled.

Remark 4.2

All output transitions of a place are provided with a probability and the sum is equal to one. If

not all output transitions are active, the probabilities have to be scaled by the following

expression

𝓌� �𝑝𝑖 → 𝑡𝑗� =
𝓌�𝑝𝑖 → 𝑡𝑗�

∑ 𝓌(𝑝𝑖 → 𝑡𝑘)𝑡𝑘∈𝑇𝐴𝑜𝑢𝑡

.

Similarly, if not all input transitions are enabled by all input places, the probabilities have to

be scaled by the following expression

𝓌� (𝑡𝑗 → 𝑝𝑖) =
𝓌(𝑡𝑗 → 𝑝𝑖)

∑ 𝓌(𝑡𝑘 → 𝑝𝑖)𝑡𝑘∈𝑇𝐴𝑒𝑖𝑛

.

It also possible to mix both concepts, enabling by priorities and probabilities, in one Petri net

as mentioned before (see Definition 4.11). Then, every place can be assigned with its own

resolution type.

Definition 4.21 (resolved capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, 𝑐𝑙, 𝑐𝑢, ℯ, 𝓅, 𝑚0) is a resolved capacitive Petri net if

(𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a capacitive Petri net, ℯ: 𝐴𝐴 → {𝑝𝑟𝑟𝑖𝑖𝑜, 𝑝𝑟𝑟𝑜𝑏} is the resolution

90 4 Petri Nets

function that assigns every place either the resolution type priority or probability, and

𝓅: (𝐹𝐹 ∪ 𝐺) → �{1,2, … , max(𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡)}: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜, [0,1]: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏� is an enabling

function which assigns every arc from or to a place 𝑝𝑖 ∈ 𝐴𝐴 either an enabling priority or a

probability according to the resolution type of the place and with the condition that each

priority from 1 to 𝑛𝑜𝑢𝑡 for the output transitions and each priority from 1 to 𝑛𝑖𝑛 for the input

transitions is only used once for each place 𝑝𝑖 with ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜

𝓅�𝑝𝑖 → 𝑡𝑗� ≠ 𝓅(𝑝𝑖 → 𝑡𝑘), ∀𝑡𝑗 , 𝑡𝑘 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑝𝑖)

𝓅�𝑡𝑗 → 𝑝𝑖� ≠ 𝓅(𝑡𝑘 → 𝑝𝑖), ∀𝑡𝑗 , 𝑡𝑘 ∈ 𝐴𝐴𝑖𝑛(𝑝𝑖)

and that 1 is the best priority and 𝑛𝑜𝑢𝑡 and 𝑛𝑖𝑛, respectively, is the worst priority and that the

sum of probabilities for the output and input transitions, respectively, is equal to one for each

place 𝑝𝑖 with ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏

� 𝓅�𝑝𝑖 → 𝑡𝑗� = 1
𝑡𝑗∈𝑇𝑜𝑢𝑡(𝑝𝑖)

, � 𝓅�𝑡𝑗 → 𝑝𝑖� = 1
𝑡𝑗∈𝑇𝑖𝑛(𝑝𝑖)

.

A transition in a resolved capacitive Petri net is firable if it is enabled by all input and output

places. The firing process of an enabled transition can be adopted from the basic concepts

(Definition 4.13).

Definition 4.22 (firability capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, ℯ, 𝓅, 𝑚0) is a resolved capacitive Petri net. An active transition

𝑡𝑗 ∈ 𝐴𝐴 is firable if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶ 𝑡𝑗 ∈ 𝐴𝐴𝐸𝑜𝑢𝑡(𝑝𝑖)

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑡𝑗 ∈ 𝐴𝐴𝐸𝑖𝑛(𝑝𝑖).

Example 4.5

Figure 4.9 shows a capacitive Petri net with the initial marking 𝑚0 = (2,3,0). All transitions are

active

- T1: 𝑚0(𝐴𝐴1) − 𝑓(𝐴𝐴1 → 𝐴𝐴1) = 2 − 1 ≥ 𝑐𝑙(𝐴𝐴1) = 1 and 𝑚0(𝐴𝐴3) + 𝑓(𝐴𝐴1 → 𝐴𝐴3) = 0 + 1 ≤

𝑐𝑢(𝐴𝐴3) = 1

- T2: 𝑚0(𝐴𝐴2) − 𝑓(𝐴𝐴2 → 𝐴𝐴2) = 3 − 1 ≥ 𝑐𝑙(𝐴𝐴2) = 2 and 𝑚0(𝐴𝐴3) + 𝑓(𝐴𝐴2 → 𝐴𝐴3) = 0 + 1 ≤

𝑐𝑢(𝐴𝐴3) = 1

- T3: 𝑚0(𝐴𝐴2) − 𝑓(𝐴𝐴2 → 𝐴𝐴3) = 3 − 1 ≥ 𝑐𝑙(𝐴𝐴2) = 2 and 𝑚0(𝐴𝐴3) + 𝑓(𝐴𝐴3 → 𝐴𝐴3) = 0 + 1 ≤

𝑐𝑢(𝐴𝐴3) = 1.

4.2 Abbreviations and Extensions of the Basic Concepts 91

At first, the places enable as many output transitions as their minimum capacities allow. 𝐴𝐴1

has no general conflict and enables 𝐴𝐴1 and 𝐴𝐴2 has a general output conflict and can either

enable 𝐴𝐴2 or 𝐴𝐴3.

- Case 1: 𝐴𝐴2 enables 𝐴𝐴2

𝐴𝐴3 has a general input conflict due to its maximum capacity and can either enable 𝐴𝐴1 or

𝐴𝐴2. 𝐴𝐴3 is not an option because it is not enabled by its input place 𝐴𝐴2. If 𝐴𝐴3 enables 𝐴𝐴1, 𝐴𝐴1

is firable and fires by removing one token from 𝐴𝐴1 and adding one to 𝐴𝐴3 and on the other

hand, if it enables 𝐴𝐴2, 𝐴𝐴2 is firable and fires by removing one token from 𝐴𝐴2 and adding

one to 𝐴𝐴3.

- Case 2: 𝐴𝐴2 enables 𝐴𝐴3

𝐴𝐴3 has a general input conflict due to its maximum capacity and can either enable 𝐴𝐴1 or

𝐴𝐴3. 𝐴𝐴2 is not an option because it is not enabled by its input place 𝐴𝐴2. If 𝐴𝐴3 enables 𝐴𝐴1, 𝐴𝐴1

is firable and fires by removing one token from 𝐴𝐴1 and adding one to 𝐴𝐴3 and on the other

hand, if it enables 𝐴𝐴3, 𝐴𝐴3 is firable and fires by removing one token from 𝐴𝐴2 and adding

one to 𝐴𝐴3.

Figure 4.9: Capacitive Petri net with a general output conflict (Example 4.5)

4.2.2 EXTENDED PETRI NETS

The basic Petri net concept has been extended by specific arcs as proposed in (Matsuno et al.

2003), (David and Alla 2001), and (David and Alla 2005). In this work three specific arcs are

added - test arc, inhibitor arc, and read arc – to accomplish the modeling of, for example,

inhibition and activation mechanisms of biological reactions. These arcs connect all places

with transitions.

92 4 Petri Nets

The test arc is represented by a dashed line, the inhibitor arc has a small circle at its end, and

the read arc has black square at its end (see Figure 4.10 and Figure 4.11).

If places are connected with test, inhibitor, or read arcs to transitions, their markings are not

changed during the firing processes. In the case of test and inhibitor arcs the markings are

only read to influence the activation process while read arcs do not influence the activation

process nor the firing process. Hence, read arcs have no weights; they only indicate the usage

of the token number in the connected transition, for example, for firing conditions or arc

weight functions (see Section 4.3).

The same place can be connected with the same transition by a test and normal arc as well as

by an inhibitor and normal arc. These arcs are called double arcs.

Definition 4.23 (extended Petri net, double arc)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, ℯ, 𝓅, 𝑚0) is an extended Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is

a resolved Petri net, 𝒯 ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of test arcs, ℐ ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of inhibitor arcs,

ℛ ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of read arcs, and the arc weight function 𝑓 is modified such that

𝑓: (𝐹𝐹 ∪ 𝐺 ∪ 𝒯 ∪ ℐ) → ℕ0, whereby 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� is the weight of the test arc �𝑝𝑖 → 𝑡𝑗�
𝒯

and 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� is the weight of the inhibitor arc �𝑝𝑖 → 𝑡𝑗�

ℐ
. If �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 and �𝑝𝑖 →

𝑡𝑗�
𝒯

∈ 𝒯 or �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 and �𝑝𝑖 → 𝑡𝑗�
ℐ

∈ ℐ then the arc is called double arc.

A transition in an extended Petri net is active if

− all input places connected by normal arcs have at least as many tokens as the arc weights,

− all input places connected by test arcs have more tokens than the arc weights, and

− all input places connected by inhibitor arcs have fewer tokens than the arc weights.

Places connected by read arcs do not influence the activation of a transition. The places

connected by test, inhibitor, and read arcs enable all active output transitions because tokens

are not changed during the firing process.

Definition 4.24 (activation extended Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, ℯ, 𝓅, 𝑚0) is an extended Petri net. A transition 𝑡 ∈ 𝐴𝐴 is active

with regard to a concrete marking 𝑚 if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�:

⎩
⎪
⎨

⎪
⎧𝑚(𝑝) ≥ 𝑓�𝑝𝑖 → 𝑡𝑗� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

𝑚(𝑝) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯

𝑚(𝑝) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�

ℐ
∈ ℐ.

4.2 Abbreviations and Extensions of the Basic Concepts 93

The enabling process by priorities or probabilities, the firability definition, and the firing

process are not affected by these extensions and have been adopted from the basic concepts

(Definition 4.9, Definition 4.10, Definition 4.12, and Definition 4.13).

Example 4.6

The Petri nets at the top in Figure 4.10 contain test arcs and the Petri nets at the bottom

inhibitor arcs. Transition 𝐴𝐴1 is active with regard to a concrete marking 𝑚 because the token

number of 𝐴𝐴2 is above the weight of the test arc (𝑚(𝐴𝐴2) = 3 > 𝑓(𝐴𝐴2 → 𝐴𝐴1) = 2). However,

𝐴𝐴2 is not active because the marking of 𝐴𝐴5 is less than the arc weight (𝑚(𝐴𝐴5) = 1 ≯

𝑓(𝐴𝐴5 → 𝐴𝐴2) = 2). 𝐴𝐴3 is also not active because the token number of 𝐴𝐴8 is greater than the

weight of the inhibitor arc (𝑚(𝐴𝐴8) = 3 ≮ 𝑓(𝐴𝐴8 → 𝐴𝐴3) = 2). However, 𝐴𝐴4 is active because the

marking of 𝐴𝐴11 is less than the arc weight (𝑚(𝐴𝐴11) = 1 < 𝑓(𝐴𝐴11 → 𝐴𝐴4) = 2).

Figure 4.10: Extended Petri nets with test arcs (top) and inhibitor arcs (bottom)

(Example 4.6). 𝑻𝟏 and 𝑻𝟒 are active and 𝑻𝟐 and 𝑻𝟑 are not active.

Example 4.7

Figure 4.11 shows three different biological reactions modeled by extended Petri nets. The

first reaction is inhibited by the inhibitor 𝐼 which is modeled by an inhibitor arc from place 𝐼 to

transition 𝑅. This reaction can only proceed when 𝐼 is less than a specific bound which is

represented by the arc weight 𝑓((𝐼 → 𝑅)ℐ).

The second reaction activated by the activator 𝑁𝑁 which is modeled by a test arc from place 𝑁𝑁

to transition 𝑅. This reaction can only proceed when 𝑁𝑁 is greater than a specific bound

represented by the arc weight 𝑓((𝑁𝑁 → 𝑅)𝒯).

The third reaction is catalyzed by the enzyme 𝐸. This enzyme is not consumed in the reaction

but is needed because it influences the amount of substrate molecules which can be

converted to product molecules. This is modeled by a read arc to indicate that the token

94 4 Petri Nets

amount of place 𝐸 is needed for the arc weights of the transition 𝑅 (these are functional arc

weights see also Section 4.3, Example 4.8, and Example 4.9). This arc is only for

visualization and does not influence the firing process of the transition 𝑅.

Figure 4.11: Modeling of different biological reactions with extended Petri nets; top: the

reaction is inhibited by the inhibitor 𝑰, it can only proceed when 𝑰 is less than a
specific bound, middle: the reaction is activated by the activator 𝑨, it can only
proceed, when 𝑨 is greater than a specific bound, bottom: the reaction is
catalyzed by the enzyme 𝑬, the information about the amount of 𝑬 is needed to
determine how many substrates molecules can be converted to product molecules
(Example 4.7).

4.2.3 EXTENDED CAPACITIVE PETRI NETS

The modeling of biological reactions often requires a combination of the two mentioned

modifications, i.e. capacitive Petri nets which are extended by test, inhibitor, and read arcs.

Definition 4.25 (extended capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑐𝑙, 𝑐𝑢, ℯ, 𝓅, 𝑚0) is called extended capacitive Petri net if

− (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑐𝑙, 𝑐𝑢, ℯ, 𝓅, 𝑚0) is a resolved capacitive Petri net,

− 𝒯 ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of test arcs,

− ℐ ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of inhibitor arcs,

− ℛ ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of read arcs, and

− 𝑓: (𝐹𝐹 ∪ 𝐺 ∪ 𝒯 ∪ ℐ) → ℕ0 is a modified arc weight function.

4.2 Abbreviations and Extensions of the Basic Concepts 95

A transition in an extended capacitive Petri net is active if the token numbers of all input

places do not fall below the minimum capacities when the arc weights are removed, and the

maximum capacities of all output places may not be exceeded when the arc weights are

added. Additionally, the input places connected by test arcs must have more tokens than the

arc weights and the places connected by inhibitor arcs must have less tokens than the arc

weights; read arc do not influence the activation of a transition.

Definition 4.26 (activation extended capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑐𝑙, 𝑐𝑢, ℯ, 𝓅, 𝑚0) is an extended capacitive Petri net. A

transition 𝑡 ∈ 𝐴𝐴 is active with regard to a concrete marking 𝑚 if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶

⎩
⎪
⎨

⎪
⎧𝑚(𝑝𝑖) − 𝑓(𝑝𝑖 → 𝑡𝑗) ≥ 𝑐𝑙(𝑝𝑖) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�

ℐ
∈ ℐ,

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) + 𝑓(𝑝𝑖 → 𝑡𝑗) ≤ 𝑐𝑢(𝑝𝑖).

The enabling can be performed by priorities, probabilities, or by a mix of both. The respective

definitions for capacitive Petri net can be adopted (Definition 4.19 and Definition 4.20) as

well as the firability definition (Definition 4.22) and the basic firing process (Definition 4.13).

4.2.4 SELF-MODIFIED PETRI NETS

The arc weight function has been modified in order to model dynamic arc weights which

depend on the marking of a place, i.e. not only positive integers can be written at the arcs but

also the place markings. This Petri net extension is called a self-modified Petri net and was

first introduced by Valk in (Valk 1978). Self-modified Petri nets enables, for example, the

modeling of biochemical reactions on the molecular level as demonstrated in Example 4.8.

The corresponding definition valid for this work is given below.

Definition 4.27 (self-modified Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is called self-modified Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is

a resolved Petri net and the arc weight function 𝑓 is modified such that 𝑓: (𝐹𝐹 ∪ 𝐺, 𝑚) → ℕ0 is

96 4 Petri Nets

an dynamic arc weight function that assigns every arc either a positive integer or a concrete

marking 𝑚(𝑝𝑖) of the place 𝑝𝑖.

Example 4.8

Figure 4.12 displays a biochemical reaction; a substrate is converted into a product with the

aid of an enzyme. The enzyme is necessary for the reaction but not consumed. After the

product formation the enzyme is set free and can convert another substrate molecule into a

product. It is assumed that there are more substrate molecules then enzymes.

Figure 4.12: Biochemical reaction (Example 4.8)

Figure 4.13 shows the biochemical reaction modeled by a self-modified Petri net; substrate,

product, and enzyme are modeled by the places 𝑆, 𝐴𝐴, and 𝐸, respectively and the

biochemical reaction is modeled by the transition 𝑅. The marking of the enzyme place 𝐸 is

written at all arcs. This causes the removing of 𝑚(𝐸) tokens from the places 𝑆 and 𝐸 and the

addition of 𝑚(𝐸) tokens to place 𝐴𝐴 and 𝐸 at each firing of transition 𝑅. The transition 𝑅 is

active if 𝐸 has tokens and 𝑆 has at least as many tokens as 𝐸.

Figure 4.13: Self-modified Petri net (Example 4.8)

The activation definition of a transition in a self-modified Petri net have been adopted from

the basic concepts (Definition 4.5) just as well as the enabling process, the firability

definition, and the firing process (Definition 4.9, Definition 4.10, Definition 4.12, and

Definition 4.13). Self-modified Petri nets can also have capacities or be extended by test,

4.2 Abbreviations and Extensions of the Basic Concepts 97

inhibitor, and read arcs or both. Then the respective definitions of the previous sections are

valid without exception.

4.2.5 FUNCTIONAL PETRI NETS

The self-modified Petri nets have been further extended to functional Petri nets which were

firstly introduced by Hofestädt and Thelen in (Hofestädt and Thelen 1998). The arc weights

are functions which can depend on the markings of several places. This modification further

expands the application of the Petri net formalism in the biological field. The Petri net model

of the biochemical reaction in Figure 4.12 can be, for example, modified by integrating

specific kinetic effects on the molecular level (see Example 4.9). The corresponding

definitions valid for this work are given below.

Definition 4.28 (functional Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is called functional Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, ℯ, 𝓅, 𝑚0) is a

resolved Petri net and the arc weight function 𝑓 is modified such that 𝑓: (𝐹𝐹 ∪ 𝐺, 𝑚) → ℕ0 is a

dynamic arc weight function which assigns every arc a function that depends on a subset of

concrete markings 𝑚.

The activation definition has been adopted from the basic concepts (Definition 4.5) just as

well as the enabling process, the firability definition, and firing process (Definition 4.9,

Definition 4.10, Definition 4.12, and Definition 4.13). Functional Petri nets can also have

capacities or be extended by test, inhibitor, and read arcs or both. Then the respective

definitions of the previous sections are valid without exception.

Example 4.9

In comparison to Example 4.8, the biochemical reaction can be described by linear functions

which depend on the available number of enzyme molecules. Figure 4.14 shows the

functional Petri net of the biochemical reaction taken from (Hofestädt and Thelen 1998);

thereby, the parameter 𝑛1 and 𝑛2 are arbitrary positive integers. At each firing 𝑛1 ⋅ 𝑚(𝐸)

tokens are removed from place 𝑆 and 𝑚(𝐸) from 𝐸; additionally, 𝑛2 ⋅ 𝑚(𝐸) tokens are added

to place 𝐴𝐴 and 𝑚(𝐸) to 𝐸. The transition is active if 𝐸 has tokens and 𝑆 has at least 𝑛1 ⋅ 𝑚(𝐸)

tokens.

98 4 Petri Nets

Figure 4.14: Functional Petri net (Example 4.9)

4.3 NON-AUTONOMOUS PETRI NETS

The Petri nets of the previous sections describe systems and processes in a qualitative manner.

The firing instants of the transitions are either unknown or not indicated. This kind of Petri net

is called autonomous Petri net. However, if a Petri net should be analyzed quantitatively, for

example, by a simulation, it is necessary to associate events and/or time with its behavior; it is

then called non-autonomous Petri net. Two different concepts are discussed. The first

implies that enabled transitions fire when an associated condition is satisfied (conditional

Petri net) and the second involve the firing of enabled transitions when an associated time

period is passed (timed Petri net). Both concepts can also be mixed in one Petri net.

4.3.1 CONDITIONAL PETRI NETS

In a conditional Petri net, an event is associated with every transition. An enabled transition

fires when the associated condition is fulfilled.

By means of conditional Petri nets, it is, for example, possible to model signal transduction.

Thereby, external stimuli are the conditions associated with the transitions. These transitions

represent the processes by which the cell reacts to external stimuli.

Definition 4.29 (conditional Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑠, 𝑚0) is a conditional Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is a

resolved Petri net and s: (T, ℰ) → {true, false} is a condition function that assigns every

4.3 Non-autonomous Petri Nets 99

transition 𝑡𝑗 ∈ 𝐴𝐴 a condition 𝑠𝑗 = 𝑠�𝑡𝑗 , ℰ� depending on several environmental factors ℰ e.g.

time.

Definition 4.30 (firing instant, actual firable conditional Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, s, 𝑚0) is a conditional Petri net. A firing instant of a firable

transition 𝑡𝑗 ∈ 𝐴𝐴 occurs when the associated condition 𝑠𝑗 becomes true. It is said that the

transition is actual firable and it then fires immediately.

The basic definitions for activation, firability, and firing process keep their validity

(Definition 4.5, Definition 4.12, and Definition 4.13). Conditional Petri net can be

capacitated, extended, capacitated and extended, self-modified, or functional. Then the

respective definitions of Section 4.2 are valid.

Example 4.10

Figure 4.15 shows a conditional Petri net; transition 𝐴𝐴1 is active and firable. It fires when the

assigned condition 𝐶1 becomes true which is represented on the right side of Figure 4.15. At

that time, one token is removed from 𝐴𝐴1 and one is added to 𝐴𝐴2. Then 𝐴𝐴2 is firable and fires

when the condition 𝐶2 becomes true by removing one token from 𝐴𝐴2 and adding one to 𝐴𝐴1.

Figure 4.15: Conditional Petri net (Example 4.10)

The enabling of conditional transitions requires the consideration of general conflicts but only

those which happen at the same time have to be resolved, called actual conflicts.

Definition 4.31 (actual conflict)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑠, 𝑚0) is a conditional Petri net. If a place 𝑝𝑖 ∈ 𝐴𝐴 has a general

conflict according to Definition 4.6 and the involved transitions are actual firable

(Definition 4.30) at the same time, then the place has an actual conflict.

100 4 Petri Nets

Actual conflicts can be resolved by providing the transitions with priorities or probabilities;

thereby, the basic enabling processes can be adopted (Definition 4.9 and Definition 4.10) and

the corresponding ones for the Petri net modifications of Section 4.2, respectively.

Example 4.11

Figure 4.16 represents a conditional Petri net. Place 𝐴𝐴5 has a general conflict because it has

not enough tokens to enable 𝐴𝐴1 and 𝐴𝐴2, simultaneously. It is also an actual conflict because

both transitions are provided with the same condition 𝐶1.

Figure 4.16: Conditional Petri net with an actual conflict (Example 4.11)

4.3.2 TIMED PETRI NETS

In timed Petri nets, a delay is associated with every transition. An enabled transition fires first

when the associated delay is passed.

These delays represent the duration of a biological reaction associated with the transition. If,

for example, a biochemical reaction is modeled by a transition, then the delay represents the

time that is necessary to convert a determined quantity (input arc weights) of substrates (input

places) to a determined quantity (output arc weights) of products (output places) (see

Example 4.13).

Definition 4.32 (timed Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, 𝑚0) is a timed Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑚0) is a resolved

Petri net and 𝑑: 𝐴𝐴 → ℝ≥0 is a delay function that assigns every transition 𝑡𝑗 ∈ 𝐴𝐴 a non-

negative real number, whereby 𝑑𝑗 = 𝑑�𝑡𝑗� is the delay of transition 𝑡𝑗 ∈ 𝐴𝐴.

4.3 Non-autonomous Petri Nets 101

Definition 4.33 (firing instant, actual firable timed Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, 𝑚0) is a timed Petri net. A firing instant of a firable transition

𝑡𝑗 ∈ 𝐴𝐴 occurs when the associated time period 𝑑𝑗 is elapsed. It is said that the transition is

actual firable and it then fires immediately.

The basic definitions for activation, firability, and firing process keep their validity

(Definition 4.5, Definition 4.12, and Definition 4.13). Timed Petri nets can be capacitated,

extended, capacitated and extended, self-modified, or functional. Then the respective

definitions of Section 4.2 are valid.

Example 4.12

Figure 4.17 shows on the left side a timed Petri net and on the right side the corresponding

token evolution:

- Time 0: 𝐴𝐴1 and 𝐴𝐴3 become firable.

- Time 2: the delay of 𝐴𝐴3 is elapsed and it fires by removing two tokens from 𝐴𝐴4 and one

from 𝐴𝐴3 and by adding two to 𝐴𝐴2; 𝐴𝐴2 becomes firable.

- Time 3: the delay of 𝐴𝐴1 is elapsed and it fires by removing one token from 𝐴𝐴1 and by

adding one to 𝐴𝐴2; 𝐴𝐴1 becomes firable again.

- Time 6: the delay of 𝐴𝐴1 is elapsed and it fires by removing one token from 𝐴𝐴1 and by

adding one to 𝐴𝐴2; Simultaneously, the delay of 𝐴𝐴2 is elapsed and it fires by removing two

tokens from 𝐴𝐴2 and by adding one to 𝐴𝐴1; 𝐴𝐴1 and 𝐴𝐴2 become firable again.

Figure 4.17: Timed Petri net (left) and the token evolution (right) (Example 4.12)

102 4 Petri Nets

Example 4.13

Figure 4.18 shows a timed Petri net of the biochemical reaction in Figure 4.12. In 𝑑𝑅 time

units, (𝑛1 ⋅ 𝑒𝑛𝑧𝑦𝑚𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠) substrate molecules should be converted into (𝑛2 ⋅

𝑒𝑛𝑧𝑦𝑚𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠) product molecules. This is achieved by assigning transition 𝑅 in

Figure 4.14 the delay 𝑑𝑅. This causes that the transition 𝑅 waits 𝑑𝑅 time units after it

becomes firable before 𝑛1 ⋅ 𝑚(𝐸) tokens are removed from 𝑆 and 𝑛2 ⋅ 𝑚(𝐸) are added to 𝐴𝐴.

Figure 4.18: A timed Petri net of the biochemical reaction in Figure 4.12 (Example 4.13)

Remark 4.3

If a place in a timed Petri net has a general conflict, at first the involved transition is fired

which becomes actual firable according to Definition 4.33. An actual conflict only occurs

when two or more involved transitions become actual firable at the same time. Then the

conflict can be solved by priorities or probabilities; thereby, the basic enabling processes can

be adopted (Definition 4.9 and Definition 4.10) or the respective enabling processes for the

Petri net modifications of Section 4.2.

Example 4.14

Figure 4.19 represents two timed Petri nets. Places 𝐴𝐴5 and 𝐴𝐴10 have a general conflict

because they have not enough tokens to enable both connected transitions. The conflict of

𝐴𝐴5 is not actual due to the fact that 𝐴𝐴1 becomes firable before 𝐴𝐴2. Thus 𝐴𝐴1 fires and

afterwards 𝐴𝐴2 is not active anymore. However, the conflict of 𝐴𝐴10 is actual because the same

delay is assigned to both transitions. This actual conflict can be resolved by a deterministic or

random process to decide which of the involved transitions, 𝐴𝐴3 or 𝐴𝐴4, gets permission to fire.

4.3 Non-autonomous Petri Nets 103

Figure 4.19: Timed Petri nets without actual conflict (left) and with actual conflict (right)

(Example 4.14)

4.3.3 STOCHASTIC PETRI NETS

The timed Petri net concept can be modified to stochastic Petri nets which were introduced by

Goss and Peccoud in (Goss and Peccoud 1998) for quantitative modeling of molecular

reaction networks. The stochastic transitions are provided with random delays instead of fixed

values and are graphically represented by a black box with a white triangle (see Figure 4.20).

The delay is an exponentially distributed random variable 𝒳 = 𝐸𝑥𝑝(𝜆) with the probability

density function

𝑓𝜆(𝑥) = �𝜆𝑒−𝜆𝑥 𝑥 ≥ 0
0 𝑥 < 0

 ,

the distribution function

𝐹𝐹𝜆(𝑥) = �1 − 𝑒−𝜆𝑥 𝑥 ≥ 0
0 𝑥 < 0

 ,

and expectation value

𝐸(𝒳) =
1
𝜆

,

whereby 𝜆 > 0 is the characteristic parameter of the exponential distribution. Thereby, the

exponential distribution is chosen because this distribution covers only real numbers and is

memoryless.

The characteristic parameter 𝜆 can depend functionally on the markings of several places

(Heiner et al. 2008) and is recalculated at each point in time when the respective transition

becomes active or when one or more markings of involved places change. The definitions

developed within this work are given below.

104 4 Petri Nets

Definition 4.34 (stochastic Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, ℯ, 𝓅, ℎ, 𝑚0) is a stochastic Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, ℯ, 𝓅, 𝑚0) is a

resolved Petri net and ℎ: (𝐴𝐴, 𝑚) → ℝ≥0 is a hazard function which assigns every transition

𝑡𝑗 ∈ 𝐴𝐴 a function ℎ𝑗 = ℎ�𝑡𝑗 , 𝑚� that depends on a subset of concrete markings 𝑚. Each time

when 𝑡𝑗 becomes active or involved markings 𝑚 are changed by firing other transitions, the

characteristic parameter 𝜆𝑗 = ℎ𝑗 is recalculated to evaluate the next putative firing point in

time 𝜏𝑗 = 𝑡𝑖𝑖𝑚𝑒 + Exp�𝜆𝑗�.

Definition 4.35 (firing instant, actual firable stochastic Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, ℎ, 𝑚0) is a stochastic Petri net. A firing instant of a firable

transition 𝑡𝑗 ∈ 𝐴𝐴 occurs when the putative firing time 𝜏𝑗 is reached. It is said that the transition

is actual firable and it then fires immediately.

The basic definitions for activation, firability, and the firing process keep their validity

(Definition 4.5, Definition 4.12, and Definition 4.13). Stochastic Petri nets can be capacitated,

extended, capacitated and extended, self-modified, or functional. Then the respective

definitions of the Section 4.2 are valid.

Remark 4.4

If a place in a stochastic Petri net has a general conflict, the first transition which becomes

actual firable according to Definition 4.35 is fired. Hence, there are no actual conflicts in

stochastic Petri nets. But if pseudo random numbers are used, actual conflicts are conceivable.

Example 4.15

Figure 4.20 shows on the left side a stochastic Petri net; transition 𝐴𝐴1 has the fixed delay

𝑑1 = 1 and 𝐴𝐴2 and 𝐴𝐴3 are stochastic transitions with random putative firing times which are

generated according to their hazard functions.

- Time 0: 𝐴𝐴1 becomes firable.

- Time 1: the delay of 𝐴𝐴1 is elapsed and it fires by adding one token to 𝐴𝐴1; 𝐴𝐴2 and 𝐴𝐴3

become firable and evaluate each a putative firing time according to the values of the

hazard functions at this time 𝜆2 = ℎ2 = 0.8 and 𝜆3 = ℎ3 = 1.8. The transition with the

smaller putative firing time becomes actual firable and fires. Afterwards, the transitions are

not active anymore. They become active again when 𝐴𝐴1 fires and 𝐴𝐴1 gets one token. Then

the next token competition between 𝐴𝐴2 and 𝐴𝐴3 occurs.

Figure 4.20 shows on the right side one possible token evaluation of 𝐴𝐴2 and 𝐴𝐴3.

4.3 Non-autonomous Petri Nets 105

Figure 4.20: Stochastic Petri net (left) and one possible token evolution (right) (Example 4.15)

Example 4.16

Figure 4.21 shows a stochastic Petri net model of protein synthesis taken from (Goss and

Peccoud 1998). The place 𝐼𝐺 represents the inactive gene, 𝑁𝑁𝐺 represents the active gene,

and 𝐴𝐴 represents the protein. The stochastic transitions model the processes activation (𝐴𝐴1),

inactivation (𝐴𝐴2), synthesis (𝐴𝐴3), and degradation (𝐴𝐴4). The arc (𝑁𝑁𝐺 → 𝐴𝐴3)𝒯 is modeled by a

test arc because the gene is needed for the synthesis but not consumed by it. These

processes are modeled by stochastic transitions due to the fact that their durations are not

exactly known. How long is the gene active? When does it become active again? Therefore,

the parameters 𝛼, 𝛽, 𝛾, and 𝛿 characterize the exponentially distributed random number

generated for the next putative firing time.

Figure 4.21: A Stochastic Petri net model of protein synthesis (IG = inactive gene, AG =

active gene, P = protein, T1 = activation, T2 = inactivation, T3 = synthesis, and
T4 = degradation) (Example 4.16)

4.3.4 CONDITIONAL TIMED PETRI NETS

The concepts of conditional and timed Petri nets are combined in one Petri net, called

conditional timed Petri net. The transitions can have delays and additional conditions that

have to be true so that the transitions become active. If the delays of the transitions are all

106 4 Petri Nets

zero, it is a conditional Petri net (see Definition 4.29) and if there are no additional conditions

assigned to the transitions, it is a timed Petri net (see Definition 4.32).

Definition 4.36 (conditional timed Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, 𝑠, 𝑚0) is a conditional timed Petri net if

(𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, 𝑚0) is a timed Petri net and 𝑠: (𝐴𝐴, ℰ) → {𝑡𝑟𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} is a condition

function that assigns every transition 𝑡𝑗 ∈ 𝐴𝐴 a condition 𝑠𝑗 = 𝑠�𝑡𝑗 , ℰ� depending on several

environmental factors ℰ e.g. time.

Definition 4.37 (activation conditional timed Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, 𝑠, 𝑚0) is a conditional timed Petri net. A transition 𝑡𝑗 ∈ 𝐴𝐴 is

active with regard to a concrete marking 𝑚 if and only if the conditions of Definition 4.5 are

fulfilled and, additionally, the condition 𝑠𝑗.

The basic definitions for the firability and the firing process keep their validity

(Definition 4.12 and Definition 4.13) as well as the firing instant definition of timed Petri nets

(Definition 4.33). Conditional timed Petri nets can be capacitated, extended, capacitated and

extended, self-modified, or functional. Then the respective definitions of Section 4.2 are valid.

Remark 4.5

Transitions in a stochastic Petri net can also have additional conditions.

4.4 CONTINUOUS PETRI NETS

The continuous Petri net concept was introduced by David and Alla in 1987 (David and Alla

1987). Contrary to the previously mentioned Petri net concepts, the token numbers and arc

weights of continuous Petri nets are non-negative real numbers. In this juncture, tokens are no

longer termed with tokens but rather with marks because the term token is commonly used

for integer quantities. The firing process takes place as a continuous flow with a maximum

speed assigned to every transition. Only continuous Petri nets are considered by which time is

associated with the behavior; hereafter the term continuous Petri net is simplified used for

timed continuous Petri nets.

4.4 Continuous Petri Nets 107

The transformation from the discrete Petri net concept to is the continuous one is important

for biological applications. Then it is, for example, possible to model the quantities of

metabolites as real concentrations instead of integer molecules. The biochemical reaction

proceeds then as a continuous flow at an assigned speed.

The definitions for continuous Petri nets developed within this work are given below.

Definition 4.38 (continuous Petri net)

The tuple �𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0� is a continuous Petri net if (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺) is a net, 𝑓: (𝐹𝐹 ∪ 𝐺) →

ℝ≥0 is an arc weight function which assigns every arc a non-negative real number,

𝑣: 𝐴𝐴 → ℝ≥0 is a maximum speed function which assigns every transition 𝑡𝑗 ∈ 𝐴𝐴 a maximum

speed 𝑣𝑗 = 𝑣�𝑡𝑗�, and the map 𝑚0: 𝐴𝐴 → ℝ≥0 is the initial marking.

Continuous places are represented by double circles and continuous transitions by white

boxes. The transformation from a (discrete) timed Petri net to a continuous Petri net is

displayed in Figure 4.22. Thereby, the discrete firing process with the delay 𝑑1 = 2 is

replaced by a continuous firing process with the maximum speed 𝑣1 = 1 𝑑1⁄ = 1 2⁄ , i.e. the

discrete steps of the discrete token evolution are approximated by a line with the slope 1 2⁄ .

Remark 4.6

Hereafter the maximum speed of a transition 𝑡𝑗 ∈ 𝐴𝐴 is denoted by 𝑣𝑗 , the instantaneous speed

by 𝑣�𝑗 , and the preliminary speed by 𝑣̅𝑗.

Definition 4.39 (input and output speed)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net. The input speed of a place 𝑝𝑖 ∈ 𝐴𝐴 is

𝐼𝑖 = � 𝑓�𝑡𝑗 → 𝑝𝑖� ⋅ 𝑣�𝑗
𝑡𝑗∈𝑇𝐹𝑖𝑛(𝑝𝑖)

.

If 𝐼𝑖 > 0, place 𝑝𝑖 is said to be fed.

The output speed of a place 𝑝𝑖 ∈ 𝐴𝐴 is

𝑂𝑂𝑖 = � 𝑓�𝑝𝑖 → 𝑡𝑗� ⋅ 𝑣�𝑗
𝑡𝑗∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖)

.

If 𝑂𝑂𝑖 > 0, place 𝑝𝑖 is said to be emptied.

A continuous transition is active, enabled, and firable, simultaneously. Hereafter the term

active will be used. It is active if all input places have either a marking greater than zero or are

108 4 Petri Nets

fed by at least one input transition, i.e. the input speed is not zero. If all input places have a

non-zero marking the transition is said to be strongly active; otherwise, it is weakly active.

Figure 4.22: Connection between (discrete) timed Petri nets and continuous Petri nets

Definition 4.40 (activation continuous Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net. A transition 𝑡𝑖 ∈ 𝐴𝐴 is active if and

only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶ 𝑚(𝑝𝑖) > 0 ∨ (𝑚(𝑝𝑖) = 0 ∧ 𝐼𝑖 > 0).

It is strongly active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶ 𝑚(𝑝𝑖) > 0

is also satisfied and weakly active otherwise, wherby 𝐴𝐴𝐼𝑖𝑛�𝑡𝑗� ist the set of input places with

𝑚(𝑝𝑖) = 0 ∧ 𝐼𝑖 > 0.

A strongly active transition fires with the assigned maximum speed. However, the speed of a

weakly active transition has to be decreased according to the input speeds of the input places

with zero markings.

Definition 4.41 (firing process continuous Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net. A strongly active transition 𝑡𝑗 ∈ 𝐴𝐴

fires with the maximum speed 𝑣�𝑗 = 𝑣𝑗. A weakly active transition 𝑡𝑗 ∈ 𝐴𝐴, not involved in an

actual conflict according to Definition 4.42, fires with the instantaneous speed

𝑣�𝑗 = min � min
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
� 𝑓(𝑡𝑘 → 𝑝𝑖) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐹𝑖𝑛(𝑝𝑖)

� , 𝑣𝑗�

= min � min
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
⋅ 𝐼𝑖� , 𝑣𝑗�.

4.4 Continuous Petri Nets 109

The firing process is described by a negative mark change of all input places expressed by

the following differential equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= −𝑓�𝑝𝑖 → 𝑡𝑗� ⋅ 𝑣�𝑗 ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�

and a positive mark change of all output places expressed by the following differential

equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= 𝑓�𝑡𝑗 → 𝑝𝑖� ⋅ 𝑣�𝑗 ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗�.

The mark change of the place 𝑝𝑖 ∈ 𝐴𝐴 can be calculated by the following differential equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= 𝐵𝑖 = 𝐼𝑖 − 𝑂𝑂𝑖,

where 𝐵𝑖 is the balance of place 𝑝𝑖, i.e. the difference between input and output speed.

Example 4.17

Figure 4.23 shows a continuous Petri net without actual conflicts. At time 0, transition 𝐴𝐴1

becomes strongly active and fires with the maximum speed 𝑣�1 = 𝑣1 = 3. Immediately

afterwards, 𝐴𝐴2 becomes strongly active and fires with the maximum speed 𝑣�2 = 𝑣2 = 2.

Figure 4.23: Continuous Petri net without actual conflicts (left) and the corresponding mark

evolution (right) (Example 4.17

The corresponding mark changes are

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 2 − 3 = −1

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 3 − 2 = 1.

At time 150, 𝐴𝐴1 becomes empty (𝑚(𝐴𝐴1) = 0) but it is fed (𝐼1 = 2 > 0), hence, 𝐴𝐴1 is weakly

active with the instantaneous speed 𝑣�1 = 2 so that 𝐼1 = 𝑂𝑂1. The corresponding mark changes

are then both zero

110 4 Petri Nets

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 2 − 2 = 0

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 2 − 2 = 0.

A place in a continuous Petri net has an actual conflict when the input speed is not sufficient

for firing all output transitions with the instantaneous speed of Definition 4.41, called

preliminary speed hereafter.

Definition 4.42 (actual conflict, preliminary speed continuous Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net. A place 𝑝𝑖 ∈ 𝐴𝐴 has an actual conflict

if

𝑚(𝑝𝑖) = 0

and

𝐼𝑖 < � 𝑓�𝑝𝑖 → 𝑡𝑗� ⋅ 𝑣̅𝑗
𝑡𝑗∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖)

,

whereby

𝑣̅𝑗 = min � min
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
� 𝑓(𝑡𝑘 → 𝑝𝑖) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐹𝑖𝑛(𝑝𝑖)

� , 𝑣𝑗�

= min � min
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
⋅ 𝐼𝑖� , 𝑣𝑗�

is said to be the preliminary speed of a transition 𝑡𝑗 ∈ 𝐴𝐴.

This conflict can be resolved by priority (Hanzalek 2003, David and Alla 2005) or sharing

(David and Alla 2005) under the conditions that the balance of the place is positive and the

preliminary speeds of the involved transitions are not exceeded.

Definition 4.43 (feasible solution continuous Petri net)

A solution of an actual conflict of a place 𝑝𝑖 ∈ 𝐴𝐴 which satisfies the following inequality

constraints

𝐵𝑖 = 𝐼𝑖 − 𝑂𝑂𝑖 ≥ 0

∀ 𝑡𝑗 ∈ 𝐴𝐴𝐹𝐹𝑜𝑢𝑡(𝑝𝑖) ∶ 𝑣�𝑗 ≤ 𝑣̅𝑗

is said to be feasible; otherwise, it is infeasible.

4.4 Continuous Petri Nets 111

The set of all feasible solutions is geometrically a convex polyhedron, thus, it usually

comprises an infinite number of solutions. One feasible solution can be obtained by sharing

the speed proportional to the maximum speeds of the involved transitions as suggested in

(David and Alla 2001) which guarantees that the solution lies on a vertex of the polyhedron.

This approach has been adapted to the continuous Petri net definitions mentioned before

which leads to following definition for the firing process of continuous transitions.

Definition 4.44 (sharing proportional to maximum speeds continuous Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net. An active transition 𝑡𝑗 ∈ 𝐴𝐴, not

involved in an actual conflict, fires with the speed of Definition 4.41. If a place 𝑝𝑖 ∈ 𝐴𝐴 has an

actual conflict according to Definition 4.42, the speed of the output transitions has to be

adapted such that the constraints of Definition 4.43 are satisfied. This is done by sharing

proportional to the maximum speeds of the involved output transitions. The instantaneous

speed of an active transition 𝑡𝑗 ∈ 𝐴𝐴 which has at least one input place with an actual conflict is

then given by

𝑣�𝑗 = min
𝑝𝑖∈𝑃𝑖𝑛�𝑡𝑗�

(𝑁𝑁𝑖) ⋅ 𝑣𝑗 .

Thereby, the expression

𝑁𝑁𝑖 =
𝐼𝑖

∑ 𝑓(𝑝𝑖 → 𝑡𝑘) ⋅ 𝑣𝑘𝑡𝑘∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖)

is called decreasing factor of place 𝑝𝑖. This factor causes that the first condition of a feasible

solution is satisfied with 𝐵𝑖 = 0. The maximum speed is scaled by the minimum decrasing

factor of all input places so that the condition 𝐵𝑖 ≥ 0 is always satisfied. But the preliminary

speed could be exceeded for some transitions. Then the speeds of all transitions

𝑡𝑙 ∈ 𝐴𝐴𝐹𝐹𝑜𝑢𝑡(𝑝𝑖) for which 𝑣�𝑙 > 𝑣̅𝑙 are set to the preliminary speed

𝑣�𝑙 = 𝑣̅𝑙 .

The subset 𝐴𝐴𝐹𝐹����𝑜𝑢𝑡(𝑝𝑖) contains all these transitions and the decreasing factors have to be

modified by

𝑁𝑁𝑖 =
𝐼𝑖 − ∑ 𝑓(𝑝𝑖 → 𝑡𝑙) ⋅ 𝑣�𝑙𝑡𝑙∈ 𝑇𝐹����𝑜𝑢𝑡(𝑝𝑖)

∑ 𝑓(𝑝𝑖 → 𝑡𝑘) ⋅ 𝑣𝑘𝑡𝑘∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖) − ∑ 𝑓(𝑝𝑖 → 𝑡𝑙) ⋅ 𝑣𝑙𝑡𝑙∈ 𝑇𝐹����𝑜𝑢𝑡(𝑝𝑖)
.

This factor guarantees that 𝐵𝑖 ≥ 0 but the premilary speed could be exceeded for some

transitions. Then the mentioned procedure has to be performed again.

112 4 Petri Nets

Example 4.18

Figure 4.24 represents two continuous Petri nets which only differ in the maximum speeds 𝑣2

and 𝑣3 of transitions 𝐴𝐴2 and 𝐴𝐴3. The transitions 𝐴𝐴5 and 𝐴𝐴6 of the left Petri net are weakly

active due to 𝑚(𝐴𝐴1) = 𝑚(𝐴𝐴2) = 𝑚(𝐴𝐴3) = 𝑚(𝐴𝐴4) = 0 but they are all fed, i.e. 𝐼1, 𝐼2, 𝐼3, 𝐼4 > 0.

Hence, the preliminary speeds are given by

𝑣̅5 = min �
1

𝑓(𝐴𝐴1 → 𝐴𝐴5) 𝑓(𝐴𝐴1 → 𝐴𝐴1)𝑣1,
1

𝑓(𝐴𝐴2 → 𝐴𝐴5) 𝑓(𝐴𝐴2 → 𝐴𝐴2)𝑣2,

1
𝑓(𝐴𝐴3 → 𝐴𝐴5) 𝑓(𝐴𝐴3 → 𝐴𝐴3)𝑣3, 𝑣5�

= min �
1
1

⋅ 1 ⋅ 3,
1
3

⋅ 1 ⋅ 10.5,
1
2

⋅ 1 ⋅ 11.7 , 3� = 3

𝑣̅6 = min �
1

𝑓(𝐴𝐴2 → 𝐴𝐴6) 𝑓(𝐴𝐴2 → 𝐴𝐴2)𝑣2,
1

𝑓(𝐴𝐴3 → 𝐴𝐴6) 𝑓(𝐴𝐴3 → 𝐴𝐴3)𝑣3,

1
𝑓(𝐴𝐴4 → 𝐴𝐴6) 𝑓(𝐴𝐴4 → 𝐴𝐴4)𝑣4, 𝑣6�

= min �
1
1

⋅ 1 ⋅ 10.5,
1
3

⋅ 1 ⋅ 11.7,
1
2

⋅ 1 ⋅ 1,2� =
1
2

.

Figure 4.24: Continuous Petri nets without actual conflict (left) and with actual conflict

(right) (Example 4.18)

Because neither 𝐴𝐴2 nor 𝐴𝐴3 has an actual conflict

𝐼2 = 10.5 ≥ 𝑓(𝐴𝐴2 → 𝐴𝐴5) ⋅ 𝑣̅5 + 𝑓(𝐴𝐴2 → 𝐴𝐴6) ⋅ 𝑣̅6 = 9
1
2

𝐼3 = 11.7 ≥ 𝑓(𝐴𝐴3 → 𝐴𝐴5) ⋅ 𝑣̅5 + 𝑓(𝐴𝐴3 → 𝐴𝐴6) ⋅ 𝑣̅6 = 7
1
2

,

4.4 Continuous Petri Nets 113

the instantaneous speeds of 𝐴𝐴5 and 𝐴𝐴6 are equal to the preliminary speeds

𝑣�5 = 𝑣̅5 = 3

𝑣�6 = 𝑣̅6 =
1
2

.

The mark changes are

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 𝑓(𝐴𝐴1 → 𝐴𝐴1) ⋅ 𝑣1 − 𝑓(𝐴𝐴1 → 𝐴𝐴5) ⋅ 𝑣�5 = 0

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 𝑓(𝐴𝐴2 → 𝐴𝐴2) ⋅ 𝑣2 − 𝑓(𝐴𝐴2 → 𝐴𝐴5) ⋅ 𝑣�5 − 𝑓(𝐴𝐴2 → 𝐴𝐴6) ⋅ 𝑣�6 = 1

𝑑𝑚(𝐴𝐴3)
𝑑𝑡

= 𝑓(𝐴𝐴3 → 𝐴𝐴3) ⋅ 𝑣3 − 𝑓(𝐴𝐴3 → 𝐴𝐴5) ⋅ 𝑣�5 − 𝑓(𝐴𝐴3 → 𝐴𝐴6) ⋅ 𝑣�6 = 4.2

𝑑𝑚(𝐴𝐴4)
𝑑𝑡

= 𝑓(𝐴𝐴4 → 𝐴𝐴4) ⋅ 𝑣4 − 𝑓(𝐴𝐴4 → 𝐴𝐴6) ⋅ 𝑣�6 = 0.

However, the places 𝐴𝐴2 and 𝐴𝐴3 of the right Petri net have both an actual conflict

𝑣̅5 = min �
1
1

⋅ 1 ⋅ 3,
1
3

⋅ 1 ⋅ 7.5,
1
2

⋅ 1 ⋅ 6 , 3� = 2.5

𝑣̅6 = min �
1
1

⋅ 1 ⋅ 7.5,
1
3

⋅ 1 ⋅ 6,
1
2

⋅ 1 ⋅ 1,2� =
1
2

𝐼2 = 7.5 < 𝑓(𝐴𝐴2 → 𝐴𝐴5) ⋅ 𝑣̅5 + 𝑓(𝐴𝐴2 → 𝐴𝐴6) ⋅ 𝑣̅6 = 8

𝐼3 = 6 < 𝑓(𝐴𝐴3 → 𝐴𝐴5) ⋅ 𝑣̅5 + 𝑓(𝐴𝐴3 → 𝐴𝐴6) ⋅ 𝑣̅6 = 6.5.
Figure 4.25 shows the space of feasible solutions according to the constraints of

Definition 4.43.

Figure 4.25: Feasible solutions of the actual conflicts of the right Petri net in Figure 4.24

114 4 Petri Nets

One of these feasible solutions is selected by sharing which is proportional to the maximum

speeds of the involved transitions 𝐴𝐴5 and 𝐴𝐴6. At first, the decreasing factors of 𝐴𝐴2 and 𝐴𝐴3 are

calculated

𝑁𝑁2 =
𝐼2

𝑓(𝐴𝐴2 → 𝐴𝐴5)𝑣5 + 𝑓(𝐴𝐴2 → 𝐴𝐴6)𝑣6
=

7.5
3 ⋅ 3 + 1 ⋅ 2

=
15
22

𝑁𝑁3 =
𝐼3

𝑓(𝐴𝐴3 → 𝐴𝐴5)𝑣5 + 𝑓(𝐴𝐴3 → 𝐴𝐴6)𝑣6
=

6
2 ⋅ 3 + 3 ⋅ 2

=
1
2

.

Then the maximum speeds of 𝐴𝐴5 and 𝐴𝐴6 are decreased by this factor

𝑣�5 = min(𝑁𝑁2 , 𝑁𝑁3) ⋅ 𝑣5 =
1
2

⋅ 3 =
3
2

≤ 𝑣̅5

𝑣�6 = min(𝑁𝑁2 , 𝑁𝑁3) ⋅ 𝑣6 =
1
2

⋅ 2 = 1 ≰ 𝑣̅6

But the calculated speed of 𝐴𝐴6 exceeds the preliminary speed marked by a blue dot in

Figure 4.25. A feasible solution is achieved if the instantaneous speed is set to the

preliminary speed

𝑣�6 = 𝑣̅6 =
1
2

.

Additionally, the decreasing factors for the speed of 𝐴𝐴5 have to be recalculated

𝑁𝑁2 =
𝐼2 − 𝑓(𝐴𝐴2 → 𝐴𝐴6)𝑣�6

𝑓(𝐴𝐴2 → 𝐴𝐴5)𝑣5
=

7.5 − 1 ⋅ 1/2
3 ⋅ 3

=
7
9

𝑁𝑁3 =
𝐼3 − 𝑓(𝐴𝐴3 → 𝐴𝐴6)𝑣�6

𝑓(𝐴𝐴3 → 𝐴𝐴5)𝑣5
=

6 − 3 ⋅ 1/2
2 ⋅ 3

=
3
4

𝑣�5 = min(𝑁𝑁2 , 𝑁𝑁3) ⋅ 𝑣5 = 2
1
4

.

This solution is a vertex of the solution space and marked by a black dot in Figure 4.25. The

mark changes are

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 𝑓(𝐴𝐴1 → 𝐴𝐴1) ⋅ 𝑣1 − 𝑓(𝐴𝐴1 → 𝐴𝐴5) ⋅ 𝑣�5 =
3
4

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 𝑓(𝐴𝐴2 → 𝐴𝐴2) ⋅ 𝑣2 − 𝑓(𝐴𝐴2 → 𝐴𝐴5) ⋅ 𝑣�5 − 𝑓(𝐴𝐴2 → 𝐴𝐴6) ⋅ 𝑣�6 =
1
4

𝑑𝑚(𝐴𝐴3)
𝑑𝑡

= 𝑓(𝐴𝐴3 → 𝐴𝐴3) ⋅ 𝑣3 − 𝑓(𝐴𝐴3 → 𝐴𝐴5) ⋅ 𝑣�5 − 𝑓(𝐴𝐴3 → 𝐴𝐴6) ⋅ 𝑣�6 = 0

𝑑𝑚(𝐴𝐴4)
𝑑𝑡

= 𝑓(𝐴𝐴4 → 𝐴𝐴4) ⋅ 𝑣4 − 𝑓(𝐴𝐴4 → 𝐴𝐴6) ⋅ 𝑣�6 = 0.

4.4 Continuous Petri Nets 115

4.4.1 CONTINUOUS CAPACITIVE PETRI NETS

Every place in a continuous capacitive Petri net is provided with a lower and upper limit of

marks that it can contain, similar to capacitive Petri nets (see Definition 4.14).

Definition 4.45 (continuous capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, G, 𝑓, 𝑣, 𝑐𝑙 , 𝑐𝑢, 𝑚0) is a continuous capacitive Petri net if

(𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net, the map 𝑐𝑙: 𝐴𝐴 → ℝ≥0 assigns a minimum

capacity 𝑐𝑙(𝑝𝑖) to every place 𝑝𝑖 ∈ 𝐴𝐴, the map 𝑐𝑢: 𝐴𝐴 → ℝ≥0 assigns a maximum capacity

𝑐𝑢(𝑝𝑖) to every place 𝑝𝑖 ∈ 𝐴𝐴, and the initial marking 𝑚0 must satisfy the condition

𝑐𝑙(𝑝𝑖) ≤ 𝑚0(𝑝𝑖) ≤ 𝑐𝑢(𝑝𝑖) ∀ 𝑝𝑖 ∈ 𝐴𝐴.

The continuous capacitive Petri nets require a redefinition of the activation and firing process

(Definition 4.40 and Definition 4.41). A transition in a continuous capacitive Petri net is

active if all input places have either a marking greater than their minimum capacities or they

are fed by at least one input transition, i.e. the input speed is not zero. Additionally, all output

places have either a marking less than their maximum capacities or they are emptied by at

least one output transition, i.e. the output speed is not zero. If all input places have a marking

greater than their minimum capacities and all output places have a marking less than their

maximum capacities, the transition is said to be strongly active.

Definition 4.46 (activation continuous capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a continuous capacitive Petri net. A transition 𝑡𝑗 ∈ 𝐴𝐴 is

active if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶ 𝑚(𝑝𝑖) > 𝑐𝑙(𝑝𝑖) ∨ (𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖) ∧ 𝐼𝑖 > 0)

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) < 𝑐𝑢(𝑝𝑖) ∨ (𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) ∧ 𝑂𝑂𝑖 > 0).

It is strongly input active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶ 𝑚(𝑝𝑖) > 𝑐𝑙(𝑝𝑖)

is also satisfied and otherwise it is weakly input active. It is strongly output active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) < 𝑐𝑢(𝑝𝑖)

is also satisfied and otherwise it is weakly output active. If it is strongly input and output

active, it is strongly active. If it is weakly input and output active, it is weakly active.

116 4 Petri Nets

Thereby, 𝐴𝐴𝐼𝑖𝑛�𝑡𝑗� ist the set of input places with 𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖) ∧ 𝐼𝑖 > 0 and 𝐴𝐴𝐼𝑜𝑢𝑡�𝑡𝑗� is the

set of output places of 𝑡𝑗 with 𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) ∧ 𝑂𝑂𝑖 > 0.

A strongly active transition fires with maximum speed. However, the speed of a weakly

(input/output) active transition has to be decreased according to the input speeds of the input

places with markings equal to the minimum capacities and/or according to the output speeds

of the output places with markings equal to the maximum capacities.

Definition 4.47 (firing process continuous capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a continuous capacitive Petri net. A strongly active

transition 𝑡𝑗 ∈ 𝐴𝐴 fires with maximum speed 𝑣�𝑗 = 𝑣𝑗. A weakly (input/output) active transition

𝑡𝑗 ∈ 𝐴𝐴, not involved in an actual conflict according to Definition 4.48, fires with the

instantaneous speed

𝑣�𝑗 = min � min
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
� 𝑓(𝑡𝑘 → 𝑝𝑖) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐹𝑖𝑛(𝑝𝑖)

� ,

min
𝑝𝑖∈𝑃𝐼𝑜𝑢𝑡�𝑡𝑗�

�
1

𝑓�𝑡𝑗 → 𝑝𝑖�
� 𝑓(𝑝𝑖 → 𝑡𝑘) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖)

� , 𝑣𝑗�

= min � 𝑚𝑖𝑖𝑛
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
⋅ 𝐼𝑖� , min

𝑝𝑖∈𝑃𝐼𝑜𝑢𝑡�𝑡𝑗�
�

1
𝑓�𝑡𝑗 → 𝑝𝑖�

⋅ 𝑂𝑂𝑖� , 𝑣𝑗� .

The firing process of the transitions is described by a negative mark change of all input places

expressed by the following differential equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= −𝑓�𝑝𝑖 → 𝑡𝑗� ⋅ 𝑣�𝑗 ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�

and a positive mark change of all output places expressed by the differential equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= 𝑓�𝑡𝑗 → 𝑝𝑖� ⋅ 𝑣�𝑗 ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗�.

The mark change of the place 𝑝𝑖 ∈ 𝐴𝐴 can be calculated by the following differential equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= 𝐵𝑖 = 𝐼𝑖 − 𝑂𝑂𝑖,

where 𝐵𝑖 is the balance of place 𝑝𝑖, i.e. the difference between input and output speed.

Example 4.19

Figure 4.26 shows a continuous capacitive Petri net without actual conflicts. Place 𝐴𝐴2 has a

maximum capacity of 100 marks. At time 0, transition 𝐴𝐴1 becomes strongly active and fires

4.4 Continuous Petri Nets 117

with the maximum speed 𝑣�1 = 𝑣1 = 3. Immediately afterwards, 𝐴𝐴2 becomes strongly active

and fires with the maximum speed 𝑣�2 = 𝑣2 = 2. At time 100, the maximum capacity of 𝐴𝐴2 is

reached (𝑚(𝐴𝐴2) = 100 = 𝑐𝑢(𝐴𝐴2)) but it is emptied by transition 𝐴𝐴2. Hence, 𝐴𝐴1 is weakly

output active with the instantaneous speed 𝑣�1 = 2 so that 𝐼2 = 𝑂𝑂2. Then the corresponding

mark changes are both zero.

Figure 4.26: Continuous capacitive Petri net without actual conflicts (left) and the mark

evolution (right) (Example 4.19)

Example 4.20

Figure 4.27 shows a continuous capacitive Petri net. Place 𝐴𝐴1 has a minimum capacity of 2

marks and 𝐴𝐴2 has a maximum capacity of 10 marks. At time 0, 𝐴𝐴2 is weakly active because

the marking of the input place 𝐴𝐴1 is at the minimum capacity and, additionally, the marking of

its output place is at the maximum capacity but both places are fed and emptied,

respectively.

Figure 4.27: Continuous capacitive Petri net with a weakly active transition (Example 4.20)

Hence, the speed of 𝐴𝐴2 has to be slowed down in such a way that

𝐼1 ≥ 𝑂𝑂1 and 𝐼2 ≤ 𝑂𝑂2.

The instantaneous speed of 𝐴𝐴2 is

𝑣�2 = min �
1

𝑓(𝐴𝐴1 → 𝐴𝐴2) 𝑓(𝐴𝐴1 → 𝐴𝐴1)𝑣1,
1

𝑓(𝐴𝐴2 → 𝐴𝐴2) 𝑓(𝐴𝐴2 → 𝐴𝐴3)𝑣3, 𝑣2�

= min (2, 1,3) = 1

and the mark changes are

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 2 − 1 = 1

118 4 Petri Nets

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 1 − 1 = 0.

A place in a continuous capacitive Petri net can have an actual input and output conflict. It has

an actual output conflict if the input speed is not sufficient for firing all active output

transitions with the instantaneous speed of Definition 4.47. On the other hand, it has an actual

input conflict if the output speed is not sufficient for receiving marks from all active input

transitions with the instantaneous speed of Definition 4.47. Similar to the continuous Petri

nets without capacities, these conflicts can be resolved by priority or sharing. Thereby, it has

to be ensured that the solution leads to a positive balance in the case of an output conflict and

to a negative balance in the case of an input conflict. Additionally, the preliminary speeds of

the involved transitions may not be exceeded.

Definition 4.48 (actual (output/input) conflict, preliminary speed)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a continuous capacitive Petri net. A place 𝑝𝑖 ∈ 𝐴𝐴 has

an actual output conflict if

𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖)

and

𝐼𝑖 < � 𝑓�𝑝𝑖 → 𝑡𝑗� ⋅ 𝑣̅𝑗
𝑡𝑗∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖)

.

A place 𝑝𝑖 ∈ 𝐴𝐴 has an actual input conflict if

𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖)

and

𝑂𝑂𝑖 < � 𝑓�𝑡𝑗 → 𝑝𝑖� ⋅ 𝑣̅𝑗
𝑡𝑗∈𝑇𝐹𝑖𝑛(𝑝𝑖)

,

whereby

𝑣̅𝑗 = min � min
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
� 𝑓(𝑡𝑘 → 𝑝𝑖) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐹𝑖𝑛(𝑝𝑖)

� ,

min
𝑝𝑖∈𝑃𝐼𝑜𝑢𝑡�𝑡𝑗�

�
1

𝑓�𝑡𝑗 → 𝑝𝑖�
� 𝑓(𝑝𝑖 → 𝑡𝑘) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐹𝑜𝑢𝑡(𝑝)

, � , 𝑣𝑗�

= min � min
𝑝𝑖∈𝑃𝐼𝑖𝑛(𝑡𝑘)

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
⋅ 𝐼𝑖� , min

𝑝𝑖∈𝑃𝐼𝑜𝑢𝑡(𝑡𝑘)
�

1
𝑓�𝑡𝑗 → 𝑝𝑖�

⋅ 𝑂𝑂𝑖� , 𝑣𝑗�

is said to be the preliminary speed of a transition 𝑡𝑗 ∈ 𝐴𝐴.

4.4 Continuous Petri Nets 119

Definition 4.49 (feasible solution continuous capacitive Petri net)

A solution of an actual output conflict of a place 𝑝𝑖 ∈ 𝐴𝐴 which satisfies the following

conditions

𝐵𝑖 = 𝐼𝑖 − 𝑂𝑂𝑖 ≥ 0

∀ 𝑡𝑗 ∈ 𝐴𝐴𝐹𝐹𝑜𝑢𝑡(𝑝𝑖) ∶ 𝑣�𝑗 ≤ 𝑣̅𝑗

is said to be feasible; otherwise, it is infeasible.

A solution of an actual input conflict of a place 𝑝𝑖 ∈ 𝐴𝐴 which satisfies the following

conditions

𝐵𝑖 = 𝐼𝑖 − 𝑂𝑂𝑖 ≤ 0

∀ 𝑡𝑗 ∈ 𝐴𝐴𝐹𝐹𝑖𝑛(𝑝𝑖) ∶ 𝑣�𝑗 ≤ 𝑣̅𝑗

is said to be feasible; otherwise, it is infeasible.

The approach of Definition 4.44 has been adapted for continuous capacitive Petri nets to

achieve a feasible solution of actual conflicts.

Definition 4.50 (sharing proportional to maximum speeds continuous cap. Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑐𝑙, 𝑐𝑢, 𝑚0) is a continuous capacitive Petri net. An active transition

𝑡𝑗 ∈ 𝐴𝐴, not involved in an actual conflict, fires with the speed of Definition 4.47. If a place

𝑝𝑖 ∈ 𝐴𝐴 has an actual conflict according to Definition 4.48, the speeds of input and output

transitions have to be adapted so that the constraints of Definition 4.49 are satisfied.

This is done by sharing proportional to the maximum speeds of the involved input and

output transitions. The instantaneous speed of an active transition 𝑡𝑗 ∈ 𝐴𝐴 which has at least

one input place with an actual output conflict and no output places with an actual input

conflict is then given by

𝑣�𝑗 = min
𝑝𝑖∈𝑃𝑖𝑛�𝑡𝑗�

(𝑁𝑁𝑖) ⋅ 𝑣𝑗 .

Thereby, the expression

𝑁𝑁𝑖 =
𝐼𝑖

∑ 𝑓(𝑝𝑖 → 𝑡𝑘) ⋅ 𝑣𝑘𝑡𝑘∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖)

is called output decreasing factor of place 𝑝𝑖. This factor causes that the first condition of a

feasible solution is satisfied with 𝐵𝑖 = 0. The maximum speed is scaled by the minimum

decrasing factor of all input places so that the condition 𝐵𝑖 ≥ 0 is always satisfied. But the

preliminary speed could be exceeded for some transitions. Then the speeds of all transitions

𝑡𝑙 ∈ 𝐴𝐴𝐹𝐹𝑜𝑢𝑡(𝑝𝑖) for which 𝑣�𝑙 > 𝑣̅𝑙 are set to the preliminary speed

𝑣�𝑙 = 𝑣̅𝑙 .

120 4 Petri Nets

The subset 𝐴𝐴𝐹𝐹����𝑜𝑢𝑡(𝑝𝑖) contains all these transitions and the decreasing factor has to be

modified by

𝑁𝑁𝑖 =
𝐼𝑖 − ∑ 𝑓(𝑝𝑖 → 𝑡𝑙) ⋅ 𝑣�𝑙𝑡𝑙∈ 𝑇𝐹����𝑜𝑢𝑡(𝑝𝑖)

∑ 𝑓(𝑝𝑖 → 𝑡𝑘) ⋅ 𝑣𝑘𝑡𝑘∈𝑇𝐹𝑜𝑢𝑡(𝑝𝑖) − ∑ 𝑓(𝑝𝑖 → 𝑡𝑙) ⋅ 𝑣𝑙𝑡𝑙∈ 𝑇𝐹����𝑜𝑢𝑡(𝑝𝑖)
.

This factor guarantees that 𝐵𝑖 ≥ 0 but the premilary speed could be exceeded for some

transitions. Then the mentioned procedure has to be performed again.

The instantaneous speed of an active transition 𝑡𝑗 ∈ 𝐴𝐴 which has at least one output place with

an actual input conflict and no input place with an actual output conflict is then given by

𝑣�𝑗 = min
𝑝𝑖∈𝑃𝑜𝑢𝑡�𝑡𝑗�

(𝑄𝑖) ⋅ 𝑣𝑗 .

Thereby, the expression

𝑄𝑖 =
𝑂𝑂𝑖

∑ 𝑓(𝑡𝑘 → 𝑝𝑖) ⋅ 𝑣𝑘𝑡𝑘∈𝑇𝐹𝑖𝑛(𝑝𝑖)

is called input decreasing factor of place 𝑝𝑖. This factor causes that the first condition of a

feasible solution is satisfied with 𝐵𝑖 = 0. The maximum speed is scaled by the minimum

decrasing factor of all input places so that the condition 𝐵𝑖 ≤ 0 is always satisfied. But the

preliminary speed could be exceeded for some transitions. Then the speeds of all 𝑡𝑙 ∈

𝐴𝐴𝐹𝐹𝑖𝑛(𝑝𝑖) for which 𝑣�𝑙 > 𝑣̅𝑙 is set to

𝑣�𝑙 = 𝑣̅𝑙 .

The subset 𝐴𝐴𝐹𝐹����𝑖𝑛(𝑝𝑖) contains all these transitions. Then the decreasing factor has to be

modified by

𝑄𝑖 =
𝑂𝑂𝑖 − ∑ 𝑓(𝑡𝑙 → 𝑝𝑖) ⋅ 𝑣�𝑙𝑡𝑙∈ 𝑇𝐹����𝑖𝑛(𝑝𝑖)

∑ 𝑓(𝑡𝑘 → 𝑝𝑖) ⋅ 𝑣𝑘𝑡𝑘∈𝑇𝐹𝑖𝑛(𝑝𝑖) − ∑ 𝑓(𝑡𝑙 → 𝑝𝑖) ⋅ 𝑣𝑙𝑡𝑙∈ 𝑇𝐹����𝑖𝑛(𝑝𝑖)
.

This factor guarantees that 𝐵𝑖 ≤ 0 but the premilary speed could be exceeded for some

transitions. Then the mentioned procedure has to be performed again.

The instantaneous speed of an active transition 𝑡𝑗 ∈ 𝐴𝐴 which has at least one input place with

an actual output conflict and at least one output place with an actual input conflict is then

given by

𝑣�𝑗 = min � min
𝑝𝑖∈𝑃𝑖𝑛�𝑡𝑗�

(𝑁𝑁𝑖) , min
𝑝𝑖∈𝑃𝑜𝑢𝑡�𝑡𝑗�

(𝑄𝑖)� ⋅ 𝑣𝑗 .

If this speed exceeds the preliminary speed, the mentioned procedure above has to be

performed again.

4.4 Continuous Petri Nets 121

Example 4.21

Figure 4.28 represents two continuous capacitive Petri nets which only differ in the maximum

speed 𝑣4 of transition 𝐴𝐴4. Place 𝐴𝐴2 of the left Petri net has no actual conflict. Transitions 𝐴𝐴1

and 𝐴𝐴2 are weakly output active due to 𝑚(𝐴𝐴1) = 𝑐𝑢(𝐴𝐴1), 𝑚(𝐴𝐴2) = 𝑐𝑢(𝐴𝐴2), 𝑚(𝐴𝐴3) = 𝑐𝑢(𝐴𝐴3)

but they are all emptied, i.e. 𝑂𝑂1, 𝑂𝑂2, 𝑂𝑂3 > 0. The instantaneous speeds are given by

𝑣�1 = 𝑣̅1 = min �
1

𝑓(𝐴𝐴1 → 𝐴𝐴1) 𝑓(𝐴𝐴1 → 𝐴𝐴3)𝑣3,
1

𝑓(𝐴𝐴1 → 𝐴𝐴2) 𝑓(𝐴𝐴2 → 𝐴𝐴4)𝑣4, 𝑣1�

= min �
1
1

⋅ 1 ⋅ 3,
1
3

⋅ 1 ⋅ 10.1, 3� = 3

𝑣�2 = 𝑣̅2 = min �
1

𝑓(𝐴𝐴2 → 𝐴𝐴2) 𝑓(𝐴𝐴2 → 𝐴𝐴4)𝑣4,
1

𝑓(𝐴𝐴2 → 𝐴𝐴3) 𝑓(𝐴𝐴3 → 𝐴𝐴5)𝑣5, 𝑣2�

= min �
1
1

⋅ 1 ⋅ 10.1,
1
2

⋅ 1 ⋅ 1,2� =
1
2

and, hence,

𝑂𝑂2 = 10.1 ≥ 𝑓(𝐴𝐴1 → 𝐴𝐴2) ⋅ 𝑣�1 + 𝑓(𝐴𝐴2 → 𝐴𝐴2) ⋅ 𝑣�2 = 9
1
2

.

Figure 4.28: Continuous capacitive Petri nets without actual input conflict (left) and with

actual input conflict (right) (Example 4.21)

The mark changes are

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 𝑓(𝐴𝐴1 → 𝐴𝐴1) ⋅ 𝑣�1 − 𝑓(𝐴𝐴1 → 𝐴𝐴3) ⋅ 𝑣3 = 0

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 𝑓(𝐴𝐴1 → 𝐴𝐴2) ⋅ 𝑣�1 + 𝑓(𝐴𝐴2 → 𝐴𝐴2) ⋅ 𝑣�2 − 𝑓(𝐴𝐴2 → 𝐴𝐴4) ⋅ 𝑣4 = −0.6

𝑑𝑚(𝐴𝐴3)
𝑑𝑡

= 𝑓(𝐴𝐴2 → 𝐴𝐴3) ⋅ 𝑣�2 − 𝑓(𝐴𝐴3 → 𝐴𝐴5) ⋅ 𝑣5 = 0.

122 4 Petri Nets

However, 𝐴𝐴2 of the right Petri net has an actual input conflict due to

𝑣̅1 = min �
1

𝑓(𝐴𝐴1 → 𝐴𝐴1) 𝑓(𝐴𝐴1 → 𝐴𝐴3)𝑣3,
1

𝑓(𝐴𝐴1 → 𝐴𝐴2) 𝑓(𝐴𝐴2 → 𝐴𝐴4)𝑣4, 𝑣1�

= min �
1
1

⋅ 1 ⋅ 3,
1
3

⋅ 1 ⋅ 7.5, 3� = 2.5

𝑣̅2 = min �
1

𝑓(𝐴𝐴2 → 𝐴𝐴2) 𝑓(𝐴𝐴2 → 𝐴𝐴4)𝑣4,
1

𝑓(𝐴𝐴2 → 𝐴𝐴3) 𝑓(𝐴𝐴3 → 𝐴𝐴5)𝑣5, 𝑣2�

= min �
1
1

⋅ 1 ⋅ 7.5,
1
2

⋅ 1 ⋅ 1,2� =
1
2

𝑂𝑂2 = 7.5 ≱ 3 ⋅ 𝑣̅1 + 1 ⋅ 𝑣̅2 = 8.
The resolution of this conflict is performed by sharing proportional to the maximum speeds of

the involved transitions 𝐴𝐴1 and 𝐴𝐴2. At first, the input decreasing factor of 𝐴𝐴2 is calculated

𝑄2 =
𝑂𝑂2

𝑓(𝐴𝐴1 → 𝐴𝐴2) ⋅ 𝑣1 + 𝑓(𝐴𝐴2 → 𝐴𝐴2) ⋅ 𝑣2
=

7.5
3 ⋅ 3 + 1 ⋅ 2

=
15
22

.

Then the speeds of 𝐴𝐴1 and 𝐴𝐴2 are decreased by this factor

𝑣�1 = 𝑄2 ⋅ 𝑣1 =
15
22

⋅ 3 = 2
1

22
≤ 𝑣̅1

𝑣�2 = 𝑄2 ⋅ 𝑣2 =
15
22

⋅ 2 = 1
4

11
≰ 𝑣̅2.

But the calculated speed of 𝐴𝐴2 exceeds the preliminary speed so that a feasible solution is

achieved by setting the instantaneous speed to the preliminary speed

𝑣�2 = 𝑣̅2 =
1
2

and the factor for decreasing the speed of 𝐴𝐴1 has to be recalculated by

𝑄2 =
7.5 − 1 ⋅ 𝑣�2

3 ⋅ 𝑣1
=

7
9

𝑣�1 = 𝑄2 ⋅ 𝑣1 = 2
1
3

.

The mark changes are

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 𝑓(𝐴𝐴1 → 𝐴𝐴1) ⋅ 𝑣�1 − 𝑓(𝐴𝐴1 → 𝐴𝐴3) ⋅ 𝑣3 = −
2
3

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 𝑓(𝐴𝐴1 → 𝐴𝐴2) ⋅ 𝑣�1 + 𝑓(𝐴𝐴2 → 𝐴𝐴2) ⋅ 𝑣�2 − 𝑓(𝐴𝐴2 → 𝐴𝐴4) ⋅ 𝑣4 = 0

𝑑𝑚(𝐴𝐴3)
𝑑𝑡

= 𝑓(𝐴𝐴2 → 𝐴𝐴3) ⋅ 𝑣�2 − 𝑓(𝐴𝐴3 → 𝐴𝐴5) ⋅ 𝑣5 = 0.

Example 4.22

Figure 4.29 shows a continuous capacitive Petri net. Transitions 𝐴𝐴4 and 𝐴𝐴5 are weakly active

because the input places have markings equal to the minimum capacities and the output

4.4 Continuous Petri Nets 123

places have markings equal to the maximum capacities; but the input places are fed and the

output places are emptied.

Figure 4.29: Continuous capacitive Petri net with actual input and output conflict

(Example 4.22)

The preliminary speeds

𝑣̅4 = min �min �
1

𝑓(𝐴𝐴1 → 𝐴𝐴4) 𝑓(𝐴𝐴1 → 𝐴𝐴1)𝑣1,
1

𝑓(𝐴𝐴2 → 𝐴𝐴4) 𝑓(𝐴𝐴2

→ 𝐴𝐴2)𝑣2� , min �
1

𝑓(𝐴𝐴4 → 𝐴𝐴4) 𝑓(𝐴𝐴4 → 𝐴𝐴6)𝑣6,
1

𝑓(𝐴𝐴4 → 𝐴𝐴5) 𝑓(𝐴𝐴5

→ 𝐴𝐴7)𝑣7� , 𝑣4� = min(min(3,2.5) , min(3,2) , 3) = 2

𝑣̅5 = min �min �
1

𝑓(𝐴𝐴2 → 𝐴𝐴5) 𝑓(𝐴𝐴2 → 𝐴𝐴2)𝑣2,
1

𝑓(𝐴𝐴3 → 𝐴𝐴5) 𝑓(𝐴𝐴3

→ 𝐴𝐴3)𝑣3� , min �
1

𝑓(𝐴𝐴5 → 𝐴𝐴5) 𝑓(𝐴𝐴5 → 𝐴𝐴7)𝑣7,
1

𝑓(𝐴𝐴5 → 𝐴𝐴6) 𝑓(𝐴𝐴6

→ 𝐴𝐴8)𝑣8� , 𝑣5� = min(min(7.5,2) , min(6,2) , 2) = 2

reveal that 𝐴𝐴2 has an actual output conflict

𝐼3 = 7.5 < 𝑓(𝐴𝐴2 → 𝐴𝐴4) ⋅ 𝑣̅4 + 𝑓(𝐴𝐴2 → 𝐴𝐴5) ⋅ 𝑣̅5 = 8

and that 𝐴𝐴5 has an actual input conflict

𝑂𝑂5 = 6 < 𝑓(𝐴𝐴4 → 𝐴𝐴5) ⋅ 𝑣̅4 + 𝑓(𝐴𝐴5 → 𝐴𝐴5) ⋅ 𝑣̅5 = 8.
The resolution of these conflicts is performed by sharing according to Definition 4.50. The

decreasing factors

𝑁𝑁2 =
𝐼2

𝑓(𝐴𝐴2 → 𝐴𝐴4) ⋅ 𝑣4 + 𝑓(𝐴𝐴2 → 𝐴𝐴5) ⋅ 𝑣5
=

15
22

124 4 Petri Nets

𝑄5 =
𝑂𝑂5

𝑓(𝐴𝐴4 → 𝐴𝐴5) ⋅ 𝑣4 + 𝑓(𝐴𝐴5 → 𝐴𝐴5) ⋅ 𝑣5
=

6
11

lead to the instantaneous speeds

𝑣�4 = min(𝑁𝑁2, 𝑄5) ⋅ 𝑣4 = 1
7

11
≤ 𝑣̅4

𝑣�5 = min(𝑁𝑁2, 𝑄5) ⋅ 𝑣5 = 1
1

11
≤ 𝑣̅5

which is a feasible solution. The corresponding mark changes are

𝑑𝑚(𝐴𝐴1)
𝑑𝑡

= 𝑓(𝐴𝐴1 → 𝐴𝐴1) ⋅ 𝑣1 − 𝑓(𝐴𝐴1 → 𝐴𝐴4) ⋅ 𝑣�4 = 1
4

11

𝑑𝑚(𝐴𝐴2)
𝑑𝑡

= 𝑓(𝐴𝐴2 → 𝐴𝐴2) ⋅ 𝑣2 − 𝑓(𝐴𝐴2 → 𝐴𝐴4) ⋅ 𝑣�4 − 𝑓(𝐴𝐴2 → 𝐴𝐴5) ⋅ 𝑣�5 = 1
1
2

𝑑𝑚(𝐴𝐴3)
𝑑𝑡

= 𝑓(𝐴𝐴3 → 𝐴𝐴3) ⋅ 𝑣3 − 𝑓(𝐴𝐴3 → 𝐴𝐴5) ⋅ 𝑣�5 =
10
11

𝑑𝑚(𝐴𝐴4)
𝑑𝑡

= 𝑓(𝐴𝐴4 → 𝐴𝐴4) ⋅ 𝑣�4 − 𝑓(𝐴𝐴4 → 𝐴𝐴6) ⋅ 𝑣6 = −1
4

11

𝑑𝑚(𝐴𝐴5)
𝑑𝑡

= 𝑓(𝐴𝐴4 → 𝐴𝐴5) ⋅ 𝑣�4 + 𝑓(𝐴𝐴5 → 𝐴𝐴5) ⋅ 𝑣�5 − 𝑓(𝐴𝐴5 → 𝐴𝐴7) ⋅ 𝑣7 = 0

𝑑𝑚(𝐴𝐴6)
𝑑𝑡

= 𝑓(𝐴𝐴5 → 𝐴𝐴6) ⋅ 𝑣�5 − 𝑓(𝐴𝐴6 → 𝐴𝐴8) ⋅ 𝑣8 = −1
9

11
.

4.4.2 CONTINUOUS EXTENDED PETRI NETS

The extended Petri net concept of Definition 4.23 with test, inhibitor, and read arcs has been

transferred to the continuous Petri net formalism.

Definition 4.51 (continuous extended Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑣, 𝑚0) is a continuous extended Petri net if

(𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net, 𝒯 ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of test arcs, ℐ ⊆ (𝐴𝐴 × 𝐴𝐴) is

a set of inhibitor arcs, ℛ ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of read arcs, and the arc weight function 𝑓 is

modified such that 𝑓: (𝐹𝐹 ∪ 𝐺 ∪ 𝒯 ∪ ℐ) → ℝ≥0, whereby 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� is the weight of the

test arc �𝑝𝑖 → 𝑡𝑗�
𝒯

 and 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� is the weight of the inhibitor arc �𝑝𝑖 → 𝑡𝑗�

ℐ
. If

�𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 and �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 or �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 and �𝑝𝑖 → 𝑡𝑗�
ℐ

∈ ℐ then the arc is called

double arc.

4.4 Continuous Petri Nets 125

The activation of transitions in a continuous extended Petri net requires that markings of

places connected by test arcs are greater than the arc weights and markings of places

connected by inhibitor arcs are less than the arc weights. The markings of these places are not

changed by firing so that the firing process and the resolution of actual conflicts have been

adopted from Definition 4.41 and Definition 4.44, respectively. It has to be stated that the

same place can be connected with the same transition by a test and normal arc as well as by an

inhibitor and normal arc. These arcs are called double arcs. Then a transition is also weakly

active if place and transition are connected by a test and normal arc, the marking is equal to

the weight of the test arc, and the place is fed.

Definition 4.52 (activation continuous extended Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑣, 𝑚0) is a continuous extended Petri net. A transition 𝑡𝑗 ∈ 𝐴𝐴

is active if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�:

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑚(𝑝𝑖) > 0 ∨ (𝑚(𝑝𝑖) = 0 ∧ 𝐼𝑖 > 0) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∉ 𝐹𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ �𝑚(𝑝𝑖) = 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� ∧ 𝐼𝑖 > 0�

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�

ℐ
∈ ℐ,

It is strongly active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶

𝑚(𝑝𝑖) > 0 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∧ 𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

is also satisfied and weakly active otherwise, whereby, 𝐴𝐴𝐼𝑖𝑛�𝑡𝑗� ist the set of input places

with

𝑚(𝑝𝑖) = 0, 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ 𝑚(𝑝𝑖) = 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� ∧ 𝐼𝑖 > 0, 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 .

Example 4.23

Figure 4.30 shows two continuous extended Petri nets. The left Petri net contains a test arc

which causes that transition 𝐴𝐴2 fires first when the marking of 𝐴𝐴2 is greater than 3.3. The right

Petri net has an inhibitor arc so that transition 𝐴𝐴4 fires first when the marking of 𝐴𝐴4 is less

than 3.3.

126 4 Petri Nets

Figure 4.30: Continuous extended Petri nets with a test arc (left) and with an inhibitor arc

(right) and the corresponding mark evolutions (Example 4.23)

4.4.3 CONTINUOUS EXTENDED CAPACITIVE PETRI NETS

The continuous capacitive Petri nets has been also extended by test, inhibitor, and read arcs.

Therefore, the activation process has been modified to include that input places connected by

test and inhibitor arcs must have appropriate markings. However, the firing process and the

resolution of actual conflicts have been adopted from Definition 4.47 and Definition 4.50.

Definition 4.53 (continuous extended capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑣, 𝑚0) is called continuous extended capacitive Petri

net if

− (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net,

− 𝒯 ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of test arcs,

− ℐ ⊆ (𝐴𝐴 × 𝐴𝐴) is a set of inhibitor arcs,

− ℛ ⊆ (𝐴𝐴 × 𝐴𝐴) is a set read arcs,

− 𝑓: (𝐹𝐹 ∪ 𝐺 ∪ 𝒯 ∪ ℐ) → ℝ≥0 is a modified arc weight function,

− 𝑐𝑙: 𝐴𝐴 → ℝ≥0 are the minimum capacities of the places,

− 𝑐𝑢: 𝐴𝐴 → ℝ≥0 are the maximum capacities of the places,

whereby the initial marking 𝑚0 must satisfy the condition

𝑐𝑙(𝑝𝑖) ≤ 𝑚0(𝑝𝑖) ≤ 𝑐𝑢(𝑝𝑖) ∀ 𝑝𝑖 ∈ 𝐴𝐴.

4.4 Continuous Petri Nets 127

Definition 4.54 (activation continuous extended capacitive Petri net)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑐𝑙, 𝑐𝑢, 𝑣, 𝑚0) is a continuous extended capacitive Petri net. A

transition 𝑡𝑗 ∈ 𝐴𝐴 is active if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�:

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑚(𝑝𝑖) > 𝑐𝑙(𝑝𝑖) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ (𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖) ∧ 𝐼𝑖 > 0)

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∉ 𝐹𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ �𝑚(𝑝𝑖) = 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� ∧ 𝐼𝑖 > 0�

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�

ℐ
∈ ℐ,

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) < 𝑐𝑢(𝑝𝑖) ∨ (𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) ∧ 𝑂𝑂𝑖 > 0).

It is strongly input active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶

𝑚(𝑝𝑖) > 𝑐𝑙(𝑝𝑖) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∧ 𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

is also satisfied and weakly input active otherwise. It is strongly output active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) < 𝑐𝑢(𝑝𝑖)

is also satisfied and weakly output active otherwise. If it is strongly input and output active,

it is strongly active. If it is weakly input and output active, it is weakly active. Thereby,

𝐴𝐴𝐼𝑖𝑛�𝑡𝑗� ist the set of input places with

𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖), 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ 𝑚(𝑝𝑖) = 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� ∧ 𝐼𝑖 > 0, 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 .

and 𝐴𝐴𝐼𝑜𝑢𝑡�𝑡𝑗� is the set of output places of 𝑡𝑗 with 𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) ∧ 𝑂𝑂𝑖 > 0.

4.4.4 CONTINUOUS FUNCTIONAL PETRI NETS

The considered continuous Petri net concepts so far comprise constant maximum speeds. This

has been modified by maximum speed functions that depend on time and/or on markings to

enhance the modeling power as suggested in (Dubois et al. 1994) and (David and Alla 2001).

Continuous functional Petri nets are useful for modeling the environment or the control of a

128 4 Petri Nets

system and regarding biological systems, it enables the modeling of nearly all kinetics effects

(see Example 4.24).

Definition 4.55 (continuous functional Petri net)

The tuple �𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0� is a continuous functional Petri net if �𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0� is a

continuous Petri net and the maximum speed function is modified such that

𝑣: (𝐴𝐴, 𝑚, 𝑡𝑖𝑖𝑚𝑒) → ℝ≥0 is a dynamic maximum speed function which assigns every transition

𝑡𝑗 ∈ 𝐴𝐴 a function 𝑣𝑗 = 𝑣(𝑡𝑗, 𝑚, 𝑡𝑖𝑖𝑚𝑒) which depends on a subset of concrete markings 𝑚

and/or on time.

The definition is similar to Definition 4.38 the only difference being that the maximum speed

function depends on time and/or markings. Hence, the previously mentioned definitions for

the activation and firing process kept their validity and have been adopted (Definition 4.40,

Definition 4.41, and Definition 4.44). A continuous functional Petri net can also have

capacities or it can be extended by the specific arcs or both. Then the respective definitions of

the previous sections are valid.

Example 4.24

Figure 4.31 shows the biochemical reaction of Figure 4.12 modeled by a continuous

functional Petri net. The substrate (𝑆), product (𝐴𝐴), and enzyme (𝐸) are modeled by

continuous places and the reaction (𝑅) between them by a continuous transition.

Figure 4.31: Continuous functional Petri net of the biochemical reaction in Figure 4.12

(Example 4.24)

The marks represent continuous concentrations instead of molecules in the discrete model.

The speed 𝑣 of the conversion from substrate to product is described by the Michaelis-

Menten-Kinetics

4.5 Hybrid Petri Nets 129

𝑣 =
𝑣𝑚𝑎𝑥 ⋅ 𝑆
𝐾𝑚 + 𝑆

,

where 𝑆 is the substrate concentration, 𝑣𝑚𝑎𝑥 is the maximum reaction rate, and 𝐾𝑚 is the

Michaelis constant. Hence, this function is the maximum speed of transition 𝑅 and depends

on the marking of place 𝑆.

4.4.5 CONDITIONAL CONTINUOUS PETRI NETS

The transitions of the continuous Petri net concepts, introduced in the previous sections, are

provided with additional conditions that have to be satisfied so that the transition can become

active. The respective activation process has been modified while the firing process and the

resolution of actual conflicts remain the same (Definition 4.41 and Definition 4.44).

Definition 4.56 (conditional continuous Petri)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑠, 𝑚0) is a conditional continuous Petri net, if

(𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑚0) is a continuous Petri net and 𝑠: (T, ℰ) → {true, false} is an condition

function that assigns every transition 𝑡𝑗 ∈ 𝐴𝐴 a condition 𝑠𝑗 = 𝑠�𝑡𝑗 , ℰ� depending on several

environmental factors ℰ e.g. time.

Definition 4.57 (activation conditional continuous Petri)

The tuple (𝐴𝐴, 𝐴𝐴, 𝐹𝐹, 𝐺, 𝑓, 𝑣, 𝑠, 𝑚0) is a conditional continuous Petri net. A transition 𝑡𝑗 ∈ 𝐴𝐴 is

active if and only if the conditions of Definition 4.40 are fulfilled and, additionally, the

condition 𝑠𝑗.

4.5 HYBRID PETRI NETS

For modeling biological systems it is often necessary to combine discrete and continuous

processes. Examples are regulation mechanisms and metabolic reactions of substances which

switch from production to consumption or vice versa when specific environmental conditions

appear. This is equivalent to suddenly having another Petri net. In order to model this

behavior, hybrid Petri nets are introduced which contain discrete places and transitions as well

130 4 Petri Nets

as continuous places and transitions as suggested in (Le Bail et al. 1991), (David and Alla

2001), and (David and Alla 2005).

The markings of discrete places are non-negative integers denoted by tokens and the markings

of continuous places are non-negative real numbers called marks. Delays are associated with

discrete transitions and maximum speeds with continuous transitions.

Only hybrid Petri nets are considered by which time is associated with the behavior; hereafter

the term hybrid Petri net is simplified used for timed hybrid Petri net. The definitions for

hybrid Petri nets developed within this work are given below.

Definition 4.58 (hybrid Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, 𝑚0) is a hybrid Petri net if

− 𝐴𝐴𝑁𝑁 = �𝑝𝑑1, 𝑝𝑑2, … , 𝑝𝑑𝑝𝑑� is a finite set of discrete places,

− 𝐴𝐴𝐶 = �𝑝𝑐1, 𝑝𝑐2, … , 𝑝𝑐𝑝𝑐� is a finite set of continuous places,

− 𝐴𝐴𝑁𝑁 = {𝑡𝑑1, 𝑡𝑑2, … , 𝑡𝑑𝑡𝑑} is a finite set of discrete transitions,

− 𝐴𝐴𝑆 = {𝑡𝑠1, 𝑡𝑠2, … , 𝑡𝑠𝑡𝑠} is a finite set of stochastic transitions,

− 𝐴𝐴𝐶 = {𝑡𝑐1, 𝑡𝑐2, … , 𝑡𝑐𝑡𝑐} is a finite set of continuous transitions,

− 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, and 𝐴𝐴𝐶 are pairwise disjoint,

− 𝐹𝐹 ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of

arcs from places to transitions,

− 𝐺 ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝑆 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁) is a set of

arcs from transitions to places,

− 𝑓: (𝐹𝐹 ∪ 𝐺) → {ℕ0: 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 , ℝ≥0: 𝑝𝑖 ∈ 𝐴𝐴𝐶} is a arc weight function which assigns every

arc connected to a discrete place a non-negative integer and all others a non-negative real

number,

− if 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 and 𝑡𝑗 ∈ 𝐴𝐴𝐶 then �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 if and only if �𝑡𝑗 → 𝑝𝑖� ∈ 𝐺 and 𝑓�𝑝𝑖 → 𝑡𝑗� =

𝑓�𝑡𝑗 → 𝑝𝑖�,

− ℯ: (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶) → {𝑝𝑟𝑟𝑖𝑖𝑜, 𝑝𝑟𝑟𝑜𝑏} is an enabling function that assigns every place either the

resolution type priority or probability,

− 𝓅: (𝐹𝐹 ∪ 𝐺) → �{1,2, … , max(𝑛𝑜𝑢𝑡, 𝑛𝑖𝑛)}: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜 ∧ 𝑡𝑗 ∈ 𝐴𝐴𝑁𝑁, [0,1]: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏 ∧

𝑡𝑗 ∈ 𝐴𝐴𝑁𝑁� is an enabling function which assigns every arc connected to a discrete

transition either a priority or a probability according to the resolution type,

4.5 Hybrid Petri Nets 131

− if ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜 then 𝓅(𝑝𝑖 → 𝑡𝑘) ≠ 𝓅(𝑝𝑖 → 𝑡𝑙) ∀𝑡𝑘, 𝑡𝑙 ∈ 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖) and 𝓅(𝑡𝑘 → 𝑝𝑖) ≠

𝓅(𝑡𝑙 → 𝑝𝑖) ∀𝑡𝑘, 𝑡𝑙 ∈ 𝐴𝐴𝑁𝑁𝑖𝑛(𝑝𝑖), if ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏 then ∑ 𝓅(𝑝𝑖 → 𝑡𝑘)𝑡𝑘∈𝑇𝐷𝑜𝑢𝑡(𝑝𝑖) = 1 and

∑ 𝓅(𝑡𝑘 → 𝑝𝑖)𝑡𝑘∈𝑇𝐷𝑖𝑛(𝑝𝑖) = 1,

− 𝑑: 𝐴𝐴𝑁𝑁 → ℝ≥0 is a delay function which assigns every discrete transition a non-negative,

real-valued delay,

− ℎ: (𝐴𝐴𝑆, 𝑚) → ℝ≥0 is a hazard function which assigns every stochastic transition a non-

negative, real-valued random delay depending on a concrete marking 𝑚,

− 𝑣: 𝐴𝐴𝐶 → ℝ≥0 is a maximum speed function which assigns every continuous transition a

non-negative, real-valued maximum speed,

− 𝑚0: {𝐴𝐴𝑁𝑁 → ℕ0, 𝐴𝐴𝐶 → ℝ≥0} is the initial marking.

The basic concepts modeled by hybrid Petri nets are influence and conversion. Figure 4.32

shows at the top two examples of influence. In the left Petri net, the behavior of the

continuous part is influenced by the discrete part such that 𝐴𝐴3 must have at least one token to

activate 𝐴𝐴1. According to Definition 4.58, discrete input places of continuous transitions must

also be their output places and vice versa with arcs of the same weights. Hence, the markings

of discrete places are not changed by firing a continuous transition. They can only influence

the time when the transition can become active.

Figure 4.32: Basic concepts of hybrid Petri nets; top: influence of a discrete part on a

continuous part (left) and of a continuous part on a discrete part (right); bottom:
conversion of a discrete marking to a continuous marking (left) and of a
continuous marking to a discrete marking (right)

In the right Petri net, the behavior of the discrete part is influenced by the continuous part.

Place 𝐴𝐴6 must have at least 5.4 marks so that 𝐴𝐴2 can become active. Because the weight of

the arc from 𝐴𝐴6 to 𝐴𝐴2 equals the weight of the arc from 𝐴𝐴2 back to 𝐴𝐴6, the marking of 𝐴𝐴6

132 4 Petri Nets

remains the same when 𝐴𝐴2 fires. It only influences the time when the transition can become

active.

At the bottom of Figure 4.32 are two examples of conversion. In the left Petri net, a discrete

marking is converted to a continuous marking by a discrete transition. The firing process is

performed by removing one token from 𝐴𝐴7 and adding 1.8 marks to 𝐴𝐴8.

In the right Petri net, a continuous marking is converted to a discrete marking. When 𝐴𝐴4 fires,

0.8 marks are removed from 𝐴𝐴9 and one token is added to 𝐴𝐴10. Conversions from discrete

markings to continuous markings and vice versa can only be performed by discrete

transitions.

Example 4.25

A biological example for influence is the protein synthesis which is transformed from a

stochastic Petri net (cp. Example 4.16) to a hybrid Petri net depicted in Figure 4.33. The

active gene (𝑁𝑁𝐺) influences the protein synthesis. Only if the place 𝑁𝑁𝐺 has one token, the

protein can be producted by the continuous transition 𝐴𝐴3. But 𝑁𝑁𝐺 is not consumed in this

reaction so that it is input and output of 𝐴𝐴3, simultaneously. This can be also modeled by a

test arc from 𝑁𝑁𝐺 to 𝐴𝐴3. The activation and inactivation of the gene proceed discretely while

the protein is produced and degraded continuously.

Figure 4.33: Hybrid Petri net model of protein synthesis (IG = inactive gene, AG = active

gene, P = protein, T1 = activation, T2 = inactivation, T3 = synthesis, and T4 =
degradation) (Example 4.25)

Remark 2.7

Hereafter the set of all input places of a transition 𝑡𝑗 is denoted by 𝐴𝐴𝑖𝑛�𝑡𝑗� and the set of all

discrete and continuous input places are denoted by 𝐴𝐴𝑁𝑁𝑖𝑛�𝑡𝑗� and 𝐴𝐴𝐶𝑖𝑛�𝑡𝑗�, respectively. The

notations for the set of (discrete/continuous) output places are similar 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗�, 𝐴𝐴𝑁𝑁𝑜𝑢𝑡�𝑡𝑗�,

and 𝐴𝐴𝐶𝑜𝑢𝑡�𝑡𝑗�, respectively. The set of all input transitions of a place 𝑝𝑖 is denoted by 𝐴𝐴𝑖𝑛(𝑝𝑖)

and the set of all discrete/stochastic and continuous input transitions are denoted by 𝐴𝐴𝑁𝑁𝑖𝑛(𝑝𝑖)

and 𝐴𝐴𝐶𝑖𝑛(𝑝𝑖), respectively. The notations for the set of (discrete/ stochastic and continuous)

output transitions are similar 𝐴𝐴𝑜𝑢𝑡(𝑝𝑖), 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖), and 𝐴𝐴𝐶𝑜𝑢𝑡(𝑝𝑖), respectively.

4.5 Hybrid Petri Nets 133

Definition 4.59 (activation hybrid Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, 𝑚0) is a hybrid Petri net. A

discrete/stochastic transition 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆) is active if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶ 𝑚(𝑝𝑖) ≥ 𝑓�𝑝𝑖 → 𝑡𝑗�.

A continuous transition 𝑡𝑗 ∈ 𝐴𝐴𝐶 is active if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝐶𝑖𝑛�𝑡𝑗� ∶ 𝑚(𝑝𝑖) > 0 ∨ (𝑚(𝑝𝑖) = 0 ∧ 𝐼𝑖 > 0)

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁𝑖𝑛�𝑡𝑗� ∶ 𝑚(𝑝𝑖) ≥ 𝑓�𝑝𝑖 → 𝑡𝑗�.

Four different kinds of actual conflicts can occur in a hybrid Petri net which have to be

resolved (David and Alla 2005).

Definition 4.60 (actual conflicts and resolutions hybrid Petri nets)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, 𝑚0) is a hybrid Petri net:

− Type-1-conflict: actual conflict according to Definition 4.6 and Definition 4.31 of a place

𝑝𝑖 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶) and two or more discrete/stochastic transitions 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆). It can

only occur when all transitions 𝑡𝑗 become firable exactly at the same time (Remark 4.3,

Remark 4.4). This conflict can be resolved either by priorities or by probabilities

(Definition 4.9 and Definition 4.10).

− Type-2-conflict: actual conflict according to Definition 4.42 of a place 𝑝𝑖 ∈ 𝐴𝐴𝐶 and two

or more continuous transitions 𝑡𝑗 ∈ 𝐴𝐴𝐶. It can be resolved by sharing (Definition 4.44).

− Type-3-conflict: actual conflict of a place 𝑝𝑖 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶), one or more

discrete/stochastic transitions 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆), and one or more continuous transitions

𝑡𝑘 ∈ 𝐴𝐴𝐶. If there is a conflict between discrete/stochastic and continuous transitions, the

discrete/stochastic transitions take priority over the continuous transitions (cp. David and

Alla 2005).

− Type-4-conflict: actual conflict of a discrete place 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 and two or more continuous

transitions 𝑡𝑗 ∈ 𝐴𝐴𝐶. It is solved by priorities (Definition 4.9).

The type-1-conflict is represented in Example 4.1, Example 4.3, Example 4.4, Example 4.11,

and Example 4.14. The type-2-conflict is part of Example 4.18.

134 4 Petri Nets

Example 4.26

Figure 4.34 shows two examples of type-3-conflicts. At time 0, transition 𝐴𝐴1 of the left Petri

net becomes active and fires continuously. At time 2, the delay of 𝐴𝐴2 is passed and it

becomes firable. At this point in time, 𝐴𝐴3 has an actual conflict because it cannot fire a token

in 𝐴𝐴1 and 𝐴𝐴2, simultaneously. Hence, the rule of Definition 4.60 is applied so that 𝐴𝐴2 takes

priority over 𝐴𝐴1 and fires. At time 0, transitions 𝐴𝐴3 and 𝐴𝐴4 of the right Petri net fire

continuously. At time 1, 𝑚(𝐴𝐴4) = 1 and the delay of 𝐴𝐴5 is passed; hence, 𝐴𝐴4 has an actual

conflict. The conflict only occurs when the marking equals the arc weight. If 𝑚(𝐴𝐴4) <

𝑓(𝐴𝐴4 → 𝐴𝐴5) or 𝑚(𝐴𝐴4) > 𝑓(𝐴𝐴4 → 𝐴𝐴5), there is no conflict. It is solved by the rule of

Definition 4.60 so that 𝐴𝐴5 takes priority over 𝐴𝐴4 and fires. This rule is intuitively logical

because the firing of a continuous transition is a continuous flow and the firing of a discrete

transition is an extreme change of the Petri net marking (David and Alla 2005).

Figure 4.34: Hybrid Petri nets with a type-3-conflict of a discrete place (left) and of a

continuous place (right) (Example 4.26)

Example 4.27

Figure 4.35 shows a hybrid Petri net; place 𝐴𝐴3 has a type-4-conflict. At time 0, 𝐴𝐴3 can either

activate 𝐴𝐴1 or 𝐴𝐴2 but not both simultaneously.

Figure 4.35: Hybrid Petri net with a type-4-conflict (Example 4.27)

4.5 Hybrid Petri Nets 135

This conflict can be solved by prioritization of the transitions. If 𝐴𝐴1 takes priority over 𝐴𝐴2, 𝐴𝐴1

becomes active and fires and if 𝐴𝐴2 takes priority over 𝐴𝐴1, 𝐴𝐴2 becomes active and fires.

Therefore, all continuous output transitions of a discrete place have to be provided with

priorities.

Discrete and continuous transitions fire in the same manner as determined in Definition 4.13

and Definition 4.41, respectively. The recalculation of a discrete marking is performed as

described in the basic concepts. However, the recalculation of a continuous marking has to be

modified due to discrete mark changes caused by firing discrete transitions. Thereby, a

differential equation describes the flow of the continuous firing and an algebraic equation is

used for the firing of the discrete transitions.

Definition 4.61 (firing process hybrid Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, 𝑚0) is a hybrid Petri net. The firing

process of an active continuous transition 𝑡𝑗 ∈ 𝐴𝐴𝐶 is described by a negative mark change of

all continuous input places which is expressed by the differential equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= −𝑓�𝑝𝑖 → 𝑡𝑗� ⋅ 𝑣�𝑗 ∀ 𝑝𝑖 ∈ 𝐴𝐴𝐶𝑖𝑛�𝑡𝑗�

and a positive mark change of all continuous output places which is expressed by the

differential equation

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= 𝑓�𝑡𝑗 → 𝑝𝑖� ⋅ 𝑣�𝑗 ∀ 𝑝𝑖 ∈ 𝐴𝐴𝐶𝑜𝑢𝑡�𝑡𝑗�.

An active discrete transition 𝑡𝑗 ∈ 𝐴𝐴𝑁𝑁 waits 𝑑𝑗 time units before it fires and a stochastic

transition 𝑡𝑗 ∈ 𝐴𝐴𝑆 fires when the putative firing time 𝜏𝑗 is reached (see Definition 4.34). Both

fire by removing the arc weight from all input places

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) − 𝑓�𝑝𝑖 → 𝑡𝑗� ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗�

and by adding the arc weight to all output places

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) + 𝑓�𝑡𝑗 → 𝑝𝑖� ∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡�𝑡𝑗�.

The marking of a discrete place 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 can be recalculated by the following algebraic

equation

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) + � 𝑓�𝑡𝑗 → 𝑝𝑖�
𝑡𝑗∈𝑇𝐷𝐹𝑖𝑛(𝑝𝑖)

− � 𝑓�𝑝𝑖 → 𝑡𝑗�
𝑡𝑗∈𝑇𝐷𝐹𝑜𝑢𝑡(𝑝𝑖)

,

whereby 𝐴𝐴𝑁𝑁𝐹𝐹𝑖𝑛(𝑝𝑖) ⊆ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆) is the set of all discrete/stochastic firing input transitions

and 𝐴𝐴𝑁𝑁𝐹𝐹𝑜𝑢𝑡(𝑝𝑖) ⊆ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆) is the set of all discrete/stochastic firing output transitions.

http://www.dict.cc/englisch-deutsch/prioritization.html

136 4 Petri Nets

The continuous mark change of a continuous place 𝑝𝑖 ∈ 𝐴𝐴𝐶 is performed with the aid of the

following differential

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= � 𝑓�𝑡𝑗 → 𝑝𝑖�
𝑡𝑗∈𝑇𝐶𝐹𝑖𝑛(𝑝𝑖)

⋅ 𝑣�𝑗 − � 𝑓�𝑝𝑖 → 𝑡𝑗�
𝑡𝑗∈𝑇𝐶𝐹𝑜𝑢𝑡(𝑝𝑖)

⋅ 𝑣�𝑗

and, in addition, by the following algebraic equation for the discrete mark change caused by

firing connected discrete transitions

𝑚𝑑𝑖𝑠(𝑝𝑖) = � 𝑓�𝑡𝑗 → 𝑝𝑖�
𝑡𝑗∈𝑇𝐷𝐹𝑖𝑛(𝑝𝑖)

− � 𝑓�𝑝𝑖 → 𝑡𝑗�
𝑡𝑗∈𝑇𝐷𝐹𝑜𝑢𝑡(𝑝𝑖)

whereby 𝐴𝐴𝐶𝐹𝐹𝑖𝑛(𝑝𝑖) ⊆ 𝐴𝐴𝐶 is the set of all continuous firing input transitions and

𝐴𝐴𝐶𝐹𝐹𝑜𝑢𝑡(𝑝𝑖) ⊆ 𝐴𝐴𝐶 is the set of all continuous firing output transitions. At these discrete firing

times the continuous marking is reinitialized by

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) + 𝑚𝑑𝑖𝑠(𝑝𝑖).

The hybrid Petri net concept of Definition 4.58 can be further modified by the variations,

abbreviations, and extensions mentioned in Sections 4.1 to 4.4.

4.5.1 VARIATION OF TRANSITIONS

Discrete, stochastic, and continuous transitions are provided with additional conditions that

have to be satisfied so that the transitions can become active. Therefore, the activation

definition has to be modified while the firing process remains the same (Definition 4.61).

Definition 4.62 (conditional hybrid Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, s, 𝑚0) is a conditional hybrid Petri net.

If (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, 𝑣, 𝑚0) is a hybrid Petri net and 𝑠: (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆 ∪ 𝐴𝐴𝐶, ℰ) →

{true, false} is an condition function that assigns every transition 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆 ∪ 𝐴𝐴𝐶) a

condition 𝑠𝑗 = 𝑠�𝑡𝑗 , ℰ� depending on several environmental factors ℰ, e.g. time.

Definition 4.63 (activation conditional hybrid Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, s, 𝑚0) is a conditional hybrid Petri net. A

transition 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆 ∪ 𝐴𝐴𝐶) is active if the conditions of Definition 4.59 are fulfilled and,

additionally, the condition 𝑠𝑗.

4.5 Hybrid Petri Nets 137

4.5.2 ARC WEIGHT AND MAXIMUM SPEED FUNCTIONS DEPENDING

ON MARKING/TIME

The constant arc weights and maximum speeds of the basic hybrid Petri net concept are

replaced by functions which can depend on a subset of markings and/or on time. This

modification is called hybrid functional Petri net and enables the modeling of nearly all

kinetic effects of biological reactions.

Definition 4.64 (hybrid functional Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, 𝑚0) is a hybrid functional Petri net if

the arc weights and maximum speeds of Definition 4.58 are modified in the following manner

− 𝑓: (𝐹𝐹 ∪ 𝐺, 𝑚, 𝑡𝑖𝑖𝑚𝑒) → {ℕ0: 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 , ℝ≥0: 𝑝𝑖 ∈ 𝐴𝐴𝐶} is an arc weight function which

assigns every arc a weight that depends on a subset of markings 𝑚 and/or on time. It is a

non-negative integer if the connected place is discrete and a non-negative real-valued

number otherwise.

− 𝑣: (𝐴𝐴𝐶, 𝑚, 𝑡𝑖𝑖𝑚𝑒) → ℝ≥0 is a maximum speed function which assigns every continuous

transition a non-negative, real-valued maximum speed which depends on a subset of

concrete markings 𝑚 and/or on time.

The activation (Definition 4.59) and firing process (Definition 4.61) remains the same.

4.5.3 CAPACITIES AND EXTENSIONS

Places in a hybrid Petri net can be provided with minimum and maximum capacities.

Additionally, hybrid Petri nets can be extended by test, inhibitor, and read arcs to enable the

modeling of activation, inhibition, and catalysis of biological reactions.

Definition 4.65 (extended hybrid (functional) Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, ℯ, 𝓅, 𝑐𝑙, 𝑐𝑢, 𝑑, ℎ, 𝑣, s, 𝑚0) is an extended

hybrid (functional) Petri net if

− (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝑓, ℯ, 𝓅, 𝑑, ℎ, 𝑣, s, 𝑚0) is a conditional hybrid (functional) Petri

net,

138 4 Petri Nets

− 𝒯 ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of test

arcs,

− ℐ ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of

inhibitor arcs,

− ℛ ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of

read arcs,

− 𝑓: (𝐹𝐹 ∪ 𝐺 ∪ 𝒯 ∪ ℐ, 𝑚, 𝑡𝑖𝑖𝑚𝑒) → {ℕ0: 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 , ℝ≥0: 𝑝𝑖 ∈ 𝐴𝐴𝐶} is an arc weight function,

− 𝑐𝑙: {𝐴𝐴𝑁𝑁 → ℕ0, 𝐴𝐴𝐶 → ℝ≥0} are the minimum capacities of the places,

− 𝑐𝑢: {𝐴𝐴𝑁𝑁 → ℕ0, 𝐴𝐴𝐶 → ℝ≥0} are the maximum capacities of the places,

whereby the initial marking 𝑚0 must satisfy the condition

𝑐𝑙(𝑝𝑖) ≤ 𝑚0(𝑝𝑖) ≤ 𝑐𝑢(𝑝𝑖) ∀ 𝑝𝑖 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶).

The activation definition (Definition 4.59) has been modified to integrate capacities, test, and

inhibitor arcs while the firing process of Definition 4.61 remains valid without exceptions.

Definition 4.66 (activation extended hybrid (functional) Petri net)

The tuple (𝐴𝐴𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑐𝑙, 𝑐𝑢, ℯ, 𝓅, 𝑑, ℎ, 𝑣, 𝑠, 𝑚0) is an extended

hybrid (functional) Petri net. A discrete/stochastic transition 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆) is active if and

only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑖𝑛�𝑡𝑗� ∶

⎩
⎪
⎨

⎪
⎧𝑚(𝑝𝑖) − 𝑓�𝑝𝑖 → 𝑡𝑗� ≥ 𝑐𝑙(𝑝𝑖) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�

ℐ
∈ ℐ,

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑜𝑢𝑡(𝑡𝑖) ∶ 𝑚(𝑝𝑖) + 𝑓�𝑡𝑗 → 𝑝𝑖� ≤ 𝑐𝑢(𝑝𝑖)

and the condition 𝑠𝑗 must be fulfilled.

A continuous transition 𝑡𝑗 ∈ 𝐴𝐴𝐶 is active if and only if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝐶𝑖𝑛�𝑡𝑗�:

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑚(𝑝𝑖) > 𝑐𝑙(𝑝𝑖) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ (𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖) ∧ 𝐼𝑖 > 0)

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∉ 𝐹𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ �𝑚(𝑝𝑖) = 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� ∧ 𝐼𝑖 > 0�

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�

ℐ
∈ ℐ,

4.5 Hybrid Petri Nets 139

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝐶𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) < 𝑐𝑢(𝑝𝑖) ∨ (𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) ∧ 𝑂𝑂𝑖 > 0).

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁𝑖𝑛�𝑡𝑗� ∶

⎩
⎪
⎨

⎪
⎧𝑚(𝑝𝑖) − 𝑓�𝑝𝑖 → 𝑡𝑗� ≥ 𝑐𝑙(𝑝𝑖) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�
ℐ
� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�

ℐ
∈ ℐ,

and

∀ 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) + 𝑓�𝑝𝑖 → 𝑡𝑗� ≤ 𝑐𝑢(𝑝𝑖)

and the condition 𝑠𝑗 must be fulfilled. It is strongly input active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝐶𝑖𝑛�𝑡𝑗� ∶

𝑚(𝑝𝑖) > 𝑐𝑙(𝑝𝑖) 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∧ 𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

is also satisfied and otherwise it is weakly input active. It is strongly output active if

∀ 𝑝𝑖 ∈ 𝐴𝐴𝐶𝑜𝑢𝑡�𝑡𝑗� ∶ 𝑚(𝑝𝑖) < 𝑐𝑢(𝑝𝑖)

is also satisfied and otherwise it is weakly output active. If it is strongly input and output

active, it is strongly active. If it is weakly input and output active, it is weakly active.

Thereby, 𝐴𝐴𝐼𝑖𝑛�𝑡𝑗� ist the set of continuous input places with

𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖), 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹

∨ 𝑚(𝑝𝑖) = 𝑓 ��𝑝𝑖 → 𝑡𝑗�
𝒯

� ∧ 𝐼𝑖 > 0, 𝑖𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�
𝒯

∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 .

and 𝐴𝐴𝐼𝑜𝑢𝑡�𝑡𝑗� is the set of continuous output places of 𝑡𝑗 with 𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) ∧ 𝑂𝑂𝑖 > 0.

Furthermore, the conflict types of Definition 4.60 have been modified and expanded in order

to cover and resolve all possible situations which can occur in extended hybrid Petri nets.

Definition 4.67 (actual conflicts and resolutions extended hybrid (functional) Petri net)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑐𝑙, 𝑐𝑢, ℯ, 𝓅, 𝑑, ℎ, 𝑣, s, 𝑚0) is an extended hybrid

(functional) Petri net:

− Type-1-(input/output)-conflict: actual (input/output) conflict according to

Definition 4.16 and Definition 4.31 of a place 𝑝𝑖 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶) and two or more

discrete/stochastic transitions 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆). It can only occur when all transitions 𝑡𝑗

become firable exactly at the same time (Remark 4.3, Remark 4.4). This conflict can be

resolved either by priorities or probabilities (Definition 4.19 and Definition 4.20).

140 4 Petri Nets

− Type-2-(input/output)-conflict: actual (input/output) conflict according to

Definition 4.48 of a place 𝑝𝑖 ∈ 𝐴𝐴𝐶 and two or more continuous transitions 𝑡𝑗 ∈ 𝐴𝐴𝐶. It can

be resolved by sharing (Definition 4.50).

− Type-3-(input/output)-conflict: actual conflict of a place 𝑝𝑖 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶), one or more

discrete/stochastic transitions 𝑡𝑗 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆), and one or more continuous transitions

𝑡𝑘 ∈ 𝐴𝐴𝐶. If there is a conflict between discrete/stochastic and continuous transitions, the

discrete/stochastic transitions take priority over the continuous transitions (David and

Alla 2005).

− Type-4 -conflict: actual conflict of a place 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 and two or more continuous

transitions 𝑡𝑗 ∈ 𝐴𝐴𝐶. It is solved by priorities (Definition 4.9).

The conflicts of type 1 to 3 can either involve input or output transitions of a place. The type-

4-conflict concerns discrete places connected to continuous transitions. Discrete places are

always input and output places, simultaneously (Definition 4.58); hence, no differentiation is

necessary. Example 4.5 represents a type-1-(input/output)-conflict and Example 4.21 and

Example 4.22 represent type-2-(input/output)-conflicts.

Example 4.28

Figure 4.36 shows three examples of type-3-conflicts in extended hybrid Petri nets. At time 0,

transition 𝐴𝐴1 of the left Petri net becomes active and fires continuously. At time 2, the delay of

𝐴𝐴2 is passed and it becomes firable. At this time, 𝐴𝐴3 has an actual output conflict due to its

minimum capacity of two tokens and it actually has three tokens. If 𝐴𝐴1 and 𝐴𝐴2 fired

simultaneously, they would violate the minimum capacity of 𝐴𝐴3. Hence, the rule of

Definition 4.67 has to be applied: 𝐴𝐴2 takes priority over 𝐴𝐴1 and fires. Here a discrete place

has a type-3-output-conflict. Discrete places can only have type-3-output-conflicts; type-3-

input-conflicts cannot occur. However, continuous places can have type-3-output-conflict as

well as type-3-input-conflict.

The right Petri net of Figure 4.36 shows at the top a type-3-output-conflict and at the bottom a

type-3-input-conflict. At time 0, transitions 𝐴𝐴3 and 𝐴𝐴4 of the top Petri net fire continuously. At

time 1, 𝑚(𝐴𝐴4) = 3 and the delay of 𝐴𝐴5 is passed; 𝐴𝐴4 has an actual conflict. The conflict only

occurs when 𝑚(𝐴𝐴4) − 𝑓(𝐴𝐴4 → 𝐴𝐴5) = 𝑐𝑙(𝐴𝐴4). If 𝑚(𝐴𝐴4) − 𝑓(𝐴𝐴4 → 𝐴𝐴5) < 𝑐𝑙(𝐴𝐴4) or 𝑚(𝐴𝐴4) −

𝑓(𝐴𝐴4 → 𝐴𝐴5) > 𝑐𝑙(𝐴𝐴4), there is no conflict. It is solved by the rule of Definition 4.67: 𝐴𝐴5 takes

priority over 𝐴𝐴4 and fires. The continuous place 𝐴𝐴5 in the bottom Petri net has a type-3-input-

conflict at time 1. At that time, 𝐴𝐴5 has five marks and its maximum capacity is six, i.e.

𝑚(𝐴𝐴5) + 𝑓(𝐴𝐴7 → 𝐴𝐴5) = 𝑐𝑢(𝐴𝐴5). Here the discrete transition 𝐴𝐴7 takes priority over the

continuous transition 𝐴𝐴6.

4.5 Hybrid Petri Nets 141

Figure 4.36: Extended hybrid Petri nets with a type-3-conflict of a discrete place (left) and of

a continuous place (right), whereby the top Petri net has a type-3-output-conflict
and the bottom Petri net has a type-3-input-conflict (Example 4.28)

Example 4.29

Figure 4.37 shows an extended hybrid Petri net with a type-4-conflict of place 𝐴𝐴3.

Figure 4.37: Extended hybrid Petri net with a type-4-conflict (Example 4.29)

At time 0, 𝐴𝐴3 can either activate 𝐴𝐴1 or 𝐴𝐴2 but not both simultaneously due to its minimum

capacity of two tokens. This conflict can be solved by prioritization of the transitions. If 𝐴𝐴1

takes priority over 𝐴𝐴2, then 𝐴𝐴1 becomes active and fires and if 𝐴𝐴2 takes priority over 𝐴𝐴1, then

𝐴𝐴2 becomes active and fires.

http://www.dict.cc/englisch-deutsch/prioritization.html

142 4 Petri Nets

4.5.4 EXTENDED HYBRID PETRI NETS

All mentioned variations and extensions presented in this Petri net section are combined in

one formalism in order to enable modeling of nearly all kinds of biological processes (see

Section 5.2). This formalism is called xHPN (extended Hybrid Petri Net) and the precise

definition is given below. The name has been chosen in such a general manner to emphasize

that this formalism is useable for biological processes and also for nearly all other processes

e.g. production, business, or communication (see Chapter 8). The concrete transformation

process of xHPN elements to biological ones is defined in Section 5.2.

Definition 4.68 (xHPN)

The tuple (𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, 𝐴𝐴𝐶, 𝐹𝐹, 𝐺, 𝒯, ℐ, ℛ, 𝑓, 𝑐𝑙, 𝑐𝑢ℯ, 𝓅, , 𝑑, ℎ, 𝑣, 𝑠, 𝑚0) is a xHPN if

− 𝐴𝐴𝑁𝑁 = �𝑝𝑑1, 𝑝𝑑2, … , 𝑝𝑑𝑝𝑑� is a finite set of discrete places,

− 𝐴𝐴𝐶 = �𝑝𝑐1, 𝑝𝑐2, … , 𝑝𝑐𝑝𝑐� is a finite set of continuous places,

− 𝐴𝐴𝑁𝑁 = {𝑡𝑑1, 𝑡𝑑2, … , 𝑡𝑑𝑡𝑑} is a finite set of discrete transitions,

− 𝐴𝐴𝑆 = {𝑡𝑠1, 𝑡𝑠2, … , 𝑡𝑠𝑡𝑠} is a finite set of stochastic transitions,

− 𝐴𝐴𝐶 = {𝑡𝑐1, 𝑡𝑐2, … , 𝑡𝑐𝑡𝑐} is a finite set of continuous transitions,

− 𝐴𝐴𝑁𝑁, 𝐴𝐴𝐶, 𝐴𝐴𝑁𝑁, 𝐴𝐴𝑆, and 𝐴𝐴𝐶 are pairwise disjoint,

− 𝐹𝐹 ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of

arcs from places to transitions,

− 𝐺 ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝑆 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁) is set of arcs

from transitions to places,

− 𝒯 ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of

test arcs,

− ℐ ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of

inhibitor arcs,

− ℛ ⊆ (𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝑆 ∪ 𝐴𝐴𝑁𝑁 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝐶 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶 × 𝐴𝐴𝑆) is a set of

read arcs,

− 𝑓: (𝐹𝐹 ∪ 𝐺 ∪ 𝒯 ∪ ℐ, 𝑚, 𝑡𝑖𝑖𝑚𝑒) → {ℕ0: 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁, ℝ≥0: 𝑝𝑖 ∈ 𝐴𝐴𝐶} is an arc weight function

which assigns every arc connected to a discrete place a non-negative integer and

otherwise a non-negative real-valued number depending on a subset of markings 𝑚

and/or on 𝑡𝑖𝑖𝑚𝑒,

4.5 Hybrid Petri Nets 143

− if 𝑝𝑖 ∈ 𝐴𝐴𝑁𝑁 and 𝑡𝑗 ∈ 𝐴𝐴𝐶 then �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹𝐹 if and only if �𝑡𝑗 → 𝑝𝑖� ∈ 𝐺 and 𝑓�𝑝𝑖 → 𝑡𝑗� =

𝑓�𝑡𝑗 → 𝑝𝑖�,

− 𝑐𝑙: {𝐴𝐴𝑁𝑁 → ℕ0, 𝐴𝐴𝐶 → ℝ≥0} are the minimum capacities of the places,

− 𝑐𝑢: {𝐴𝐴𝑁𝑁 → ℕ0, 𝐴𝐴𝐶 → ℝ≥0} are the maximum capacities of the places,

− ℯ: (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶) → {𝑝𝑟𝑟𝑖𝑖𝑜, 𝑝𝑟𝑟𝑜𝑏} is an enabling function that assigns every place either the

resolution type priority or probability,

− 𝓅: (𝐹𝐹 ∪ 𝐺) → �{1,2, … , 𝑚𝑎𝑥(𝑛𝑜𝑢𝑡, 𝑛𝑖𝑛)}: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜 ∧ 𝑡𝑗 ∈ 𝐴𝐴𝑁𝑁, [0,1]: ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏 ∧

𝑡𝑗 ∈ 𝐴𝐴𝑁𝑁� is an enabling function which assigns every arc connected to a discrete

transition either a priority or a probability according to the resolution type,

− if ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑖𝑖𝑜 then 𝓅(𝑝𝑖 → 𝑡𝑘) ≠ 𝓅(𝑝𝑖 → 𝑡𝑙) ∀𝑡𝑘, 𝑡𝑙 ∈ 𝐴𝐴𝑁𝑁𝑜𝑢𝑡(𝑝𝑖) and 𝓅(𝑡𝑘 → 𝑝𝑖) ≠

𝓅(𝑡𝑙 → 𝑝𝑖) ∀𝑡𝑘, 𝑡𝑙 ∈ 𝐴𝐴𝑁𝑁𝑖𝑛(𝑝𝑖), if ℯ(𝑝𝑖) = 𝑝𝑟𝑟𝑜𝑏 then ∑ 𝓅(𝑝𝑖 → 𝑡𝑘)𝑡𝑘∈𝑇𝐷𝑜𝑢𝑡(𝑝𝑖) = 1 and

∑ 𝓅(𝑡𝑘 → 𝑝𝑖)𝑡𝑘∈𝑇𝐷𝑖𝑛(𝑝𝑖) = 1,

− 𝑑: 𝐴𝐴𝑁𝑁 → ℝ≥0 is a delay function which assigns every discrete transition a non-negative,

real-valued delay,

− ℎ: (𝐴𝐴𝑆, 𝑚) → ℝ≥0 is a hazard function which assigns every stochastic transition a non-

negative, real-valued random delay depending on a concrete marking 𝑚,

− 𝑣: (𝐴𝐴𝐶, 𝑚, 𝑡𝑖𝑖𝑚𝑒) → ℝ≥0 is a maximum speed function which assigns every continuous

transition a non-negative, real-valued maximum speed which depends on a subset of

concrete markings 𝑚 and/or on 𝑡𝑖𝑖𝑚𝑒,

− 𝑠: (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝑆 ∪ 𝐴𝐴𝐶, ℰ) → {true, false} is an condition function which assigns every

transition a condition depending on several environmental factors ℰ e.g. 𝑡𝑖𝑖𝑚𝑒, and

− 𝑚0: {𝐴𝐴𝑁𝑁 → ℕ0, 𝐴𝐴𝐶 → ℝ≥0} is the initial marking which must satisfy the condition

𝑐𝑙(𝑝𝑖) ≤ 𝑚0(𝑝𝑖) ≤ 𝑐𝑢(𝑝𝑖) ∀ 𝑝𝑖 ∈ (𝐴𝐴𝑁𝑁 ∪ 𝐴𝐴𝐶).

This xHPN formalism has been transformed to the modeling language Modelica (see

Section 3.1) to enable graphical modeling, hybrid simulation, and animation. The concrete

transformation process is described in Chapter 6. For the simulation, the following Petri net

processes have been used:

− Activation: Definition 4.66

− Firing: Definition 4.61

− Conflict resolution: Definition 4.67,

whereby stochastic transitions are handled as discrete transitions.

144

5 MODELING PROCESS OF BIOLOGICAL SYSTEMS

This chapter describes the general, universally useable modeling process for biological

systems developed in this work which enables the processing of experimental data to usable

new insights about the regarded system. This modeling process requires several mathematical

methods to achieve a “good working” parameterized model which is able to predict the

behavior of the underlying system and forms the basis for optimizing biological processes.

Therefore, an environment has been developed which comprises mathematical methods and

tools for covering all steps of the established modeling process as depicted in Figure 5.1. The

basic concepts of these mathematical methods have been already introduced in Chapter 3 as

well as the xHPN modeling concept in Chapter 4 and, hereafter, it is detailed how these

methods are particularly adapted to make them useable for biological processes.

The developed modeling process can be divided into the following four phases which are

usually rerun several times to establish a reliable model:

1. Preparation

2. Modeling

3. Verification

4. Optimization.

The first phase of the modeling process, called preparation phase, is initiated by an observed

biological phenomenon which should be investigated. Based on experimental data and prior

knowledge about specific structures, functions, and interactions of the investigated system,

the phenomenon has to be formulated as hypotheses whose verification is the aim of the

modeling process. Furthermore, the available experimental data is preprocessed to remove

noise, detect measurement errors, and approximate gaps between two measurements. With the

aid of this preprocessed data and non-linear regression methods, relationships of the

underlying system are uncovered and analyzed. This procedure is called preprocessing and

relationship analysis (PRA) and is part of Section 5.1.

The modeling phase is initiated by using this knowledge for creating a mathematical model

(MM) by means of the Modelica language (see Section 3.1). This can either be done textually

5 Modeling Process of Biological Systems 145

Figure 5.1: The modeling process: From a biological phenomenon to a verified model which

can predict system behavior and forms the basis for process optimization to
establish an open-loop control

146 5 Modeling Process of Biological Systems

by a system of hybrid DAEs or graphically with the aid of the xHPN formalism developed in

this work to model nearly all kinds of biological reactions. The xHPN formalism is introduced

in Section 5.2 based on the terminology and the definitions of Section 4.

Experimental Data
Measurements

Mathematical Model

Experimental Data
Predictions

Biological System
W
et lab

Experim
ents

In-silico Experiments

(Simulations)

Biological
phenomena

Experimental data
Prior knowledge about structures,

functions, and interactions
Literature research

NEW KNOWLEDGE

Figure 5.2: The modeling circle (based on (Reiß 2002))

To get further insight into the model and, especially, its parameters, it can be analyzed by

means of parameter estimation (PE) and sensitivity analysis (SA) methods. Thereby, PE

aims at adapting the parameters as well as possible to the experimental data with the aid of the

optimization methods introduced in Section 3.2; PE is part of Section 5.3. The SA methods

introduced in Section 3.3 can be used to reduce the model complexity by revealing

unimportant parameters which have little or no influence on the model output and can thus be

eliminated from the model. This procedure, also called model reduction (MR), can simplify

PE due to the fact that the search space of the optimization procedures is reduced. SA for

biological processes is described in Section 5.4.

The result of the modeling phase is a parameterized model which can be simulated

deterministically or stochastically depending on the kind of the Petri net model. Thereby, a

deterministic hybrid simulation (DHS) can be applied for all kinds of Petri nets while a

stochastic hybrid simulation (SHS) can only be applied if the Petri net comprises at least

one stochastic transition. DHS and SHS are described in Section 5.5.

5.1 Preprocessing and Relationship Analysis 147

The next phase of the modeling process is the verification phase. A parameterized model can

be verified by SA methods which give some indication of the robustness of the found model

parameters (see Section 5.4). Additionally, experiments have to be planned based on the

results of the parameterized model. This new experimental data gained from wet-lab (in-vitro

and in-vivo experiments) is compared with the model predictions (MP) of the system

behavior generated by simulations (in-silico experiments) to verify the model or to detect a

mismatch and return to one of the previous steps (see Figure 5.2). The result of this phase is a

verified model. MP is part of Section 5.6.

A verified model can be used in the next phase, called optimization phase, to optimize one or

more underlying processes of the investigated organism. This procedure is called process

optimization (PO). A PO can be, for example, performed to achieve an open-loop control of

a fermentation process which maximizes the product yield of the organism. PO is described in

Section 5.7.

5.1 PREPROCESSING AND RELATIONSHIP ANALYSIS

A relationship analysis (RA) aims at detecting relationships of the regarded system from

experimental data in order to express the discovered relationships in terms of mathematical

functions. This is done by nonlinear regression methods. In this way, further knowledge about

the structure of the model and the corresponding reaction rates can be obtained.

Therefore, the experimental data has to be preprocessed at first due to the fact that the

measurements usually contain noise and are only taken at a few points in time. To delete noise

and approximate missing data, the experimental data are smoothed. Smoothing means that

the measurements are approximated by a function that tries to cover all important patterns in

the data while no account is taken on noise or other fine-scale structures. Several smoothing

methods have been proposed (see e.g. Simonoff 1996). This study concerns the cubic

smoothing spline method (Reinsch 1967).

A cubic spline is a function that interpolates the given data set piecewise by cubic

polynomials. However, a cubic smoothing spline does not have to go through each given

data point; thus, it approximates the data by a function which consists piecewise of cubic

polynomials. The cubic smoothing spline 𝑓 minimizes the sum of weighted squared residuals

148 5 Modeling Process of Biological Systems

between the measurement 𝓎�(𝑡𝑖) and function value 𝑓 (𝑡𝑖) at time 𝑡𝑖 penalized by the

roughness measure ∫ 𝑓′′(𝑡)2 𝑑𝑡 which decreases as 𝑓 get smoother

𝑓 = 𝑎𝑟𝑟𝑔 𝑚𝑖𝑖𝑛 �� 𝑤𝑖�𝓎�(𝑡𝑖) − 𝑓 (𝑡𝑖)�
2

𝑛𝑡

𝑖=1

+ 𝜆∫ 𝑓′′(𝑡)2 𝑑𝑡�. Eq. 5-1

The smoothing parameter 𝜆 ≥ 0 represents the trade-off between accuracy to the measured

data and roughness of the function 𝑓. If 𝜆 = 0, there is no smoothing and the spline goes

through each of the data points 𝓎�(𝑡𝑖), hence, it is an interpolating cubic spline. If 𝜆 → ∞, the

roughness penalty becomes priority and 𝑓 converges to the linear least squares regression line.

The goodness of a fit can be examined by different statistical coefficients and confidence

intervals.

5.2 MATHEMATICAL MODELING: XHPN FOR

BIOLOGICAL APPLICATIONS

The creation of a model for a biological system generally leads to the following advantages

(Dunn 2003)

1. Modeling improves understanding. The comparison of model predictions and

biological behavior leads to an increased understanding of the considered processes. The

results of simulations give some indication of the occurrence of observed phenomena that

are inexplicable till now. Additionally, the model formulation itself improves the

understanding because complex cause-effect sequences and interactions have to be

translated into a mathematical formalism.

2. Modeling supports experimental design. Experiments have to be designed such that the

model can be tested sufficiently. The model itself usually indicates which experimental

data are needed to identify the model parameters. Sensitivity analysis can reveal that

some parameters have negligible effects on the model and, thus, these effects can be

neglected from the model and the experiments while other parameters have a deep impact

on the model and, hence, the experiments have to focus on these processes.

3. Models used for predictions. Once a model is established and verified, it can be used to

predict the behavior of the regarded system under different environmental conditions.

5.2 Mathematical Modeling: xHPN for Biological Applications 149

4. Models used for process optimization. A verified model can be used for optimizing

processes which relate to profits or costs to enable, for example, an open-loop control of

these processes.

Numerous model formalisms have been proposed for modeling and simulation of biological

systems (see e.g. (Wiechert 2002)). Generally, there needs to be a distinction between

qualitative and quantitative approaches. Qualitative models represent only the fundamental

compounds, their interaction mechanisms, and the relationships amongst them while

quantitative models describe, in addition, the time-related changes of the components.

Hence, a qualitative model is the basis for every quantitative model and the mentioned

improved data basis enables us to extend qualitative models to quantitative ones today.

Beyond this, quantitative model formalisms can be further divided into discrete, continuous,

and hybrid approaches as well as into deterministic and stochastic techniques.

Figure 5.3: Different types of cell representation (Chmiel and Briechle 2008, Dunn 2003)

Furthermore, models of biological systems can be classified according to their complexity

(Chmiel and Briechle 2008, Dunn 2003). Figure 5.3 gives an overview of the different

perspectives to represent a population. On the one hand, models are classified according to the

amount of components that are needed to represent the cellular system. If a model consists of

several differentiable components, it is called structured; otherwise, if the system is

represented by one component, it is called unstructured. Unstructured models disregard

intercellular processes and describe the system only based on changes in its environment. On

unstructured structured

no
n-

se
gr

eg
at

ed
se

gr
eg

at
ed

Approximation by assuming balanced growth

A
pp

ro
xi

m
at

io
n

by
 a

ss
um

in
g

an
 a

ve
ra

ge
 in

di
vi

du
al

Reduction of the cell population
to one component system

Cells consist of several
components but the population
is reduced to one average cell

The population is regarded as
heterogeneous system of

differentiable individuals but the
cells are reduced to a one

component system

The population is regarded as
heterogeneous system of

differentiable individuals and the
cells consist of several

components

extreme simplification
greatest possible idealization

minor simplification
realistic situation

150 5 Modeling Process of Biological Systems

the other, models can be divided into segregated models which regard the system as a

heterogeneous collection of differentiable individuals and non-segregated models which

approximate the system by an average individual. Segregated models consider the

heterogeneity of the population concerning cell age, size, growth rate, and physiological state

to allow a more precise description of the system.

The decision which modeling approach to use is difficult and strongly influenced by the

availability of data. If all kinetic data is known, models consisting of ordinary differential

equations are mostly the first choice while in the absence of this kinetic data only qualitative

approaches are usable. An additional difficulty arises in the demand of simultaneously having

a model which is easy to understand and an abstraction of the real system as well as a detailed

and nearly complete description of it. Besides, the modeling process of biological systems is

further complicated by incomplete knowledge, noisy and inaccurate data, and different ways

of representing data and knowledge.

Figure 5.4: Petri net extensions: From a basic Petri net to an extended hybrid Petri net for

biological applications

Petri nets with their various extensions are a universal graphical modeling concept for

representing biological systems in nearly all degrees of abstraction. They support both the

qualitative and the quantitative modeling approach. Once a qualitative Petri net model has

been established, the quantitative data can be added successively. The Petri nets in Section 4.1

and 4.2 are examples for qualitative models due to the fact that no time is associated with the

transitions. The arcs can be provided with the stoichiometric of the respective reaction and the

tokens represent a discrete quantity of species. The qualitative analysis of such models

considers all possible behaviors of the system at any time. Timed, stochastic, continuous, and

hybrid Petri nets are examples of quantitative models (see Section 4.3, 4.4, and 4.5). The time

is associated with the Petri net behavior by assigning each transition a delay, a hazard, and a

maximum speed, respectively. Furthermore, the biological processes can be modeled

5.2 Mathematical Modeling: xHPN for Biological Applications 151

discretely as well as continuously and, in addition, discrete and continuous processes can also

be combined within one Petri net model to so-called hybrid Petri nets (see e.g. (David and

Alla 2001)). The Petri net formalism with all its extensions is so powerful that all other

formalisms are included and, hence, only one formalism is needed regardless of the approach

(qualitative vs. quantitative, discrete vs. continuous, deterministic vs. stochastic) which is

appropriate for the respective system. The Petri net formalism is easy to understand for all

researchers from different disciplines (biology, mathematics, informatics, and system

sciences) which work together in the modeling process and is an ideal way for intuitive

representing and communicating experimental data and knowledge of biological systems.

Besides, Petri nets allow hierarchical structuring of models and offer the possibility of

different detailed views for every observer of the model. For these reasons, the developed

xHPN formalism is superior to systems of ordinary differential equations which are mostly

the first choice for modeling biological systems.

The Petri net formalism developed and used in this work has been gained from many

discussions with biologists and biotechnologist to satisfy all their requirements and to

represent with it nearly all kinds of biological reactions and phenomena. The result is called

extended Hybrid Petri Net - abbreviated as xHPN and depicted Figure 5.4 - and the precise

definition is given in Definition 4.68 (Section 4.5). The abbreviation has been chosen in such

a general manner to emphasize that this formalism is not only useable for biological processes

but also for nearly all other processes e.g. production, business, or communication (see

Chapter 8). This xHPN formalism is extended by providing each Petri net element with a

biological meaning. This extension is called xHPNbio (extended Hybrid Petri Nets for

biological applications) and the formal definition is given below.

Definition 5.1 (xHPNbio)

An xHPNbio is an xHPN (see Definition 4.68) with a concrete transformation of xHPN

elements to biological ones. This transformation is summarized in the following table by

mentioning also some examples of the biological meaning.

xHPN element Biological meaning

Places

Biological compounds
metabolites, enzymes, substances, substrates, products, signals, genes,
proteins, cells, complexes, activators, inhibitors, repressors, DNA,
RNA

152 5 Modeling Process of Biological Systems

Transitions

Biological processes
biochemical reactions, metabolic reactions, interactions, regulatory
reactions, signal transduction reactions, chemical reactions, binding,
phosphorylation

Tokens/Marks Quantities of biological compounds
molecules, concentrations, cells

Normal arcs Connections of biological compounds and processes

Test arcs
Activation of biological processes
transcription process, activation in gene regulation, enzyme activity,
activation mechanisms

Inhibitor arcs Inhibition of biological processes
repression of gene regulation, inhibition mechanisms

Read arcs Needs for biological processes
catalysis

Arc weights Biological coefficients
stoichiometric coefficients, yield coefficients

Min/max. capacities Reasonable biological capacities
biological knowledge

Delays Duration of biological processes

Hazard functions Random duration of biological processes
stochastic kinetics

Maximum speeds Rate of biological processes
kinetics effects/laws

xHPNbio

Biological systems
metabolic networks, signal transduction networks, regulatory
networks, chemical networks, cell cycle, cell communication,
diseases, population dynamics, flux networks, cultivation processes

The following table gives some examples of biological reactions and their modeling with the

xHPNbio formalism.

Table 5.1: Examples for modeling biological reactions with the xHPNbio formalism

Type of
reaction

Example Petri net

Production → 𝑺
discrete or continuous

Degradation 𝑺 →
discrete or continuous

5.2 Mathematical Modeling: xHPN for Biological Applications 153

Chemical
reaction 𝑁𝑁 → 2𝐵

Chemical
reaction
modeled by
mass action
kinetics

3𝑁𝑁
𝑣
→ 2𝐵

𝑣 = 𝑘 ⋅ 𝑁𝑁3

Biochemical
reaction
modeled by
Michaelis-
Menten
kinetics

𝑆 + 𝐸
𝑣
→ 𝐴𝐴 + 𝐸

𝑣 =
𝑣𝑚𝑎𝑥 ⋅ 𝑆
𝐾𝑆 + 𝑆

loop-connection or read arc

Inhibition
reaction

Activation
reaction

Positive
gene
regulation

Negative
gene
regulation

154 5 Modeling Process of Biological Systems

5.3 PARAMETER ESTIMATION

Once a model is constructed using the Modelica language, for example, with the xHPN

formalism and the PNlib (see Section 6), the task is to estimate the model parameters.

Thereby, the parameters have to be chosen so that the model reproduces the given

experimental data in the best possible way. This procedure is called parameter estimation or

inverse problem; thereby, the latter indicates that the model parameters are identified from

measurements.

Parameter estimation engenders an optimization problem: Minimize an objective function

which represents the goodness of a parameter set. This objective function can be formulated

mathematically by a non-linear programming problem (NLP) constrained by the hybrid DAEs

of the Modelica model (see Section 3.1.7) and upper and lower bounds for every parameter:

𝑚𝑖𝑖𝑛 𝑄(𝓅) 𝓅 ∈ 𝒫 ⊆ ℝ𝑛, 𝑄: 𝒫 → ℝ Eq. 5-2

subject to

Hybrid DAE of the Modelica Model
consisting of a combination of Eq. 3-3, Eq. 3-4, and Eq. 3-5

Eq. 5-3

𝓅𝑙 ≤ 𝓅 ≤ 𝓅𝑢 Eq. 5-4

whereby

− 𝑄�𝓎(𝓅, 𝑡)�, denoted by 𝑄(𝓅), is the objective function to minimize which depends on a

subset of regarded model outputs 𝓎(𝓅, 𝑡) depending on the parameter values 𝓅.

− 𝓅 = (𝓅1, 𝓅2, … , 𝓅𝑛) are the model parameters to optimize; these are a subset of all

parameters 𝑝 of the Modelica model (𝓅 ⊆ 𝑝),

− 𝓎(𝓅, 𝑡) = (𝓎1(𝓅, 𝑡), 𝓎2(𝓅, 𝑡), … , 𝓎𝑛𝑦(𝓅, 𝑡)) are the regarded model outputs which relate

to the measurements 𝓎�(𝑡) = �𝓎�1(𝑡), 𝓎�2(𝑡), … , 𝓎�𝑛𝑦(𝑡)�; these are a subset of state and

algebraic output variables of the Modelica model (𝓎(𝓅, t) ⊆ �𝑥(𝑡) ∪ 𝑦(𝑡)�,

− 𝓅𝑙 = �𝓅1
𝑙 , 𝓅2

𝑙 , … , 𝓅𝑛
𝑙 � are the lower bounds of the parameters to optimize,

− 𝓅𝑢 = (𝓅1
𝑢, 𝓅2

𝑢, … , 𝓅𝑛
𝑢) are the upper bounds of the parameters to optimize.

The objective function 𝑄 measures the goodness of a parameter set. Therefore, this function

has to consider the distances between model output and corresponding data points (red lines

in Figure 5.5).

5.3 Parameter Estimation 155

Figure 5.5: Distance between measurements and model output

The residual matrices ℛ𝑘(𝓅), 𝑘 = 1,2, … , 𝑛𝑑 are formed by the difference between the

output matrices 𝒴𝑘(𝓅) and data matrices 𝒴�𝑘; thereby, the columns corresponds to the 𝑛𝑦

considered outputs and the rows to the 𝑛𝑡 points in time and 𝑛𝑑 is the number of considered

data sets

ℛ𝑘(𝓅) = 𝒴𝑘(𝓅) − 𝒴�𝑘, 𝑘 = 1, … , 𝑛𝑑 . Eq. 5-5

The entries, called residuals, are given by

𝓇�𝑖,𝑗
𝑘 = 𝓎𝑖,𝑗

𝑘 (𝑝) − 𝓎�𝑖,𝑗
𝑘 , 𝑘 = 1, … , 𝑛𝑑 , 𝑖𝑖 = 1, … , 𝑛𝑡 , 𝑗 = 1, … , 𝑛𝑦 Eq. 5-6

where 𝓎�𝑖,𝑗
𝑘 = 𝓎�𝑗

𝑘(𝑡𝑖) is the measured value of the 𝑗th output at time 𝑡𝑖 of the 𝑘th data set and

𝓎𝑖,𝑗
𝑘 (𝑝) = 𝓎𝑗

𝑘(𝓅, 𝑡𝑖) is the corresponding model output achieved by the parameter set 𝓅.

The residuals can be positive and negative but they should be all positive so that they do not

cancel each other out. This can be achieved either by squaring or by calculating the absolute

values

𝓇𝑖,𝑗
𝑘 = �𝓇�𝑖,𝑗

𝑘 �
2

, 𝑘 = 1, … , 𝑛𝑑 , 𝑖𝑖 = 1, … , 𝑛𝑡, 𝑗 = 1, … , 𝑛𝑦 Eq. 5-7

𝓇𝑖,𝑗
𝑘 = �𝓇�𝑖,𝑗

𝑘 �, 𝑘 = 1, … , 𝑛𝑑 , 𝑖𝑖 = 1, … , 𝑛𝑡, 𝑗 = 1, … , 𝑛𝑦 Eq. 5-8

Afterwards, a one-dimensional result of the objective function can be obtained by either

summing up all residuals or by choosing the largest residual

𝑄(𝓅) = � � � 𝓇𝑖,𝑗
𝑘

𝑛𝑦

𝑗=1

𝑛𝑡

𝑖=1

𝑛𝑑

𝑘=1

 Eq. 5-9

𝑄(𝓅) = 𝑚𝑎𝑥 �𝓇𝑖,𝑗
𝑘 , 𝑘 = 1 … 𝑛𝑑 , 𝑖𝑖 = 1 … 𝑛𝑡, 𝑗 = 1 … 𝑛𝑦� Eq. 5-10

Additionally, each residual 𝓇𝑖,𝑗
𝑘 can be weighted by a factor 𝓌𝑖,𝑗

𝑘 to consider, for example,

different units or magnitudes. One possible weighting is to divide the residuals by the

156 5 Modeling Process of Biological Systems

measured values, i.e. 𝓌𝑖,𝑗
𝑘 = �1 𝓎�𝑖,𝑗

𝑘⁄ �
2
. Summarizing, all the possible combinations lead to

the following four objective functions

𝑄𝑠𝑠(𝓅) = � � � 𝓌𝑖,𝑗
𝑘 �𝓎𝑖,𝑗

𝑘 (𝑝) − 𝓎�𝑖,𝑗
𝑘 �

2
𝑛𝑦

𝑗=1

𝑛𝑡

𝑖=1

𝑛𝑑

𝑘=1

 Eq. 5-11

𝑄𝑠𝑎(𝓅) = � � � 𝓌𝑖,𝑗
𝑘 �𝓎𝑖,𝑗

𝑘 (𝑝) − 𝓎�𝑖,𝑗
𝑘 �

𝑛𝑦

𝑗=1

𝑛𝑡

𝑖=1

𝑛𝑑

𝑘=1

 Eq. 5-12

𝑄𝑚𝑠(𝓅) = 𝑚𝑎𝑥 �𝓌𝑖,𝑗
𝑘 �𝓎𝑖,𝑗

𝑘 (𝑝) − 𝓎�𝑖,𝑗
𝑘 �

2
, 𝑘 = 1 … 𝑛𝑑 , 𝑖𝑖 = 1 … 𝑛𝑡 , 𝑗 = 1 … 𝑛𝑦� Eq. 5-13

𝑄𝑚𝑎(𝓅) = 𝑚𝑎𝑥 �𝓌𝑖,𝑗
𝑘 �𝓎𝑖,𝑗

𝑘 (𝑝) − 𝓎�𝑖,𝑗
𝑘 �, 𝑘 = 1 … 𝑛𝑑 , 𝑖𝑖 = 1 … 𝑛𝑡, 𝑗 = 1 … 𝑛𝑦�, Eq. 5-14

whereby the indices represent the types of the objective functions; the first index can either be

𝑠 for sum or 𝑚 for maximum and the second index can either be 𝑠 for squared or 𝑎 for

absolute.

Figure 5.6: The simulation-optimization method for parameter estimation

To find the minimum of the optimization problem in Eq. 5-2 to Eq. 5-4 corresponding to PE,

the methods introduced in Section 3.2 have been used. Thereby, the PE process is usually

performed using the following steps:

1. Set the model parameters.

2. Simulate the model.

3. Calculate the value of the objective function.

4. Check the abort criteria. If one is fulfilled, stop; otherwise, adjust the model parameters

according to the used optimization method of Section 3.2, and go back to step 1.

5.4 Sensitivity Analysis 157

This procedure requires a combination of optimization routines and simulations, a so-called

simulation-optimization method, which is displayed in Figure 5.6.

5.4 SENSITIVITY ANALYSIS

A SA can be performed for a number of reasons (see Chan et al. 1997 and Saltelli et al. 2000).

This study concentrates on using it for the following aims (see Figure 5.1):

− Model identification: determine the model parameters which contribute most to the

variability of the model output. These parameters need additional research to get further

knowledge about them to reduce the uncertainty in the model output.

− Model optimization: determine optimal regions within the parameter space to use them in

a subsequent PE process (see Section 5.3).

− Model reduction: determine the model parameters which are insignificant to eliminate

them from the model. In this manner the subsequent PE can be improved: Fixing less

sensitive parameters during the optimization process of the minimization problem in

Eq. 5-2 can speed up the convergence rate of the applied method, significantly.

− Model verification: determine the robustness of the model parameters after PE to give

some indication of the validity of the model toward the reality.

Thereby, local methods are applicable for model verification if it is assumed that the objective

function is continuous differentiable in a neighborhood of the found parameter set. On the

other hand, the global methods of Section 3.3 are ideal to carry out the impact of each

parameter for model identification, optimization, and reduction.

5.5 DETERMINISTIC AND STOCHASTIC HYBRID

SIMULATION

The simulation of a deterministic model, i.e. no probabilistic behavior is involved, always

returns the same results by executing the model with the same input parameters. However, a

158 5 Modeling Process of Biological Systems

stochastic model contains random mechanisms and, hence, the simulation results can change

in any run performed with the same input parameters.

Hereafter, the considered stochastic models are stochastic Petri nets (SPNs) already

introduced in Section 4.3. The implementation of the stochastic transition by means of the

Modelica language is part of Section 6.1.3. The concept is also applicable to an xHPNbio if it

contains at least one stochastic transition.

Each transition of a SPN represents a reaction of a biological process and the places are the

biological compounds which interact with each other. The tokens quantify the amount of each

compound, for example, the number of molecules and the arc weights represent the number of

units which are consumed and produced, respectively, in a reaction, for example, the

stoichiometric coefficients of a biochemical reaction (see Definition 5.1).

The time when a reaction occurs is a random quantity defined by the hazard function (see

Definition 4.34)

𝜏𝑗 = 𝑡𝑖𝑖𝑚𝑒 + 𝐸𝑥𝑝�ℎ𝑗�, Eq. 5-15

whereby 𝜏𝑗 is the putative firing time of transition 𝑡𝑗 which models the reaction, and 𝐸𝑥𝑝�ℎ𝑗�

is an exponentially distributed random variable specified by the hazard function ℎ𝑗 . This

hazard function can be defined more precisely if a SPN represents a biochemical network.

Two possible hazard functions can be applied which depend on reading the tokens as

molecules or as levels of concentrations (Heiner et al. 2008).

The first, called stochastic mass action hazard function, is directly derived from the mass

action kinetics of continuous reactions (Wilkinson 2006). The mass action kinetics has to be

modified such that the substances can be represented discretely by molecules instead of

continuous concentrations. This general modification process is shown exemplarily by the

following types of biochemical reactions.

A biochemical reaction of first-order has the form

𝑅: 𝑁𝑁
𝑐

→ 𝐵,

whereby the constant 𝑐 represents the hazard that a molecule of 𝑁𝑁 will undergo the reaction

and there are 𝑎 molecules of substance 𝑁𝑁. This leads to the hazard function

ℎ𝑅 = 𝑐 ⋅ 𝑎. Eq. 5-16

A second-order biochemical reaction can have the form

5.5 Deterministic and Stochastic Hybrid Simulation 159

𝑅: 𝑁𝑁 + 𝐵
𝑐

→ 𝐶,

whereby the constant 𝑐 represents the hazard that a molecule of 𝑁𝑁 and a molecule of 𝐵 react

with each other and there are 𝑎 molecules of 𝑁𝑁 and 𝑏 molecules of 𝐵. Hence, 𝑎 ⋅ 𝑏 different

pairs are possible so that the hazard function is given by

ℎ𝑅 = 𝑐 ⋅ 𝑎 ⋅ 𝑏. Eq. 5-17

It is also possible that a second-order biochemical reaction has the following form

𝑅: 2𝑁𝑁
𝑐

→ 𝐵,

whereby the constant 𝑐 represents the hazard that two molecules of substance 𝑁𝑁 react. But

only 𝑎(𝑎 − 1)/2 pairs are possible so that the hazard function is given by

ℎ𝑅 = 𝑐 ⋅ 𝑎 ⋅ �
𝑎 − 1

2
�. Eq. 5-18

This theory can also be applied to higher-order reactions and results in the following general

form of the stochastic mass action hazard function regarding that the reaction is modeled by a

SPN

ℎ𝑗 = 𝑐𝑗 ⋅ � �
𝑚(𝑝𝑖)

𝑓�𝑝𝑖 → 𝑡𝑗��
𝑝𝑖∈𝑃𝑖𝑛�𝑡𝑗�

, Eq. 5-19

whereby 𝑐𝑗 is the transition-specific stochastic rate constant, 𝑚(𝑝𝑖) is the token number of the

input place 𝑝𝑖 of transition 𝑡𝑗, and 𝑓�𝑝𝑖 → 𝑡𝑗� is the weight of the arc �𝑝𝑖 → 𝑡𝑗�.

The second one, called stochastic level hazard functions, regards the tokens as levels of

concentrations as introduced in (Calder et al. 2006). The concentration of each substance is

then transformed to an abstract level. Therefore, it is assumed that the maximum molar

concentration is 𝑀 and the number of the highest level is 𝑁𝑁 so that the amount of levels is

𝑁𝑁 + 1. Then the abstract levels 0, 1, … , 𝑁𝑁 represent the concentration intervals

0, �0, 1 ⋅
𝑀
𝑁𝑁

� , �1 ⋅
𝑀
𝑁𝑁

, 2 ⋅
𝑀
𝑁𝑁

� , … , �(𝑁𝑁 − 1) ⋅
𝑀
𝑁𝑁

, 𝑁𝑁 ⋅
𝑀
𝑁𝑁

�.

The maximum molar concentration 𝑀 is always the same for all places in a SPN while the

amount of levels 𝑁𝑁 + 1 can be different for each place. Hence, both parameters 𝑀 and 𝑁𝑁 can

be determined globally in the settings component (see Section 6.2) so that they common to all

place components and the parameter 𝑁𝑁 can also be defined locally in the place components

(see Section 6.1.2). For the following explanations, it is assumed that the parameter 𝑁𝑁 is

defined globally, i.e. it is the same for all places in the SPN.

160 5 Modeling Process of Biological Systems

The derivation of the stochastic level hazard function is shown exemplarily by the following

reaction

𝑅: 2𝑁𝑁 + 3𝐵
𝑘
→ 𝐶,

where 𝑘 is the deterministic rate constant. The increase of substance 𝐶 can be expressed by

mass action kinetics

𝑑[𝐶]
𝑑𝑡

= 𝑘[𝑁𝑁]2[𝐵]3,

where [𝑁𝑁], [𝐵], and [𝐶] denote the concentrations of substances 𝑁𝑁, 𝐵, and 𝐶. The new

concentration [𝐶]� can be derived from the current concentration [𝐶] by Euler’s method

[𝐶]� = [𝐶] + ∆𝑡 ⋅ (𝑘[𝑁𝑁]2[𝐵]3)

⇔ ∆𝑡 =
∆𝐶

𝑘[𝑁𝑁]2[𝐵]3 , with ∆𝐶 = [𝐶]� − [𝐶].

But the abstract concentrations can only increase by one level, i.e. by a concentration of

𝑀 𝑁𝑁⁄ , when the reaction occurs, hence,

∆𝑡 =
∆𝐶

𝑘[𝑁𝑁]2[𝐵]3 =
𝑀

𝑁𝑁𝑘[𝑁𝑁]2[𝐵]3,

whereby ∆𝑡 is the time that is needed to increase the concentration of substance 𝐶 by one

concentration level 𝑀/𝑁𝑁. This time is taken as expected value for the occurrence of the

reaction and, thus, the hazard function is given by

ℎ𝑅 =
1

∆𝑡
=

𝑁𝑁
𝑀

𝑘[𝑁𝑁]2[𝐵]3 =
𝑁𝑁
𝑀

𝑘 �
𝑀
𝑁𝑁

⋅ 𝑁𝑁𝑑�
2

�
𝑀
𝑁𝑁

⋅ 𝐵𝑑�
3

,

whereby 𝑁𝑁𝑑 and 𝐵𝑑 are the discrete levels which correspond to the concentrations [𝑁𝑁] and [𝐵]

and, hence,

[𝑁𝑁] =
𝑀
𝑁𝑁

⋅ 𝑁𝑁𝑑 and [𝐵] =
𝑀
𝑁𝑁

⋅ 𝐵𝑑.

The general stochastic level hazard function is then given by

ℎ𝑗 = 𝑘𝑗 ⋅
𝑁𝑁
𝑀

� �
𝑀
𝑁𝑁

⋅ 𝑚(𝑝𝑖)�
𝑓�𝑝𝑖→𝑡𝑗�

𝑝𝑖∈𝑃𝑖𝑛(𝑡)

, Eq. 5-20

where 𝑘𝑗 is the transition-specific deterministic rate constant. The conversion from the

deterministic rate constant 𝑘𝑗 to the stochastic rate constant 𝑐𝑗 can be found in (Wilkinson

2006).

Several methods have been proposed to perform the stochastic simulation of a SPN model

either with stochastic mass action hazard functions or stochastic level hazard functions. The

first, called Gillespie’s direct method, calculates explicitly which reaction occurs next and

5.5 Deterministic and Stochastic Hybrid Simulation 161

when it occurs (Gillespie 1977). Thereby, reaction 𝑅𝑘 occurs with a probability ℎ𝑘 ∑ ℎ𝑗𝑗⁄ and

the time to the next reaction is the random quantity 𝐸𝑥𝑝�∑ ℎ𝑗𝑗 �. The algorithm is summarized

in Algorithm A7 (Appendix A1). This algorithm is direct in the sense that it chooses the

reaction 𝑅𝑘 and the time when it is occurs 𝜏 directly by generating two random numbers at

each iteration.

Gillespie also developed an alternative called first reaction method, which gets along with

one random number per iteration. Thereby, a putative time 𝜏𝑗 is generated for each reaction.

This is the time when the reaction would occur if no other reaction occured before. Thus, the

reaction with the smallest putative time will occur. The method is formalized by Algorithm

A8 (Appendix A1).

Gibson and Bruck modified the first reaction method to make it much more effective (Gibson

and Bruck 2000). It is called next reaction method. They reduced the number of required

random numbers by reusing the 𝜏𝑗. A new putative time is only generated for the reaction that

has just occurred. If the hazard function is not changed by this reaction, the 𝜏𝑗 remains

unaltered. However, if the hazard function is affected by this reaction, the 𝜏𝑗 is rescaled

appropriately. The knowledge about which hazard function is affected by which reaction is

attained from a dependency graph. The method can be performed by the following steps.

Algorithm 1
1. Set the initial numbers of molecules, set 𝑡 = 0, calculate the hazard function ℎ𝑗, and

generate a putative time 𝜏𝑗~𝐸𝑥𝑝�ℎ𝑗� for all 𝑗.

2. Let 𝑅𝑘 the reaction whose putative time 𝜏𝑘 is the smallest.

3. Update the number of molecules affected by reaction 𝑅𝑘.

4. Update ℎ𝑘 and generate a new putative time 𝜏𝑘 = 𝑡 + 𝐸𝑥𝑝(ℎ𝑘).

5. For each reaction 𝑗 ≠ 𝑘 whose hazard function is affected by reaction 𝑅𝑘:

a. Set ℎ𝑗
𝑜𝑙𝑑 = ℎ𝑗,

b. Update ℎ𝑗,

c. Set 𝜏𝑗 = 𝑡 +
ℎ𝑗

𝑜𝑙𝑑

ℎ𝑗
�𝜏𝑗 − 𝑡�.

6. If 𝑡 = 𝐴𝐴𝑚𝑎𝑥 stop; otherwise, set 𝑡 = 𝜏𝑘 and go to step 2.

The next reaction method is used within this study because the dependency graph is already

created by the Modelica-tool to perform the hybrid simulation (see Section 3.1.7). In this

162 5 Modeling Process of Biological Systems

manner, the hazard functions are only recalculated when they are changed by firing other

transitions. The implementation by the Modelica-language is explained in Section 6.1.3.

5.6 MODEL PREDICTION

Once a model is established and the structure parameters are estimated, it can be used to

predict the behavior of the system by varying input factors such as substrates, temperature,

and stirrer speed. By comparing these predictions with new experimental data, the model can

be verified and successively improved (see Figure 5.1). In addition, predictions can expand

the knowledge about the studied organism by saving a lot of experiments with different input

factors. Usually, saving experiments is equivalent to saving costs which this is an important

factor for industry.

5.7 PROCESS OPTIMIZATION

Moreover, if the model is verified by further experiments and mathematical methods (SA), the

modeled processes of the underlying organism can be optimized. Therefore, an objective

function has to be defined which depends on several process parameters, e.g. substrates,

feeding strategies, temperature, and stirrer speed. Usually, PO aims at maximizing the amount

of one or more model outputs at a specific point in time 𝑡𝑓 subject to the Modelica model and

lower and upper bounds for each process parameter. This can be formalized by the following

optimization problem

𝑚𝑎𝑥 𝑄�𝓏, 𝑡𝑓� 𝓏 ∈ 𝒵 ⊆ ℝ𝑛, 𝑄: 𝒵 → ℝ Eq. 5-21

subject to

Hybrid DAE of the Modelica Model
consisting of a combination of Eq. 3-3, Eq. 3-4, and Eq. 3-5

Eq. 5-22

𝓏𝑙 ≤ 𝓏 ≤ 𝓏𝑢, Eq. 5-23

whereby

5.7 Process Optimization 163

− 𝑄�𝓎�𝓏, 𝑡𝑓�, 𝑡𝑓�, denoted by 𝑄�𝓏, 𝑡𝑓�, is the objective function to maximize which

depends on a subset of regarded model outputs 𝓎�𝓏, 𝑡𝑓� depending on the parameter

values 𝓏,

− 𝓏 = (𝓏1, 𝓏2, … , 𝓏𝑚) are a subset of the model parameters (𝓏 ⊆ 𝑝), called process

parameters, which are varied to maximize the model output,

− 𝓎�𝓏, 𝑡𝑓� = �𝓎1�𝓏, 𝑡𝑓�, 𝓎2�𝓏, 𝑡𝑓�, … , 𝓎𝑛𝑦�𝓏, 𝑡𝑓�� are model outputs to optimize which are

a subset of state and algebraic output variables �𝓎(𝓏, t) ⊆ �𝑥(𝑡) ∪ 𝑦(𝑡)��,

− 𝑡𝑓 is the point in time when the model output is regarded. This time can also be included

in the objective function as additional process parameter varied during optimization

because the time needed to produce the amount of output correlates usually with its cost,

− 𝓏𝑙 = (𝓏1
𝑙 , 𝓏2

𝑙 , … , 𝓏𝑛
𝑙) are the lower bounds of the process parameters, and

− 𝓏𝑢 = (𝓏1
𝑢, 𝓏2

𝑢, … , 𝓏𝑛
𝑢) are the upper bounds of the process parameters.

The following objective functions are usable to maximize one model output by varying

several process parameters

Thereby, the first one regards only the model output at a fixed point in time 𝑡𝑓
𝑓𝑖𝑥 while the

second one includes also the point in time when the maximum model output is reached due to

the fact that time is mostly correlated with costs of the regarded process; hence, it tries to find

the best compromise of model output and corresponding costs. The arising optimization

problem is solved with the methods introduced in Section 3.2.

A PO can be used, for example, to achieve an open-loop control of biological processes, i.e.

the process parameters are calculated based on the model representing the state of the

biological system; no feedback is used to determine if the output has yielded the intended

purpose of the adapted process parameters. An open-loop control is an important aspect for

industrial fermentation processes: achieving a maximum product yield at minimum costs.

𝑚𝑎𝑥 𝓎 �𝓏, 𝑡𝑓
𝑓𝑖𝑥� 𝓏 ∈ 𝒵 ⊆ ℝ𝑛 Eq. 5-24

𝑚𝑎𝑥 �
𝓎�𝓏, 𝑡𝑓�

𝑡𝑓
� 𝓏 ∈ 𝒵 ⊆ ℝ𝑛 Eq. 5-25

164

6 THE PETRI NET LIBRARY

This chapter concentrates on the implementation of extended hybrid Petri nets (xHPN)

introduced in Section 4 (see also Section 5.2) in order to model, simulate, and animate these

special kinds of Petri nets.

To achieve this aim, an appropriate programming language is needed that is capable of

modeling places, transitions, and arcs as objects and meets the following requirements:

− freely available,

− object-oriented,

− equation-based, i.e. support of modeling by discrete, differential, and algebraic equations,

− support of graphical modeling,

− support of hierarchical modeling,

− support of simulation,

− support of animation.

A language that satisfies all these conditions is the non-proprietary, object-oriented, equation-

based language Modelica (Modelica Association 2011). It is developed and promoted by the

Modelica Association since 1996 for modeling, simulation, and programming primarily of

physical and technical systems and processes (Modelica Association 2010). Additionally, the

Modelica standard library is available from the Modelica Association to model mechanical

(1D/3D), electrical (analog, digital, machines), thermal, fluid, control systems, and

hierarchical state machines. Furthermore, several libraries have been developed in the last

decade for specific applications. An overview can be found on the Modelica homepage

(Modelica Association 2011). The development of the language and libraries is ongoing and

driven by several European projects (EUROSYSLIB, MODELISAR, OPENPROD, and

MODRIO). Since the year 2000, Modelica is used successfully in the industry which is

documented in the proceedings of many Modelica conferences and journals.

The Modelica models are described on the textual level by discrete, differential, and algebraic

equations and by schematics on the graphical level. A schematic consists of connected

components which are defined by other components or on the lowest level by equations in

the Modelica syntax. The components have connectors which describe the interaction

between them. By drawing a line from one component to another, a connection is established

6 The Petri Net Library 165

to enable interactions. In this manner a model is constructed. Several components can be

structured in libraries, called packages, which provide hierarchical modeling. Moreover, the

wrapping technique enables the representation of sub-models consisting of several

connected components by a specific adapted icon in order to simplify the modeling process.

Then, the sub-models can be used several times in the same or in different models and, in

addition, it offers an easy-to-use-model at the top level with an intuitive and familiar adapted

view.

For graphical modeling, simulation, and animation an appropriated environment is needed.

The following lists some examples of free and commercial Modelica environments and a full

list can be found on the Modelica homepage (Modelica Association 2011).

Commercial Modelica environments

− Dymola from Dassault Systemes (www.3ds.com/products/catia/portfolio/dymola)

− MapleSimTM from Maplesoft (www.maplesoft.com/products/maplesim/index.aspx)

− MathModelica System Designer from Wolfram MathCore

(www.mathcore.com/products/mathmodelica)

Free Modelica environments

− OpenModelica developed and supported by Linköping University and the Open Source

Modelica Consortium (www.openModelica.org)

− JModelica.org maintained and developed by Modelon AB in collaboration with academia

(www.jmodelica.org)

Within this study, the commercial tool Dymola – Dynamic Modeling Laboratory – version 7.4

is used.

An introduction to the basic Modelica language constructs and principles which also includes

the balanced modeling concept, the hybrid modeling technique, and the description of the

process from a Modelica model to executable simulation code has already been given in

Section 3.1. The next sections outline the implementation of the Petri net component models

by the Modelica language which also comprises an introduction to the Dymola tool and a

description of the connection between Dymola and Matlab/Simulink for post-processing of

simulation results.

http://www.3ds.com/products/catia/portfolio/dymola
http://www.maplesoft.com/products/maplesim/index.aspx
http://www.mathcore.com/products/mathmodelica
http://www.liu.se/en/
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.openmodelica.org/
http://www.modelon.se/
http://www.jmodelica.org/

166 6 The Petri Net Library

6.1 IMPLEMENTATION OF THE PETRI NET ELEMENTS

The advanced Petri Net library, called PNlib, developed in this work enables the modeling of

xHPNs. Based on the Petri nets concepts of Section 4 and 5.2, places, transitions, and arcs are

modeled as objects by discrete, differential, and algebraic equations in Modelica. Therefore, it

has to be distinguished between discrete (PD) and continuous places (PC), discrete (TD),

stochastic (TS), and continuous transitions (TC), and normal, test (TA), inhibitor (IA), and read

arcs (RA). Each of them, except the normal arc, is modeled by its own Modelica model and for

all of them the specialized class model is used (see Section 3.1.4). These Petri net component

models are organized and structured in a Modelica package, also called library. The

structure of the PNlib is shown in Figure 6.1. The main package PNlib is divided into the

following sub-packages

− Interfaces: contains the connectors of the Petri net component models.

− Blocks: contains blocks with specific procedures that are used in the Petri net component

models.

− Functions: contains functions with specific algorithmic procedures which are used in

the Petri net component models.

− Constants: contains constants which are used in the Petri net component models.

− Models: contains several examples and offers the possibility to structure further Petri net

models.

Figure 6.1: Structure of the PNlib

6.1 Implementation of the Petri Net Elements 167

Additionally, the package contains the component settings which enables the setting of

global parameters for the display and animation of a Petri net model (see Section 6.2).

Places, transitions, and arcs are represented by the icons depicted in Figure 6.2. Thereby, the

discrete place is represented by a circle and the continuous place by a double circle. The

transitions are boxes which are black for discrete transitions, black with a white triangle for

stochastic transitions, and white for continuous transitions. The test arc is represented by a

dashed arc, the inhibitor arc by an arc with a white circle at its end, and the read arc by an arc

with a black square at its end.

Figure 6.2: Icons of the PNlib: discrete place (circle), continuous place (double circle),

discrete transition (black box), stochastic transition (black box with white
triangle), continuous transition (white box), test arc (dashed arc), inhibitor arc
(arc with circle ending), and read arc (arc with square ending)

Hereafter it is described what is calculated in which Petri net component and at which time.

Thereby, the discrete procedure - the involved transition is discrete or stochastic - is outlined

in Figure 6.3 and the continuous procedure - the involved transition is continuous – is

displayed in Figure 6.4.

6
Th

e
Pe

tri
 N

et
 L

ib
ra

ry

16
8

ou
tp

ut
 e

na
bl

in
g

(D
2)

(t
yp

-1
-c

on
fli

ct
 re

so
lu

tio
n)

to
ke

ns
/

m
ar

ks

ac
tiv

e/
de

la
yP

as
se

d

ac
tiv

at
io

n
(D

1)

in
pu

t
ar

c
w

ei
gh

ts

to
ke

ns
/

m
ar

ks

m
in

im
um

ca

pa
ci

ty
m

ax
im

um

ca
pa

ci
ty

ou
tp

ut
ar

c
w

ei
gh

ts
ou

tp
ut

 e
na

bl
in

g
pr

ob
ab

ili
tie

s
in

pu
t e

na
bl

in
g

pr
ob

ab
ili

tie
s

pr
e

pr
e

pr
e

en
ab

le
d

ou
tp

ut

tr
an

sit
io

ns
in

pu
t e

na
bl

in
g

(D
3)

(t
yp

e-
1-

co
nf

lic
t r

es
ol

ut
io

n)

en
ab

le
d

in
pu

t
tr

an
sit

io
ns

pr
e

fir
ab

ili
ty

(D

4)

fir
e

to
ke

ns
/m

ar
ks

re

ca
lc

ul
at

io
n

(D

5)

to
ke

ns
/m

ar
ks

re

ca
lc

ul
at

io
n

(D
5)

de
la

y
fir

in
g

co
n

en
ab

lin
g

ty
pe

ar
c

ty
pe

en
ab

lin
g

ty
pe

Fi

gu
re

 6
.3

: D
is

cr
et

e
pr

oc
ed

ur
e:

 w
ha

t i
s

ca
lc

ul
at

ed
 in

 w
hi

ch
 c

om
po

ne
nt

 a
nd

 a
t w

hi
ch

 ti
m

e
if

th
e

in
vo

lv
ed

 tr
an

si
tio

n
is

 d
is

cr
et

e
or

 s
to

ch
as

tic
. D

as
he

d
lin

es
 in

di
ca

te
 p

ro
ce

ss
es

 th
at

 u
se

 th
e

pr
ed

ec
es

so
r

va
lu

e
of

 th
e

re
sp

ec
tiv

e
va

ri
ab

le

6.1 Implementation of the Petri Net Elements 169

The discrete procedure comprises the following steps (the component model in which the step

is performed is stated in brackets after the name of the step):

D1 Activation (transition): It is checked by means of Definition 4.66 if a discrete

transition can become active. When the transition becomes active, the putative firing

time (𝑡𝑖𝑖𝑚𝑒 + 𝑑𝑒𝑙𝑎𝑦) is saved.

D2 Output Enabling (place): A place enables its output transitions based on which of

them are active and if the delays are already passed. Thereby, an occurring type-1-

output-conflict (Definition 4.67) is either solved deterministically (Definition 4.19) or

probabilistically (Definition 4.20).

D3 Input Enabling (place): A place enables its input transitions based on which

transitions are already enabled by all input places. Thereby, an occurring type-1-input-

conflict (Definition 4.67) is either solved deterministically (Definition 4.19) or

probabilistically (Definition 4.20).

D4 Firability (transition): If a transition is enabled by all output places, which also

implies the enabling by all input places, it is firable and fires immediately.

D5 Token/marks recalculation (place): A place recalculates the tokens and marks,

respectively, according to Definition 4.61 when one or more connected transitions fire.

This discrete procedure causes an algebraic loop which involves discrete-time variables,

hence, it has to be cut by hand to obtain a model that can be translated and simulated (see

Section 3.1.7). This is done by putting the pre-operator around the discrete-time variable t

which contains the current token number of a place. In this way, the steps activation, input,

and output enabling are based on the predecessor value of t, represented in Figure 6.3 by

dashed lines, and the outlined ordering of the processes (D1 - D5) is achieved.

6
Th

e
Pe

tri
 N

et
 L

ib
ra

ry

17
0

 sp
ee

d
ca

lc
ul

at
io

n
(C

1)

in
pu

t
ar

c
w

ei
gh

ts
m

in
im

um

ca
pa

ci
ty

m
ax

im
um

ca

pa
ci

ty
ou

tp
ut

ar
c

w
ei

gh
ts

m
ar

ks

fir
in

g
co

n
ar

c
ty

pe

ac
tiv

at
io

n
(C

3)

ac
tiv

e
en

ab
lin

g
(C

4)
(t

yp
e-

4-
co

nf
lic

t r
es

ol
ut

io
n)

fir
e

fir
ab

ili
ty

 (C
5)

en
ab

le
d

ou
tp

ut

tr
an

sit
io

ns

tr
an

si
tio

na
l s

pe
ed

ca

lc
ul

at
io

n
(C

6)

tr
an

sit
io

na
l

sp
ee

d
de

cr
ea

si
ng

 fa
ct

or
 c

al
cu

la
tio

n
(C

7)
 (t

yp
e-

2-
co

nf
lic

t r
es

ol
ut

io
n)

de
cr

ea
sin

g
fa

ct
or

s
in

st
an

ta
nu

ou
s s

pe
ed

ca

lc
ul

at
io

n
(C

8)

de
cr

ea
si

ng
 fa

ct
or

 c
al

cu
la

tio
n

(C
7)

(t
yp

e-
2-

co
nf

lic
t r

es
ol

ut
io

n)

de
cr

ea
sin

g
fa

ct
or

s

ou
tp

ut

sp
ee

d
in

pu
t

sp
ee

d

 m
ar

ks
 c

al
cu

la
tio

n
(C

2)

 sp
ee

d
ca

lc
ul

at
io

n
(C

1)

m
ar

ks

ou
tp

ut

sp
ee

d
in

pu
t

sp
ee

d

 m
ar

ks
 c

al
cu

la
tio

n
(C

2)

m
ax

im
um

sp

ee
d

pr
e

pr
e

Fi

gu
re

 6
.4

: C
on

tin
uo

us
 p

ro
ce

du
re

: w
ha

t i
s c

al
cu

la
te

d
in

 w
hi

ch
 c

om
po

ne
nt

 a
nd

 a
t w

hi
ch

 ti
m

e
if

th
e

in
vo

lv
ed

 tr
an

si
tio

n
is

 c
on

tin
uo

us
. D

as
he

d
lin

es

in
di

ca
te

 p
ro

ce
ss

es
 th

at
 u

se
 th

e
pr

ed
ec

es
so

r
va

lu
e

of
 th

e
re

sp
ec

tiv
e

va
ri

ab
le

.

6.1 Implementation of the Petri Net Elements 171

The continuous procedure is performed by the following steps; thereby, it has to be pointed

out that tokens of discrete places are never changed by firing continuous transitions. Discrete

places can only influence the time when continuous transitions can become active either by

connections via test or inhibitor arcs or by loop-connections, i.e. the place is input and output

of the transition, simultaneously, with arcs of the same weight (see Section 4.5).

C1 Speed calculation (place): The current input and output speed of a continuous place is

calculated by means of Definition 4.39.

C2 Marks calculation (place): The marking of a continuous place is calculated by means

of Definition 4.61.

C3 Activation (transition): It is checked with the aid of Definition 4.66 if a continuous

transition can become active.

C4 Enabling (place): A discrete place enables its continuous output transitions. If a type-

4-conflict (Definition 4.67) occurs, it is resolved deterministically by priorities.

C5 Firability (transition): A continuous transition is firable if it is active and enabled by

all discrete input places.

C6 Preliminary speed calculation (transition): The preliminary speed is calculated based

on the input speeds of the input places and the output speeds of the output places

(Definition 4.48).

C7 Decreasing factor calculation (place): The decreasing factor is calculated to resolve

type-2-conflicts (Definition 4.67) by sharing the speeds proportional to the maximum

speeds of the involved transitions (Definition 4.50).

C8 Instantaneous speed calculation (transition): Based on the decreasing factors of the

input and output places, the instantaneous speed of a continuous transition can be

calculated by means of Definition 4.50.

To realize the steps C1 – C8 in the given order, an algebraic loop which involves discrete-

time variables has to be cut by hand. This is done by using the pre-operator for the variable

fire so that the speed calculation (C1) bases on the predecessor value of it. Figure 6.4

indicates this with dashed lines. Additionally, an algebraic loop concerning continuous-time

172 6 The Petri Net Library

variables may arise by calculating the preliminary and instantaneous speed as well as the

decreasing factor. This algebraic loop is solved by the Modelica-tool (see Section 3.1.7).

6.1.1 CONNECTORS

The processes of Figure 6.3 and Figure 6.4 can only be realized if the Petri net components

are able to interchange variables. Modelica makes this interaction possible by means of the

specialized class connector (see Section 3.1.4). A connector comprises variables which are

calculated in one component but also needed in the connected components for further

calculations. The red and white triangles at the Petri net icons in Figure 6.5 represent the

connectors of the Petri net component models. The PNlib contains four different connectors:

PlaceOut, PlaceIn, TransitionOut, and TransitionIn. The connectors PlaceOut

and PlaceIn are part of the place model and connect them to output and input transitions,

respectively. Similarly, TransitionOut and TransitionIn are connectors of the

transition model and connect them to output and input places, respectively. Figure 6.5 shows

which connector belongs to which Petri net component model.

Figure 6.5: Connectors of the PNlib which enable the Petri net components to interact with

each other

The connector variables are summarized in Appendix A2. All connector variables are

provided either with the prefix input or output to guarantee balanced models (see

Section 3.1.5). If the equation of a connector variable is available in the model where the

connector is used, it is prefixed with output while it is provided with input if the

corresponding equation is in a connected component.

Figure 6.6 shows two examples of connector variables. The token number t is calculated in

the place model but also needed in the connected input and output transitions to determine if

they can become active. Hence, it is an output of the place connectors PlaceOut and

PlaceOut

PlaceInTransitionIn

TransitionOut

6.1 Implementation of the Petri Net Elements 173

PlaceIn and an input of the transition connectors TransitionOut and TransitionIn.

On the other hand, the variable fire is determined in the transitions but also needed in the

connected places for the recalculation of the token number. Hence, it is an output of the

transition connectors and an input of the place connectors.

Figure 6.6: The connector variable t for the token number is output of places and input of

transitions (left) and the connector variable fire for the firability is output of
transitions and input of places (right)

The connectors of the Petri net component models are vectors to enable the connection to an

arbitrary number of input and output components. Therefore, the dimension parameters nIn

and nOut are declared in the place and transition models with the connectorSizing

annotation.

If a parameter with the connectorSizing annotation is used as the dimension size of a

vector of connectors, it is automatically updated in the following way (Modelica Association

2010):

− If a new connection is added, the dimension parameter is incremented by one and the

connection is performed for the new highest index.

− If a connection is deleted, the dimension parameter is decremented by one and all

connections with an index above the deleted connection are also decremented by one.

P1

T1

T2

Tm

.

.

.

T1

T2

Tn

.

.

.
equation for token

number t

token number t is needed
for activation

token number t is needed
for activation

P1

P2

Pm

.

.

.

T1

P1

P2

Pn

.

.

.
equation for

firability fire

 firability fire is needed for
token recalculation

 firability fire is needed for
token recalculation

t

t

t

t

fire

fire

fir
e

fir
e

fire

fire

t

t

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true))
parameter Integer nOut=0 annotation(Dialog(connectorSizing=true))
Interfaces.PlaceIn inTransition[nIn](<modification equations>)
Interfaces.PlaceOut outTransition[nOut](<modification equations>)
Interfaces.TransitionIn inPlaces[nIn](<modification equations>)
Interfaces.TransitionOut outPlaces[nOut](<modification equations>)

174 6 The Petri Net Library

The Petri net components are either connected graphically by drawing a line from a transition

to a place or from a place to a transition or textually by a connect equation (see Section 3.1.2)

with the following syntax

connect "(" componentName1 "." connectorName1 "[" index "]" ","
componentName2 "." connectorName2 "[" index "]" ")" ";"

If a connection is established graphically, the corresponding connect equation is generated on

the textual level automatically.

Example 6.1

Figure 6.7 shows a Petri net modeled by the PNlib.

Figure 6.7: Indices of connectors are updated automatically by using the connectorSizing

annotation for the dimension parameter (Example 6.1)

The corresponding connect equations are the following

connect(P1.outTransition[1], T1.inPlaces[1]);
connect(P2.outTransition[1], T1.inPlaces[2]);
connect(T1.outPlaces[1], P3.inTransition[1]);
connect(T1.outPlaces[2], P4.inTransition[1]);
connect(P3.outTransition[1], T2.inPlaces[1]);
connect(P3.outTransition[2], T3.inPlaces[1]);
connect(P4.outTransition[1], T3.inPlaces[2]);
connect(T3.outPlaces[1], P5.inTransition[1]);

If a new connection from 𝐴𝐴4 to 𝐴𝐴2 is drawn, the equation

connect(P4.outTransition[2], T2.inPlaces[2]);

is generated automatically with the new highest indices of the output connector of 𝐴𝐴4 and the

input connector of 𝐴𝐴2. In addition, the dimensions of both connectors are incremented by

one.

On the other hand, if the connection from 𝐴𝐴3 to 𝐴𝐴3 is deleted in the graphical editor, the

corresponding equation

connect(P3.outTransition[2], T3.inPlaces[1])

P1

P2

T1

P3

P4

T2

T3 P5

6.1 Implementation of the Petri Net Elements 175

is deleted automatically on the textual level. Additionally, the connector dimensions of 𝐴𝐴3 and

𝐴𝐴3 are decremented by one and the index of the input connector of 𝐴𝐴3 in the connect

equation of 𝐴𝐴4 and 𝐴𝐴3 is decremented by one

connect(P4.outTransition[1], T3.inPlaces[1]);

6.1.2 PLACES

The place models contain several parameters which can be defined by the user. This can

either be done by the property dialog on the graphical level or by modification equations (see

Section 3.1.2) on the textual level. The property dialog appears by double clicking on the

component icon and the contained parameters are detailed in Table 6.1.

Table 6.1: Parameters of discrete (d) and continuous (c) places

Name Type
Default
value

Allowed
values Description

startTokens/
startMarks scalar 0

non negative
integers (d)/
real values (c)

Marking at the
beginning of the
simulation
Definition 4.65
minTokens ≤
startTokens ≤
maxTokens

minTokens/
minMarks scalar 0

non negative
integers (d)/
real values (c)

Minimum capacity
Definition 4.65

maxTokens/
maxMarks scalar infinite

non negative
integers (d)/
real values (c)

Maximum capacity
Definition 4.65

enablingType choice/ scalar Priority priority/
probability

Type of enabling if
type-1-conflicts occur;
the priorities are
defined by the
connection indices and
the probabilities by the
variables
enablingProbIn/Out
Definition 4.19,
Definition 4.20,
Definition 4.67

enablingProbIn vector fill(1/nIn,nIn) sum must be
equal to one

Enabling probabilities
of input transitions
Definition 4.18

enablingProbOut vector fill(1/nOut,nOut)
sum must be
equal to one

Enabling probabilities
of output transitions
Definition 4.18

176 6 The Petri Net Library

If the type-1-conflict is resolved by priorities, the corresponding priorities of the transitions

are given by the indices of the connections, i.e. the transition connected to the place with the

index 1 has also the priority 1, the transition connected to the place with the index 2 has also

the priority 2 etc. Otherwise, if the probabilistic enabling type is chosen, the corresponding

probabilities for the transitions have to be entered as a vector (numbers separated by commas

within braces). Thereby, the first vector element corresponds to the connection with the index

1, the second to the connection with the index 2 etc. The usage of these parameter vectors is

also described in Example 6.2. The input of enabling probabilities as vectors in the place

model, and not at the corresponding arcs, is necessary due to the fact that properties cannot be

assigned to connections according to the Modelica Specification 3.2 (Modelica Association

2010).

The parameters can also be set by modification equations within brackets after the component

name, an example is given below.

If the parameters are set graphically, the modification equations on the textual level are

generated automatically and vice versa. Furthermore, for parameters which do not appear in

the modification equations the default values are applied.

Example 6.2

Place 𝐴𝐴1 is connected to the transitions 𝐴𝐴1, 𝐴𝐴2, and 𝐴𝐴3 and the connection to 𝐴𝐴1 is indexed

by 1, the connection to 𝐴𝐴2 is indexed by 2, and the connection to 𝐴𝐴3 is indexed by 3. Thus,

the corresponding connect-equations are

connect(P1.outTransition[1], T1.inPlaces[1]);
connect(P1.outTransition[2], T2.inPlaces[1]);

N scalar settings1.N
positive
integers (d)

Amount of levels for
stochastic simulation
Section 5.5

restart
condition
expressions

false
Boolean
condition
expressions

Condition for resetting
the marking to
reStartTokens/Marks;
this could may be a
global condition

reStartTokens/
reStartMarks scalar 0

non negative
integers (d)/
real values (c)

When the reStart
condition is fulfilled,
the marking is set to
reStartTokens/Marks

Discrete.PD PD(startTokens=15, minTokens=8, maxTokens=117,
enablingType=2,enablingProbIn={0.5,0.25,0.25},
enablingProbOut={0.7,0.3});

Continuous.PC PC(startMarks=17.8,minMarks=0.9,maxMarks=57.9);

6.1 Implementation of the Petri Net Elements 177

connect(P1.outTransition[3], T3.inPlaces[1]);

The enabling probabilities 0.3 for 𝐴𝐴1, 0.25 for 𝐴𝐴2, and 0.45 for 𝐴𝐴3 have to be entered by the

parameter vector

enablingProbOut={0.3,0.25,0.45}.

Figure 6.8: The input of parameter vectors (Example 6.2)

The discrete place model has to perform the processes output enabling (D2), input enabling

(D3), enabling of continuous transitions (C4), and recalculation of tokens and marks,

respectively (D5). The continuous place model also performs the processes D2, D3, and D5

and, in addition, the input and output speeds (C1), marks (C2), and decreasing factors (C7) are

calculated by it. These processes are detailed hereafter.

OUTPUT AND INPUT ENABLING PROCESSES (D2, D3, C4)

If a discrete or continuous place has a type-1-conflict (Definition 4.67) which involves two or

more discrete transitions, it has to be resolved either by priorities or probabilities. Thereby,

the priorities are reflected by the indices of the connections while the probabilities have to be

entered as parameter vectors. Additionally, type-3-conflicts which involve at least one

discrete and one continuous transition have to be resolved by the rule that discrete transitions

take priority over continuous ones. Furthermore, type-4-conflicts which involve discrete

places and at least two continuous transitions have to be resolved by priorities which are also

reflected by the corresponding connection indices.

All these conflicts are resolved in the place models by an algorithmic procedure part of the

blocks enablingOutDis, enablingInDis, enablingOutCon, and enablingInCon

which are contained in the sub-package Blocks. The blocks for discrete and continuous

P1

T1

T2

T3

[1]; 0.3

[2]; 0.25

[3]; 0.45

178 6 The Petri Net Library

places are almost the same except the data types of some input arguments and the block

enablingOutDis solves also type-4-conflicts. The differentiation is necessary due to the

fact that data types of block inputs cannot be variable according to the Modelica Specification

3.2 (Modelica Association 2010).

The enabling process of the places is performed when at least one delay of a connected active

transition is passed, i.e. the input connector variable active switches from false to true.

This is realized by a when equation (see Section 3.1.2). The algorithmic procedure inside a

when equation is only executed at an event instant, thus, exactly at the time when the delay of

at least one connected transition is passed. The algorithmic procedure in the block

enablingOutDis has to be executed additionally when connected continuous transitions

become active or are no longer active, i.e. the connector variable active of at least one

continuous output transition switches from false to true or vice versa which is determined

with the build-in function change (see Section 3.1.6).

The information which transition is enabled by which places is reported via the connector

variable enable to the connected transitions to determine if the transitions are firable.

TOKEN/MARKS RECALCULATION PROCESS AND CALCULATION OF

INPUT AND OUTPUT SPEEDS (D5, C1, C2)

Besides the enabling process, the current marking is calculated in the place model. Thereby, it

has to be distinguished between the discrete and continuous model. The token numbers of

discrete places only change by firing discrete transitions, i.e. only at the corresponding event

instants, while the marking of continuous places can change continuously over time as well as

discretely.

The discrete marking is recalculated when one or more discrete input or output transitions

fire. At that time, the Boolean variable tokeninout switches from false to true and the

discrete marking is recalculated by means of Definition 4.13: the arc weight sum of all firing

input transitions is added to the predecessor value of the current token number (pre(t)) and

the arc weight sum of all firing output transitions is deducted.

6.1 Implementation of the Petri Net Elements 179

Additionally, the tokens are reset to the user-defined value reStartTokens when the user-

defined condition reStart becomes true. This is very useful for resetting the values of

several places, simultaneously when a global condition becomes true.

The marking of a continuous place can change continuously as well as discretely

(Definition 4.61). This has been implemented by the following construct:

The continuous mark change is performed by a differential equation while the discrete mark

change is performed by the reinit-operator within a discrete equation (see Section 3.1.6).

This operator causes a re-initialization of the continuous marking every time when at least one

connected discrete transition fires. Additionally, the marking is re-initialized by user-defined

value reStartMarks when the user-defined condition reStart becomes true.

DECREASING FACTOR CALCULATION (C7)

The continuous place model comprises an additional process, called decreasing factor

calculation (C7). The decreasing factors are used to resolve type-2-conflicts (Definition 4.67)

by which the input or output speed is not sufficient for firing all transitions at the respective

speed. The input and output decreasing factors are calculated in the block

decreasingFactor by an algorithmic procedure according to Definition 4.50. A block has

to be used due to the fact that no events are generated within functions according to the

Modelica Specification 3.2 (Modelica Association 2010). The decreasing factors are reported

to the connected transitions via the connector variable decreasingFactor to calculate the

instantaneous speed. In this context, an algebraic loop concerning continuous-time variables

may arise which is solved by the Modelica-tool (see Section 3.1.7).

when tokenInOut or pre(reStart) then
 t = if tokenInOut then pre(t)+firingSumIn-firingSumOut

else reStartTokens;
end when;

der(t) = conMarkChange;
when disMarksInOut then
 reinit(t, t + disMarkChange);
end when;
when reStart then
 reinit(t,reStartMarks);
end when;

180 6 The Petri Net Library

6.1.3 TRANSITIONS

The transition models contain several parameters and variables which can be defined by the

user. This can either be done by the property dialog on the graphical level or by modification

equations (see Section 3.1.2) on the textual level. The property dialog appears by double

clicking on the component icon and the contained parameters and modification possibilities

are summarized in Table 6.2. Thereby, it has to be distinguished between the following input

types: scalar, vector, scalar function, vector function, and condition expression. The input of

the different types is demonstrated by Example 6.3 and Example 6.4. The input of arc weights

as vectors in the transition model and not at the respective arcs is necessary due to the fact

that connections cannot be provided with properties according to the Modelica Specification

3.2 (Modelica Association 2010).

Table 6.2: Parameters and modification possibilities of discrete (d), stochastic (s), and
continuous (c) transitions

Name Type Part
of

Default
value

Allowed
values Description

delay scalar d 1 non-negative
real values

Delay of timed transitions
Definition 4.32

h
scalar or
scalar
function

s 1 non-negative
real values

Hazard function to
determine the characteristic
value of exponential
distribution
Definition 4.34

maximumSpeed
scalar or
scalar
function

c 1 non-negative
real values

Maximum speed
Definition 4.38

arcWeightIn
vector or
vector
function

d, s, c fill(1,nIn)

non-negative
integers
(d, s)/real
values (c)

Weights of input arcs
Definition 4.65

arcWeightOut
vector or
vector
function

d, s, c fill(1,nOut)

non-negative
integers
(d, s)/real
values (c)

Weights of output arcs
Definition 4.65

firingCon
condition
expressions d, s, c true

Boolean
condition
expressions

Firing condition
Definition 4.62

Example 6.3

Figure 6.9 shows a discrete Petri net. The indices of the connections are written at the arcs

within square brackets, e.g. the connection (𝐴𝐴1 → 𝐴𝐴1) has the input index [1] and (𝐴𝐴1 → 𝐴𝐴5)

has the output index [3]. The input of the arc weights displayed after the indices to property

dialog or as modification equation is performed by the vector functions

arcWeightIn = {2*P1.t,4}

6.1 Implementation of the Petri Net Elements 181

and

arcWeightOut = {2,1,5*P1.t},

whereby the expression P1.t accesses the current token number of 𝐴𝐴1. Thus, the weights of

the arcs (𝐴𝐴1 → 𝐴𝐴1) and (𝐴𝐴1 → 𝐴𝐴5) are functions which depend on the token number of 𝐴𝐴1.

Transitions can also be provided with additional conditions which have to be satisfied to

permit the activation. The condition

firingCon = time>9.7
means that the transition cannot be activated as long as time is less than 9.7.

Figure 6.9: The input of arc weights (Example 6.3)

Example 6.4

Figure 6.10 shows two continuous Petri nets. Transition 𝐴𝐴1 has a maximum speed function

which depends on the makings of 𝐴𝐴1 and 𝐴𝐴2. The input of this function to the property dialog

or as a modification equation is performed by the expression

maximumSpeed = 0.75*P1.t*P2.t,

whereby P1.t and P2.t accesses the marks of 𝐴𝐴1 and 𝐴𝐴2, respectively. Transition 𝐴𝐴2 has

a maximum speed function that depends on time and can be entered by the expression

maximumSpeed = if time<=6.5 then 2.6 else 1.7.

Figure 6.10: The input of maximum speeds which depend on markings (top) and time

(bottom) (Example 6.4)

T1

P1

P2

P3

P4

P5

[1]; 2∙m(P1)

[2]; 4

[1]; 2

[2]; 1

[3]; 5∙m(P1)

P1

T1

P3

P4P2

P5

T2

P7

P8P6

() ()1 0 75 1 2v . m P m P= ⋅ ⋅

2 6 time 6 5
2

1 7 time 6 5
. .

v
. .

≤
=  >

182 6 The Petri Net Library

The discrete transition model has to perform the processes activation (D1) and firability (D4)

and the continuous transition model has also to perform the processes activation (C3) and

firability (C5), and, additionally, the preliminary (C6) and instantaneous (C8) speed is

calculated. These processes are detailed hereafter.

ACTIVATION PROCESS (D1, C3)

The activation process of a discrete transition (D1) and a continuous transition (C3) is

performed by an algorithmic procedure in the block activationDis and activationCon,

respectively, based on Definition 4.66. Thereby, an event has to be triggered at every point in

time when the transition becomes active to initiate the enabling process of the places. This

requires the usage of blocks instead of functions due to the fact that no events are generated in

functions according to the Modelica Specification 3.2 (Modelica Association 2010). The

continuous activation process differentiates between strongly and weakly input and output

active according to Definition 4.46.

When a discrete transition is activated, the next putative firing time is saved as firingTime.

The variable delayPassed indicates if the delay is already elapsed. When the delay is

passed, the variable active is set to false to generate a new event if the transition can

become active again. Thereby, the instance of the block activationDis is denoted by
activation.

In the case of a stochastic transition, a when-statement contains an equation to determine the

next putative firing time. The delay is then an exponentially distributed random number which

is generated according to the value of the hazard function h at this time instant. Thereby, the

exponentially distributed random number is generated by the function randomexp which

calls an external C-function as described in Section 3.1.4 and Example 3.10. At every event

instant a new random number has to be generated; but Modelica functions are only called

active = activation.active and not pre(delayPassed);
when active then
 firingTime = time + delay;
end when;
delayPassed = active and time>=firingTime;

6.1 Implementation of the Petri Net Elements 183

when the values of the input arguments have changed. They are said to be pure. This pure

property of a function can be suppressed by the vendor-specific annotation

__Dymola_pure=false

as it is shown in Example 3.10.

Moreover, a new putative firing time is only generated when a transition has just fired tokens

and becomes active again afterwards. The hazard function can depend on the markings of

several places to perform a stochastic simulation (see Section 5.5). If the hazard function has

changed due to firing other transitions, the putative firing time is only adapted to the new

value of the hazard function but no new random number is generated according to the next

reaction method of Algorithm 1 in Section 5.5.

The reusing of the putative times is achieved by a when-statement (see Section 3.1.3). The

equations of the elsewhen-part are active when the hazard function assigned to an active

transition has just changed its value. The putative firing time putFireTime is then rescaled

according to step 5c of Algorithm 1 and the current value of the hazard function is saved as

hold for the next rescaling.The equations within the when-part are active when the transition

becomes active. It contains an equation for generating a new putative firing time. The

Boolean variable active is set to false when the transition has just fired tokens. When the

transition can become active again, it switches back to true. In this manner an event is

generated at each firing point in time so that a new putative firing time is always generated.

FIRABILITY (D4, C5)

When the delay of a discrete transition is passed, the connected input places check which

transition can be enabled and report back via the connector variable enable. If a transition is

enabled by all input places, the variable enabledByInPlaces is true. Based on this, the

when active then
 putFireTime := time+Functions.Random.randomexp(h);
 hold := h;
elsewhen (active and h<>hold then
 putFireTime := if h>0 then time+hold/h*(putFireTime-time)
 else Constants.inf;
 hold := h;
end when;

184 6 The Petri Net Library

output places of the transition perform their enabling. If a transition is enabled by all output

places, the variable fire becomes true and the transition fires tokens (Definition 4.22).

A continuous transition fires when it is active and, additionally, enabled by all connected

discrete places.

PRELIMINARY AND INSTANTANEOUS SPEED CALCULATION (C6, C8)

The preliminary speed is calculated by the block preliminarySpeed according to

Definition 4.48. The preliminary speed depends on the activation status of the transition

(strongly or weakly input/output active). If a transition is not involved in a type-2-conflict, the

instantaneous speed is calculated by means of Definition 4.47; otherwise, the conflict is

resolved in the place model and the speed is decreased by the reported decreasing factors

(Definition 4.50). The instantaneous speed is reported to the connected places by the

connector variable instSpeed to perform the mark change.

In this context, an algebraic loop concerning continuous-time variables may arise which is

solved by the Modelica-tool (see Section 3.1.7).

6.1.4 ARCS

xHPNs comprise four different kinds of arcs: normal, test, inhibitor, and read arcs. The

Modelica language do not support the assignment of properties to arcs that are generated by

connect equations (Modelica Association 2010). Due to this fact, the test, inhibitor, and read

arcs are realized by component models which are interposed between places and transitions

(see Figure 6.11); the normal arc is simply generated by the connect equation.

The parameters of test and inhibitor arcs are summarized in Table 6.3. To avoid connecting

the same place to the same transition by a test and normal arc or by an inhibitor and normal

arc, the option normalArc can be selected. Then the arc is a double arc.

instantaneousSpeed=min(min(min(decreasingFactorIn),
min(decreasingFactorOut))*maximumSpeed,prelimSpeed);

6.1 Implementation of the Petri Net Elements 185

Figure 6.11: Modeling of normal (top left), test (bottom left), inhibitor (top right), and read

arcs (bottom right) with the PNlib

Besides the parameters, the models of test, inhibitor, and read arcs solely consist of the two

connectors TransitionIn and PlaceOut and specific modification equations of the output

variables within brackets after the connectors.

Table 6.3: Parameters of test and inhibitor arcs

Name Type Default
value

Allowed
values Description

testValue scalar 1

non-negative
integers if
connected to
discrete places,
non-negative
real values
otherwise

The marking of the place
must be greater to enable
firing of transitions (test
arc);
the marking of the place
must be smaller to enable
firing (inhibitor arc).

normalArc choice/scalar no no or yes

If yes is chosen, then the
arc is also a normal arc to
change the marking by
firing (called double arc).

Thereby, the connector variable arcType of the PlaceOut-connector is set to 2 in case of a

test arc, to 3 in the case of an inhibitor arc, and to 4 in the case of a read arc; otherwise, the

variable is equal to 1 and indicates a normal arc. The variable arcType is needed for the

activation process of discrete and continuous transitions (D1, C3, Definition 4.66, Figure 6.3,

and Figure 6.4). Additionally, the variables arcWeight, maxSpeed, prelimSpeed, and

instSpeed of the TransitionIn-connector are set to zero to guarantee that the marking is

not changed by firing transitions connected by test, inhibitor, or read arcs which are not

double arcs. If the arcs are double arcs, the mentioned variables are adopted as they stand. The

other connector variables are just conveyed from one connector to another. This process is

also illustrated in Figure 6.12. In the case of double arcs, the weights for test and inhibitor

arcs are determined by the variable testValue of the arc model and the weight for the

normal arc are entered by the arcWeightIn variable of the transition model. This variable

can be set in the property dialog of the transition or by a modification equation (see

T2P3 P4

T3P5 P6

T4P7 P8

T1P1 P2

186 6 The Petri Net Library

Section 6.1.3 and Example 6.5). The component model of read arcs has no parameters or

modification possibilities.

Figure 6.12: The component model of a test arc

Example 6.5

Figure 6.13 shows a Petri net in which the connection (𝐴𝐴2 → 𝐴𝐴1) is a double arc (test and

normal arc) and (𝐴𝐴5 → 𝐴𝐴2) is also a double arc (inhibitor and normal arc). This is modeled by

interposing the component models TA and IA between place and transition. The numbers

within square brackets at the arcs are the indices of the connections followed by the weights

for the normal arcs. The test values for test and inhibitor arcs are written below the TA and IA

model, respectively. Then, the arcWeightIn variable of 𝐴𝐴1 is the vector {3, 5, 8} and

for 𝐴𝐴2 it is {2.8, 1.2}. Additionally, testValue=7 for TA and testValue=1.75 for IA.

This means that 𝐴𝐴1 can only be activated when 𝐴𝐴2 has more than 7 tokens and 𝐴𝐴2 can only

be activated when 𝐴𝐴5 has less than 1.75 marks. In addition, 5 tokens are removed from 𝐴𝐴2

every time 𝐴𝐴1 fires and 1.2 marks are removed from 𝐴𝐴5 continuously in the time of firing 𝐴𝐴2

due to the fact that both arcs are double arcs.

Figure 6.13: A Petri net with test and inhibitor arcs (Example 6.5)

T1P1

arcType = 2

arcWeight = 0
maxSpeed = 0
prelimSpeed = 0
instSpeed = 0

activationenabling/
marking calculation

normalArc=no

T1

P1

P2 [2]; 5

[1]; 3

P2

[3]; 8

P4

T2

P5

[2]; 1.2

[1]; 2.8
7

1.75

6.2 Modeling, Simulation, and Animation with Dymola 187

6.2 MODELING, SIMULATION, AND ANIMATION

WITH DYMOLA

To use the PNlib for graphical modeling, simulation, and animation of xHPNs an appropriate

environment is needed. In this study, the tool Dymola version 7.4 is used. This section gives

an introduction in the usage of the PNlib in combination with the Dymola tool.

The main window of Dymola has two different operating modes: Modeling and Simulation.

The buttons Modeling and Simulation in the lower right corner allow switching from one

mode to the other (see Figure 6.14).

Figure 6.14: The main window of Dymola with two modes: Modeling (top) and Simulation
(bottom)

M
O

D
EL

IN
G

S
IM

U
LA

TI
O

N

188 6 The Petri Net Library

The main window in the Modeling mode is used to establish models and model components.

It consists of a modeling area, a package browser (upper left), and a component browser

(lower left). The package browser comprises open packages and displays them in a

hierarchical structure. The model components can be drag from it to the diagram layer in

order to construct a model. The component browser summarizes all components in a tree

structure that are used in the model. With the button , the model can be viewed on the

textual level and with the button , it is displayed in the diagram layer (see Figure 6.15).

Figure 6.15: A Modelica model displayed in the diagram layer (top) and in the Modelica text

layer (bottom)

6.2 Modeling, Simulation, and Animation with Dymola 189

Before an established model is simulated, it should be checked. This check is performed by

clicking the button and comprises several symbolic and syntactic tests to trap a lot of

errors. If the check was successful, a message dialog appears to indicate that the requirements

for a subsequent simulation are met.

A successfully checked model can be translated and simulated by switching to the Simulation

mode. A model is translated to C-code (see also Section 3.1.7) by clicking the button and

the button performs the simulation and also the translation if it was not performed in

advance. Dymola offers a wide range of setup possibilities to manipulate the simulation. The

setup dialog appears by clicking the button . There, the start and stop time can be set and,

additionally, an integration method out of 16 possibilities can be chosen, e.g. Dassl, Euler,

Runge-Kutta.

When the simulation has been performed successfully, the results can be displayed as plots.

The variable browser on the left hand side shows all variables of the model to plot in a

hierarchical structure (see Figure 6.14). Thereby, the variable t of the place model accesses

the marking evolution over time.

Another possibility to represent the simulation results of an xHPN model is an animation.

Thereby, several settings can be made in the property dialog of the settings-box. These

settings are global and, thus, affect all components of the Petri net model. Using the prefixes

inner and outer (see Section 3.1.1), means that the settings are common to all Petri net

components of a model. The settings-box provides the following display and animation

options:

− showPlaceName: displays the names of places,

− showTransitionName: displays the names of transitions,

− showDelay: displays the delays of discrete transitions,

− showCapacity: displays the minimum and maximum capacities of places,

− showWeightTIarc: displays the arc weights of test and inhibitor arcs,

− animateMarking: animates the current marking in the places; the change of

tokens/marks is displayed in the places during animation,

− animatePlace: animates the color of places. Places change their degree of redness

according to the amount of tokens/marks; thereby, the redness degree is scaled by the

parameter scale from 0 to 100,

190 6 The Petri Net Library

− antimateTransition: animates the color of transitions. Transitions change their color

to yellow when they fire; thereby, discrete transitions blink yellow for specified time units

(timeFire) while continuous transitions are yellow the entire time while firing,

− animatePutFireTime: animates the putative firing time of stochastic transitions; the

putative firing time is displayed under the transition during animation,

− animateHazardFunc: animates the hazard function of stochastic transitions; the hazard

function is displayed under the transition during animation,

− animateSpeed: animates the instantaneous speed of continuous transitions; the

instantaneous speed is displayed under the transition during animation,

− animateWeightTIarc: animates the weights of test and inhibitor arcs; the weights are

displayed under the arc during animation,

− animateTIarc: animates the color of test and inhibitor arcs; the arc is green when the

weight is satisfied and red otherwise,

The animation toolbar allows control of the

animation. An animation offers a way to analyze the marking evolutions of large and complex

xHPNs. Figure 6.16 shows four selected points in time of the animation of an xHPN example.

Figure 6.16: Animation of an xHPN model

6.3 Connection between Dymola and Matlab/Simulink 191

All display and animation options are realized with the DynamicSelect annotation. The first

argument specifies the value of the editing state and the second argument the value of the

non-editing state (Modelica Association 2010).

6.3 CONNECTION BETWEEN DYMOLA AND

MATLAB/SIMULINK

To simulate the established Modelica model several times with different parameter settings

and use the arising simulation results for parameter estimation, sensitivity analysis,

deterministic and stochastic hybrid simulation, or process optimization (see Chapter 4), the

Modelica models in Dymola are connected to Matlab/Simulink. This is realized with the aid

of a Dymola interface in Simulink and a set of Matlab m-files utilities (Dassault Systèmes AB

2011). After some specific paths are set in Matlab (see Dassault Systèmes AB 2011 for a

detailed description), the Dymola interface can be found in the Simulink library browser and

dragged to Simulink models. The connection process is performed using the following steps:

1. Construct an arbitrary Modelica model, for example, an xHPN with the PNlib. All

variables whose values should be available in Matlab have to be declared with the prefix

output on the highest level. If the marking of a place is needed for subsequent analyses,

this is achieved by creating a connector of the output connector at the top of the place

icon. In the case of discrete places it is an orange IntegerOutput connector and in the

case of continuous places it is a blue RealOutput connector as displayed in Figure 6.17;

both connectors are part of the Modelica standard library. In the example of Figure 6.18

the markings of places 𝐴𝐴1, 𝐴𝐴3, 𝐴𝐴5, and 𝐴𝐴6 are available in Matlab. Similarly, all

variables which are declared as input on the highest level in Modelica can be determined

in Matlab/Simulink.

2. Create a new Simulink model file and drag a DymolaBlock into it.

3. Open the GUI by clicking on the DymolaBlock. Enter the name of the model and its path

or click the button Select from Dymola if the model has just been opened in Dymola.

annotation(Icon(...Text(...textString=DynamicSelect("%name",
if showPlaceName==1 then "%name" else " ")),...));

192 6 The Petri Net Library

Figure 6.17: IntegerOutput (left) and RealOutput (right) connectors to access the marking

of the places in Matlab/Simulink

4. Compile the model by clicking the button Compile model.

5. After successful compilation, all parameters and start values of the corresponding

Modelica model are displayed in the GUI in a hierarchical structure.

6. The parameters and start values can either be changed in the GUI or by specific functions

called within an algorithmic procedure of an m-file. The following table contains the

functions needed for loading and changing parameters and start values (Dassault

Systèmes AB 2011).

Table 6.4: Functions for loading and changing parameters in Matlab procedures (Dassault
Systèmes AB 2011)

Name Explanation
loadsin Loads values from dsin.txt (or <modelname>.txt file).

setParameterByName Sets parameters and start values using the name of the
corresponding Modelica variable.

setParametersFDsin Modifies the parameters and start values of a
DymolaBlock.

setfromdsin

Sets parameters and initial conditions from values in
dsin.txt (the same as Reset Parameters in the
DymolaBlock GUI). Calls loaddsin followed by
setParametersFDsin.

7. For each variable declared as output in Modelica, a corresponding output port is added to

the DymolaBlock. The names of these ports are those of the Modelica variables. The

values of the output variables over time can be summarized in a matrix by connecting all

ports to a bus creator (black bar in Figure 6.18) which is in turn connected to an Outport

block. Similarly, for all input variables of the Modelica model, a corresponding input port

is added to the DymolaBlock. These input ports can be, for example, connected to

external signal sources.

8. Simulate the Simulink model either with the Simulink GUI or by the prompt

[t,x,y] = sim(model,timespan,options,ut)

within Matlab procedures (see Matlab help for a detailed description).

6.3 Connection between Dymola and Matlab/Simulink 193

9. The arising simulation results can be used for further calculations (parameter estimation,

sensitivity analysis, stochastic simulation, and process optimization).

Figure 6.18: By the Simulink interface DymolaBlock, a connection between Dymola and

Matlab/Simulink can be established

The general procedure of a Matlab algorithm which performs several simulations with

different parameter settings and uses the arising results for further calculation is outlined in

Figure 6.19.

Figure 6.19: General procedure of a Matlab algorithm which performs several simulations

with different parameter settings and uses the results for further calculations

Setting of
model

parameters
Simulation Simulation

results AlgorithmModel
parameters End? EndStart

194 6 The Petri Net Library

6.4 PETRI NET LIBRARY FOR PROCESS MODELING

OF BIOLOGICAL SYSTEMS

Based on the PNlib, a library specifically adapted for modeling biological systems has been

developed, called PNproBio (Petri Nets for process modeling of Biological systems). This

library comprises so-called wrappers to simplify the modeling process. These wrappers are

sub-models consisting of connected component models of the PNlib which represent specific

biological processes and reactions. With this procedure, a wrapped xHPN model can be

reused several times in the same or in different models which offers on the one hand an easy-

to-use model at the top level with an intuitive and familiar adapted biological view and on the

other the flexibility and generality of the xHPN concept at a lower level.

The PNproBio library is further divided into the following sub-libraries:

− Kinetics: comprises continuous transitions with mass action kinetics, Michaelis-Menten

kinetics, or enzyme inhibition kinetics as maximum speed functions,

− Stochastic: comprises stochastic transitions with stochastic mass action kinetics or

stochastic level kinetics as hazard function in order to perform stochastic simulations (see

Section 5.5),

− CellGrowth: comprises sub-models for modeling growth with and without inhibition

mechanisms,

− CellDeath: comprises sub-models for modeling death of organisms,

− SubstrateUptake: comprises sub-models for modeling the uptake of a substrate of an

organism from the environment,

− ProductFormation: comprises sub-models for modeling the product formation of an

organism,

− Process: comprises sub-models for modeling activation or inhibition mechanisms of

processes or reactions,

− Fermenter: comprises sub-models for modeling fermentation processes,

− OddAndEnds: Several sub-models that are needed within different kinds of models.

An example of a wrapping process is depicted in Figure 6.20. The wrapper 𝑅1 represents the

Monod kinetics which models the growth of cells limited by a substrate. It consists of one

continuous transition with the Monod kinetics

6.4 Petri Net Library for Process Modeling of Biological Systems 195

𝜇 ⋅ 𝑋𝑣 =
𝜇𝑚𝑎𝑥𝑆
𝑆 + 𝐾𝑠

⋅ 𝑋𝑣 Eq. 6-1

as maximum speed function, whereby 𝜇𝑚𝑎𝑥 is the maximum specific growth rate, 𝐾𝑠 is the

substrate concentration at half maximum rate, 𝑆 is the concentration of the limited substrate,

and 𝑋𝑣 is the concentration of living cells. The limited substrate glutamine is modeled by the

place 𝐺𝑙𝑛. This place is connected to the upper input port of the Monod kinetics wrapper and

the place 𝑋𝑣 which represents the living cell concentration is connected to the upper output

port. Other non-limited substrates which are needed for growth are connected to the lower

input port and similar by-products which arise during growth are connected to the lower

output port. In this example, these are glucose and lactate which are represented by the places

𝐺𝑙𝑐 and 𝐿𝑎𝑐, respectively. The arc weights are coefficients which represent the yield of cells

and by-products from the substrates. The wrapping of the Monod kinetics means that only the

two parameters 𝜇𝑚𝑎𝑥 and 𝐾𝑠 have to be entered instead of the entire maximum speed function

each time.

Figure 6.20: Wrapping process of the Monod kinetics

Figure 6.21 shows the wrapper for activating a process. The reaction 𝑅1 proceeds first when

the marking of 𝐼 becomes less than the activation value of 10. Behind the wrapper is a Petri

net model that connects 𝐼 to a discrete transition via an inhibitor arc. When the marking of 𝐼

falls below 10, one token is added to the discrete Place 𝐴𝐴1. 𝐴𝐴1 is connected to the continuous

transition via a test arc with the test value one. This causes that 𝐴𝐴2 becomes firable at the time

196 6 The Petri Net Library

when 𝐴𝐴1 gets the token and remains firable regardless of whether the activation value is

exceeded or not.

Furthermore, a fermentation process can be modeled with the aid of the wrappers summarized

in the Fermenter sub-library. Figure 6.22 (a) shows an example of a fermentation model. It is

comprised of a red fermenter wrapper to determine the operation mode, and specific

continuous places - displayed with a red margin - to consider the volume change during

fermentation if repeated batch, fed batch, or continuous feeding is applied as the feeding

strategy.

Figure 6.21: Wrapper for process activation; the reaction 𝑹𝟏 proceeds first when the

marking of 𝑰 becomes less than 10

The fermenter wrapper offers the possibility to model the following operation modes,

whereby the parameter Vstart is the start volume of the fermenter (see Figure 6.23):

− Batch: No additional substrate is added during the fermentation process,

− Repeated Batch fixed interval: A volume (Vin) with specific substrate concentrations

(Sin) is added to the fermenter at fixed time steps (deltaT) starting at a determined point

in time (feedStartTime) and stopping when the fermenter reaches the maximum

capacity (Vmax),

− Repeated Batch fixed feeding number: A volume (Vin) with specific substrate

concentrations (Sin) is added to the fermenter at n fixed points in time (feedingTimes);

thereby, the feeding concentrations can be different at each feeding time,

6.4 Petri Net Library for Process Modeling of Biological Systems 197

− Fed Batch: A volume is added to the fermenter continuously with the substrate

concentration Sin and the flow rate Fin starting from a determined point in time

(feedStartTime) until the fermenter reaches the maximum capacity (Vmax); hence, the

volume (𝑉) changes by the differential equation 𝑑𝑉
𝑑𝑡

= 𝐹𝐹𝑖𝑛,

− Continuous: A volume is added to the fermenter continuously with the substrate

concentration Sin and the flow rate Fin and it is also taken away continuously with the

flow rate Fout starting from a determined point in time (feedStartTime); hence, the

volume changes by the differential equation 𝑑𝑉
𝑑𝑡

= 𝐹𝐹𝑖𝑛 − 𝐹𝐹𝑜𝑢𝑡. Usually, equal input and

output flows are chosen (𝐹𝐹𝑖𝑛 = 𝐹𝐹𝑜𝑢𝑡) so that 𝑑𝑉
𝑑𝑡

= 0.

The sub-model of the fermenter is displayed in Figure 6.22 (b). If a (discrete) repeated batch

mode is chosen, the discrete transition 𝐴𝐴1 fires by adding Vin marks to the volume place V

and
Sin*Vin/(V.t+Vin)

to the connected substrate places at specified points in time while the continuous transition

fires with the maximum speed Fin in the case of fed batch or continuous mode. Thereby, the

weight of the arc to the volume place is one and the arc weights of the substrate places are

determined by

Sin/V.t.

Figure 6.22: Modeling a fermentation process with the wrappers of the Fermenter sub-

library: (a) an example of a fermentation model, (b) the fermenter wrapper, and
(c) the fermenter place wrapper

198 6 The Petri Net Library

Furthermore, a modified continuous place is needed to model fermentation processes due to

the fact that the concentrations of the regarded substances change by changing the volume.

This wrapper is depicted in Figure 6.22 (c). In the case of repeated batch, the discrete

transition 𝐴𝐴1 removes
P1.t*Vin/(V.t+Vin)

marks from the place at each feeding time and in the case of fed batch and continuous

feeding, the continuous transition 𝐴𝐴2 fires at the maximum speed
Fin/V.t*P1.t

to adapt the concentration to the current fermenter volume. The prefixes inner and outer

are used to make the marking of the volume place (V.t), the volume addition (Vin), the flow

rate (Fin), and the applied operation mode (mode) available in the modified place model and

in this manner perform the respective adaptations. Figure 6.22 shows the simulation results of

a repeated batch experiment. Thereby, 1 𝑙 volume with a glucose concentration of 15 𝑔/𝑙 is

added to the fermenter every 0.80 days starting at day 4.8 and stopping when the maximum

volume of 5 𝑙 is reached.

S, X, P, V S, X, P, V S, X, P, V S, X, P, V

Vin, Sin Fin, Sin Fin, Sin Fout, Sout, Xout, Pout

(a) (b) (c) (d)

Figure 6.23: Possible operation modes of a fermenter: (a) batch, (b) repeated batch, (c) fed-
batch, and (d) continuous mode

Moreover, to simplify the stochastic modeling process of biochemical reactions, two wrappers

have been implemented which can be found in the sub-library Stochastic of the PNproBio

library. Both wrappers consist of a stochastic transition with a specific hazard function so that

only the rate constants have to be entered instead of the whole function each time. The

putative firing time of the wrapper StochasticMassAction is generated by using the

stochastic mass action hazard function in Eq. 5-19 while the wrapper StochasticLevel uses

the stochastic level hazard function in Eq. 5-20. The values for the maximum concentration 𝑀

and the amount of levels 𝑁𝑁 + 1 can be determined globally in the Settings-component and the

parameter 𝑁𝑁 can also be defined locally in the place components.

6.5 Tool for the Analysis of Modelica Models 199

6.5 TOOL FOR THE ANALYSIS OF MODELICA MODELS

In addition to the Modelica libraries PNlib and PNproBio, a Matlab-tool, called AMMod

(Analysis of Modelica Models), has been implemented to realize the following steps of the

modeling process:

− Preprocessing and Relationship Analysis (PRA, Section 5.1),

− Parameter Estimation (PE, Section 5.3),

− Sensitivity Analysis (SA, Section 5.4),

− Deterministic and Stochastic Hybrid Simulation (DHS, SHS, Section 5.5),

− Model Predictions (MP, Section 5.6), and

− Process Optimization (PO, Section 5.7).

Figure 6.24 again shows the developed modeling process of Section 5 but now with a

concrete assignment of the modeling steps to the tools. Orange-marked steps are performed

with the AMMod-tool in Matlab/Simulink and green-marked steps are accomplished by the

Modelica-tool Dymola and the Modelica libraries PNlib and PNproBio. The deterministic

hybrid simulation is marked by both colors to indicate that it can be performed with both

tools.

At first, the Modelica model has to be constructed in Dymola either graphically with the aid

of PNlib and PNproBio or textually with a system of discrete, differential, and algebraic

equations. Afterwards, the model has to be connected to Matlab/Simulink with the Dymola

interface as described in Section 6.3 to perform one of the analysis methods above. The

analysis methods can be chosen from the main menu of the AMMod-tool:

− PRA: Preprocessing and Relationship Analysis,

− PESA: Parameter Estimation and Sensitiviy Analysis of structure parameters,

− DHS: Deterministic Hybrid Simulation,

− SHS: Stochastic Hybrid Simulation, and

− POSA: Process Optimization and Sensitivity Analysis of process parameters.

If PRA is selected, the GUI of the curve fitting toolbox of Matlab appears and experimental

data can be preprocessed by smoothing splines and relationships between biological

compounds can be analyzed as described in Section 5.1 (see Appendix A3-1 for more details).

200 6 The Petri Net Library

Figure 6.24: The modeling process of Figure 5.1 with the assignment of the modeling steps to

the developed tools. Orange-marked steps are performed with AMMod in
Matlab/Simulink and green-marked steps are performed with the Modelica-tool
Dymola and PNlib/PNproBio

6.5 Tool for the Analysis of Modelica Models 201

The PESA option offers the possibility to perform the estimation and sensitivity analysis of

structure parameters to adapt the model as good as possible to the experimental data.

Therefore, the experimental data has to be prepared in an Excel map and several settings have

to be made on the PESA GUI as described in Appendix A3-2. The results of PE and SA are

saved in a .mat-file.

The DHS option offers the possibility to perform a deterministic hybrid simulation of the

Modelica model in Matlab/Simulink while the SHS option executes a stochastic hybrid

simulation as described in Section 5.5. For both methods the path of the Simulink model, the

name of the Dymola block, and the path of the input file have to be entered into the GUI.

Additionally, the start time, the stop time, and the step size can be chosen. Afterwards, the

model parameters can be loaded into the GUI to adapt them for the simulation. The SHS

requires also a determination of the number of simulation runs and the number of means that

have to be calculated from the simulation data. The model outputs to plot can then be

selected, and plotted by clicking plot. The simulation results are saved in a .mat-file.

The last option on the AMMod main menu is to perform a process optimization and

sensitivity analysis of process parameters (POSA) as described in Section 5.7. Therefore, the

same optimization and sensitivity analysis methods can be applied as mentioned for the PESA

option (see Appendix A3-2). The aim of PO can either be to minimize or to maximize one

output of the model. This model output is determined by entering the number of its output

port at the Dymola block. The port 𝐴𝐴1_𝑡 in Figure 6.18, for example, has the number 1 and

the port 𝐴𝐴6_𝑡 the number 3. Furthermore, time can be integrated to the objective function due

to the fact that it usually correlates with the cost of the process. Thus, the objective functions

in Eq. 5-24 and Eq. 5-25 are possible. After the model inputs have been set, the model

parameters can be loaded into the GUI and the process parameters can be selected.

The application of the AMMod tool is described exemplarily in Chapter 7 by modeling the

xanthan production of Xanthomonas campestris bacteria.

202 6 The Petri Net Library

6.6 COMPARISON TO OTHER PETRI NET TOOLS

The following table summarizes the advantages of the PNlib towards the existing tools

mentioned in Chapter 2 and clarifies the demand of developing a new Petri net simulation

environment for biological applications.

Table 6.5: Comparison of the other Petri nets tools mention in Chapter 2 and the new Petri
net simulation environment (PNlib, PNproBio, AMMod)

Drawbacks of other Petri net tools
presented in Chapter 2

New environment: PNlib, PNproBio,
AMMod

The underlying formalism is partly
− not defined precisely,
− not common, or
− not completely.

The xHPN and the xHPNbio formalism (see
Definition 4.68, Definition 5.1) have been
developed which can represent nearly all
kinds of biological processes and serve as
specification for the implementation of the
PNlib.

The definitions of processes essential for
simulation are partly
− not common,
− not precise enough,
− not complete enough to cover all

possible conflict situations that could
occur during simulation.

All processes have been defined precisely in
Chapter 4 and all possible conflict situations
which could occur during simulation of an
xHPN are trapped. Hence, the simulation
yields reliable results.

The possibilities for post-processing
simulation results are limited.

The connection to Matlab/Simulink,
described in Section 6.3 , enables using the
whole power of Matlab for post-processing
simulation results. Several mathematical
methods have been already implemented and
summarized in the tool AMMod.

Partly, there is no graphical user interface
and no animation possibilities.

The Modelica tool Dymola provides a user-
friendly graphical user interface for modeling
with the libraries PNlib and PNproBio (see
Section 6.2). The models can either be
established graphically or textually. If the
model is constructed graphically, the textual
description is generated automatically.
Additionally, the models can be animated
which can be controlled using several
settings (see Section 6.2). Furthermore, the
PNlib can be easily integrated into any other
network modeling tool; the biological
network modeling tool VANESA already
uses the PNlib for simulation biological
networks (see Section 8).

6.6 Comparison to other Petri net Tools 203

Partly, no hierarchically modeling is
supported and the number of predefined
biological components is limited.

The library PNproBio is based on the PNlib
and provides several wrappers which
represent specific biological processes and
reactions. These sub-models can be reused
several times in the same or in different
models which offers on the one hand an
easy-to-use model at the top level with an
intuitive and familiar adapted biological view
and on the other the flexibility and generality
of the xHPN concept at a lower level (see
Section 6.4).

Partly, no object-oriented modeling concept
is used.

The object-oriented modeling concept by
means of discrete, differential, and algebraic
equations allows an easy way to maintain,
extend, and modify the components of the
PNlib (see Section 6.1).

Partly, the solvers and the corresponding
settings are not changeable or not common.

The hybrid simulation is performed by using
the Dymola-tool which comprises several
possibilities to adapt the solver settings in
order to achieve reliable simulation results
(see Section 6.2).

204

7 APPLICATION

The modeling process described in Section 5 and depicted in Figure 6.24 as well as the

application of the tools developed in this work, PNlib, PNproBio, and AMMod, is

demonstrated exemplarily by the xanthan production of Xanthomonas campestris bacteria.

Hereby, this chapter focuses on describing the general procedure of modeling and not on the

selected example. Hence, no new insights about the bacteria and the xanthan production are

presented due to using pseudo experimental data; but rather the usage of the developed

environment is shown as well as the power and permit is proven.

The next sections are structured according to the steps of the modeling process in Figure 6.24.

At first, the considered biological phenomena - the xanthan production of Xanthomonas

campestris bacteria – is presented which founds the first step of the modeling process.

Afterwards in step 2, known experiments and results concerning influence factors on growth

and xanthan production are introduced. Additionally, known model approaches for growth

and xanthan production are presented. To show that the methods work and no other side

effects cause success or failure, pseudo experimental data generated by simulation have been

used instead of real data from a wet lab. Based on the facts from literature, model hypotheses

are formulated which should be represented by the models (step 3). Step 4, the procedure of

preprocessing experimental data and relationship analysis, is performed by pseudo

experimental data as previously mentioned in order to construct a simple unstructured model

(step 5). Parameter estimation and sensitivity analysis – step 6 - are shown by a previously

created unstructured model. The process optimization procedure – step 9 - is described by an

already parameterized and verified metabolically structured model. Furthermore, all

optimization methods introduced in Section 3.2 are applied for parameter estimation and

process optimization to compare the performance and goodness of the achieved solutions.

Finally, a chemically structured model has been established to perform deterministic and

stochastic hybrid simulations which is step 7 of the developed modeling process.

7.1 Step 1: Biological Phenomena 205

7.1 STEP 1: BIOLOGICAL PHENOMENA

The Xanthomonas campestris species are gram-negative, aerobe proteobacteria which are rod

shaped with a size of 0.2 − 0.6 × 0.8 − 2.9 𝜇𝑚. The genome contains typically 5 million base

pairs (Vorhölter et al. 2008). Xanthomonas campestris bacteria are plant-pathogen. They harm

more than 400 different kinds of plants and a further classification can be made into different

pathovars based on the type of host plant which they attack (Sieber et al. 2006). Xanthomonas

campestris pv. campestris, for example, infects crucifer plants like cabbage and cauliflower

and causes the black rot disease.

Besides the plant-pathogenicity, Xanthomonas campestris cells produce the

exopolysaccharide xanthan. Xanthan is widely used in industry for a number of reasons

which include its pseudo plastic properties, i.e. xanthan solutions are very viscos but the

viscosity decreases with increasing shear rate. It is used as a thickening agent, emulsifier, and

stabilizer. In the 1980s xanthan was allowed as a food additive and assigned with the E

number E-415. It is now an ingredient in many food products such as salad dressings, syrups,

toppings, relishes, sauces, baked goods, and frozen foods. Besides, xanthan is used for

pharmaceuticals such as creams and suspensions as well as for cosmetic products such as

dentures, cleaners, shampoos, and lotions. Additionally, an important application of xanthan

is in the petroleum industry; there, it is used in drilling fluids and in enhanced oil recovery

processes (Garcia-Ochoa et al. 2000).

Figure 7.1: Factors that influence Xanthomonas campestris cell growth and xanthan

production during the fermentation process

Inoculum Carbon Source

Temperature

pH

Xanthan Biomass

stirrer speed

Gas flow

Dissolved Oxygen

Nitrogen Source Other Nutrients

Reactor
type

Operation
mode

C/N
ratio

Viscosity

206 7 Application

Several factors influence the growth of Xanthomonas campestris bacteria and their xanthan

production during the fermentation process. Some of them are depicted in Figure 7.1. Within

this study, a model has been established which can predict and optimize growth and xanthan

production subject to the input factors: carbon source, nitrogen source, operation mode of the

bioreactor, and temperature. The model is based on known phenomena from literature which

are detailed hereafter. The predictions and suggested optimized input factors have to be

validated by wet-lab experiments in future projects (see Chapter 8).

7.2 STEP 2: EXPERIMENTAL DATA AND PRIOR

KNOWLEDGE

The beginning of every modeling process is founded by extensive investigation into the

studied organism and the corresponding processes. The question is asked: Which factors

influences growth and xanthan production of Xanthomonas campestris bacteria? And in

addition: Are there already any models available? The results of this literature study are

presented hereafter.

To show that the methods work and no other side effects cause success or failure, pseudo

experimental data generated by simulation have been used instead of real data from a wet lab.

7.2.1 INFLUENCE FACTORS ON GROWTH AND XANTHAN

PRODUCTION

The model should include the influence of the factors: carbon and nitrogen source (C/N ratio),

viscosity, operation mode of the fermenter, and temperature. The proposed results of

experiments in this juncture are summarized in this section.

CARBON SOURCE

Several authors have studied the influence of different carbon sources and different initial

concentrations on growth and xanthan production. Souw and Demain suggested that glucose

7.2 Step 2: Experimental Data and Prior Knowledge 207

and sucrose are best for xanthan production with an initial concentration of 40 𝑔/𝑙 (Souw and

Demain 1979).

Leela and Sharma tested various types of sugars and obtained a maximum xanthan yield with

glucose, sucrose, maltose, and starch (Leela and Sharma 2000). All these sugars were good

enough for xanthan production but using glucose a slightly higher amount of xanthan was

produced.

Funahashi et al. showed inhibition of growth and cessation of xanthan production in initial

glucose concentrations greater than 50 𝑔/𝑙 (Funahashi et al. 1987). This inhibition

phenomenon was also verified by experiments done by (Amanullah et al. 1998). Additionally,

Lo et al. pointed out that the specific growth rate and the cell yield from glucose are decreased

as glucose concentration is increased (Lo et al. 1997). On the hand, higher glucose

concentrations yielded a higher final xanthan concentration and, in addition, the xanthan yield

from glucose and the specific xanthan production rate were also increased. Moraine and

Rogovin detected no effect on the cell growth rate by varying the initial glucose concentration

in the range of 5 𝑔/𝑙 to 50 𝑔/𝑙 (Moraine and Rogovin 1973).

NITROGEN SOURCE

Furthermore, the influence of the nitrogen source on growth and xanthan production was

investigated by several authors. Souw and Demain showed that high nitrogen concentrations

inhibit xanthan production and stimulate growth and that the xanthan production is better with

nitrogen limitation (Souw and Demain 1979). These results are verified by the experiments of

Lo et al. which indicate that higher nitrogen concentrations give higher cell yields and specific

growth rates but lower xanthan yields and specific xanthan production rates (Lo et al. 1997).

They also found that the specific xanthan production rate depends on the initial glucose

concentration.

C/N RATIO

Moreover, the effects of the carbon to nitrogen ratio (C/N ratio) are often studied. Lo et al.

showed that the xanthan yield and the specific production rate increased with increasing C/N

ratio while the cell yield and the specific growth rate decreased (Lo et al. 1997). Tait et al.

also achieved a greater xanthan production in media which contained higher C/N ratios (Tait

208 7 Application

et al. 1986). Roseiro et al. reached a maximal xanthan production in nitrogen limitation at a

C/N ratio of 23 (Roseiro et al. 1992).

VISCOSITY

Moraine and Rogovin showed that growth stops when the viscosity reached 2 𝐴𝐴𝑎 𝑠 (Moraine

and Rogovin 1973). They assumed that possibly a stagnant slime layer builds up around the

cells as viscosity increases which causes resistance to the transport of nitrogen into cells to

decrease and restrict the growth. Higher concentrations of nitrogen permits growth at higher

viscosities due to the increased driving force for transporting nitrogen into the cells.

Additionally, they observed a decline of the specific product formation rate at high viscosities

which can also be most likely explained by a slime layer around the cells. The layer could

also restrict the rate of diffusion of nutrients into the cell; perhaps, it also controls a xanthan

synthesis feedback mechanism. Increased shear may enhance its removal and improve the

production rate.

OPERATION MODE

To avoid inhibition effects and enhance xanthan concentrations repeated batch, fed-batch, and

continuous operation modes were proposed. Lo et al. studied batch and fed-batch cultures

with best results for a two-stage batch fermentation with a low C/N ratio in the first stage and

a high C/N ratio in the second stage. Thereby, the second stage begins at the end of the

exponential growth phase (Lo et al. 1997). In such a manner, a fast cell growth is achieved

during the exponential phase due to the low C/N ratio with a moderate nitrogen concentration

and the high C/N ratio in the second stage causes an enhanced xanthan production. They also

performed fed-batch fermentations in which additional glucose was added in five equal parts

during the stationary phase so that the C/N ratio was kept low throughout the fermentation.

Due to the low C/N ratio the xanthan production was poor even through cells grew well in the

growth phase.

Funahashi et al. suggested controlling the glucose concentration at 30 − 40 𝑔 𝑘𝑔⁄ broth by

intermittent additions of glucose to prevent inhibition of cell growth and cessation of xanthan

production (Funahashi et al. 1987).

7.2 Step 2: Experimental Data and Prior Knowledge 209

Vuyst et al. replaced the conventional fermentation process - a growth phase is followed by a

xanthan production phase - by a two-step process (Vuyst et al. 1987). The two-step process

comprises an initial biomass production step followed by a xanthan formation step which

requires a high C/N ratio and higher aeration and agitation levels. The optimal time for

changing from one step to the other is critical and occurred at 25 − 30 ℎ after inoculation. At

this time, the content of one biomass production fermenter could be apportioned up to 10

xanthan production fermenter.

Amanullah et al. compared the biological performance of three fed-batch cultures, two-step

glucose addition, multiple-step glucose addition, and continuous glucose addition, with two

batch cultures with different initial glucose concentrations (Amanullah et al. 1998). They

showed that the performance cannot be improved by increasing the initial glucose

concentration above 50 𝑔/𝑙 nor by an intial glucose concentration of 40 𝑔/𝑙 followed by a

single glucose addition of 10 𝑔/𝑙 while nitrogen is still present. However, when the nitrogen

is exhausted, the two-step glucose addition and the continuous feeding strategy can enhance

the performance compared to batch fermentations.

TEMPERATURE

Shu and Yang studied the influence of temperature on cell growth and xanthan formation.

They found that higher temperatures lead to xanthan biosynthesis while lower temperatures

favor cell growth (Shu and Yang 1991). Due to the fact that the optimum temperatures for cell

growth and xanthan production are not the same, they suggest a two-stage fermentation with a

temperature shift from 27°C to 32°C. Both xanthan yield and production rate were improved

by this type of fermentation.

7.2.2 MODELING OF GROWTH AND XANTHAN PRODUCTION

Several kinetic models have been proposed to model Xanthomonas campestris growth and

xanthan production. These models can be divided into structured and unstructured models as

mentioned in Section 5.2.

210 7 Application

UNSTRUCTURED MODELS

At first, unstructured models should be considered which describe the bacteria as a black box

and are used most frequently according to their simplicity and technical robustness. These

models represent at least the evolution of biomass, carbon, and xanthan over time and often

the development of the nitrogen source is included, too.

Moraine and Rogovin proposed an unstructured model for the xanthan production which takes

the dependencies of growth and production on nutrients into account (Moraine and Rogovin

1966). In addition, Moraine and Rogovin proposed using the logistic equation to describe

growth when the limited nutrient is not known

𝑑𝑋
𝑑𝑡

= 𝜇𝑚𝑎𝑥𝑋 �1 −
𝑋

𝑋𝑚𝑎𝑥
�, Eq. 7-1

whereby 𝑋 is the biomass concentration, 𝜇𝑚𝑎𝑥 is the maximum growth rate, and 𝑋𝑚𝑎𝑥 is the

maximum biomass concentration.

Subsequently, Weiss and Ollis proposed a model which only depends on biomass

concentration and its evolution over time (Weiss and Ollis 1980). Thereby, the growth is

described by the logistic in Eq. 7-1 and the product formation is expressed by the Luedeking-

Piret equation. The Luedeking-Piret equation models the production formation dependent on

the current biomass concentration (𝑋) and growth �𝑑𝑋
𝑑𝑡

� in a linear fashion

𝑑𝐴𝐴
𝑑𝑡

= 𝛼
𝑑𝑋
𝑑𝑡

+ 𝛽 𝑋, Eq. 7-2

where 𝐴𝐴 is the xanthan concentration and 𝛼 and 𝛽 are empirical constants which vary with

fermentation conditions (pH, temperature, etc.). Hence, the term 𝛼 𝑑𝑋
𝑑𝑡

 represents the growth

associated part of the product formation and 𝛽 𝑋 the non-growth associated part. The

convenience of this model is that 𝛽 can be estimated from stationary phase data �𝑑𝑋
𝑑𝑡

= 0� and

the parameter 𝛼 can be fit throughout the early exponential phase. Weiss and Ollis assumed

that xanthan production is both growth and non-growth associated (𝛼 ≠ 0, 𝛽 ≠ 0).

Pinches and Pallent also modeled the growth with the logistic equation in Eq. 7-1 and showed

independence of the parameter 𝜇𝑚𝑎𝑥 on the initial nitrogen concentration (Pinches and Pallent

1986). Product formation and substrate consumption are expressed by the Luedeking-Piret

equation. Additionally, they added an equation for oxygen consumption which depends also

on biomass and growth.

7.2 Step 2: Experimental Data and Prior Knowledge 211

Quinlan pointed out that the use of the Luedeking-Piret equation for modeling xanthan

production has the serious weakness that it neither explicitly nor implicitly depends on the

substrate concentration (Quinlan 1986). This can be avoided by expressing the quasi-

stoichiometric relationship between xanthan production and glucose consumption by the

following differential equation

𝑑𝐴𝐴
𝑑𝑡

= 𝑘𝑃 ⋅ 𝑆 ⋅ 𝑋, Eq. 7-3

where 𝑆 is the glucose concentration and the rate constant 𝑘𝑝 varies with physicochemical

variables such as temperature, pH, dissolved oxygen, and stirring speed. In addition, they

found a quasi-stoichiometric relationship between produced biomass and consumed nitrogen.

Shu and Yang integrated the effect of temperature on xanthan production and growth into

their model (Shu and Yang 1991). They modeled the growth with the logistic equation in

Eq. 7-1 and found that the parameter 𝜇𝑚𝑎𝑥 is highly dependent on temperature. They

expressed this temperature effect by the root-square model

𝜇𝑚𝑎𝑥(𝐴𝐴) = �𝐶1(𝐴𝐴 − 𝐴𝐴𝑚𝑖𝑛)�1 − 𝑒𝑥𝑝�𝐶2(𝐴𝐴 − 𝐴𝐴𝑚𝑎𝑥)���
2

. Eq. 7-4

Xanthan production and glucose consumption are represented by the Luedeking-Piret model.

The growth associated parameters were also modeled by the root-square model. The non-

growth associated parameters were found to follow temperature dependency according to the

Arrhenius law

𝛽(𝐴𝐴) = 𝑎𝐴 𝑒𝑥𝑝 �−
𝐸𝐴

𝑅𝐴 ⋅ 𝐴𝐴
� Eq. 7-5

Garía-Ochoa et al. mentioned that an unstructured kinetic model for describing xanthan

production has to take into account biomass evolution as a function of the nitrogen source as

it is a limiting nutrient (Garía-Ochoa et al. 1995). They showed in experiments that growth

stops when nitrogen is exhausted and, therefore, they proposed the following modified

logistic equation

𝑑𝑋
𝑑𝑡

= 𝜇𝑚𝑎𝑥 �
𝑋0

𝑌𝑋𝑁
+ 𝑁𝑁0� 𝑋 �1 −

𝑋
𝑋0 + 𝑌𝑋𝑁𝑁𝑁0�, Eq. 7-6

where 𝑁𝑁0 is the initial nitrogen concentration, 𝑋0is the initial biomass concentration, and 𝑌𝑋𝑁

is the yield of biomass from nitrogen. Additionally, they added the following differential

equation to describe the evolution of dissolved oxygen (𝑂𝑂2)

212 7 Application

𝑑𝑂𝑂2

𝑑𝑡
= 𝑘𝐿𝑎 ⋅ (𝑂𝑂2

∗ − 𝑂𝑂2)�����������
𝑜𝑥𝑦𝑔𝑒𝑛 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

− �𝑚𝑂𝑋 +
1

𝑌𝑋𝑂

𝑑𝑋
𝑑𝑡

�
�����������
𝑜𝑥𝑦𝑔𝑒𝑛 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

, Eq. 7-7

where 𝑂𝑂2
∗ is the saturated value of the dissolved oxygen and 𝑚𝑂 is the dissolved oxygen

consumption coefficient. The equation includes a term for oxygen mass transfer and another

for oxygen consumption for maintenance and growth.

All these models do not include the observed inhibition effect of high substrate concentrations

and viscosity on xanthan production and growth previously mentioned. To integrate these

effects, Mulchandani et al. introduced the following modified form of the logistic equation in

Eq. 7-1 (Mulchandani et al. 1988)

𝑑𝑋
𝑑𝑡

= 𝜇𝑚𝑎𝑥𝑋 �1 − �
𝑋

𝑋𝑚𝑎𝑥
�

𝜃

�. Eq. 7-8

The constant 𝜃 > 0 could be defined as an index of inhibitory effect, i.e. for very large values

of 𝜃 the growth will follow an exponential pattern and a value close to zero describes

complete inhibition. This modified logistic equation provides a means to describe growth

inhibition caused by heat and mass transfer problems due to increased viscosity. In order to

also consider the availability of substrate, the authors proposed a combination of the Monod

equation and the modified logistic equation in Eq. 7-8

𝑑𝑋
𝑑𝑡

= 𝜇𝑚𝑎𝑥 �
𝑁𝑁

𝐾𝑁 + 𝑁𝑁
� 𝑋 �1 − �

𝑋
𝑋𝑚𝑎𝑥

�
𝜃

�, Eq. 7-9

where 𝑁𝑁 is the nitrogen concentration and 𝐾𝑁 is substrate concentration at half maximum

speed. Furthermore, Luong and Mulchandani proposed a generalized form of the Monod

kinetics to consider the inhibition effect of glucose on growth (Luong and Mulchandani 1988)

𝑑𝑋
𝑑𝑡

= 𝜇𝑚𝑎𝑥𝑋 �
𝑁𝑁

𝐾𝑁 + 𝑁𝑁
� �1 −

𝑆
𝑆𝑚𝑎𝑥

�
𝛿

, Eq. 7-10

where 𝑆𝑚𝑎𝑥 is the maximum glucose concentration above which growth is completely

inhibited. Furthermore, several kinetics for substrate inhibition of other organisms have been

proposed.

7.2 Step 2: Experimental Data and Prior Knowledge 213

STRUCTURED MODELS

All mentioned unstructured kinetic models do not recognize the complex set of metabolic

reactions which occur within the cell. Hence, they are not able to predict the dynamic

behavior of cells when operational and external conditions are changed. Additionally,

unstructured models can predict intracellular concentrations only if it is assumed that there is

a constant fraction of the respective metabolite in the cell. Thus, their usage for understanding

the cellular dynamics and the involved regulation mechanism is limited (Blanch and Clark

1997).

Structured kinetic models are needed to reveal the influence of process variables on kinetics

and to offer a possibility to predict the behavior of the cell under different external conditions.

Structured models can be divided according to (Garcia-Ochoa et al. 1998) into:

1. Compartmental models: Biomass is modeled by dividing it into a set of compartments

such as DNA, RNA, proteins, hydrocarbons, etc.

2. Metabolically structured models: Growth is modeled unstructured but the carbon

source metabolism in the cell is considered to describe the xanthan formation.

3. Chemically structured models: Nitrogen and carbon source metabolisms in the cell are

taken into account to describe growth and xanthan production.

COMPARTMENTAL MODEL

Garcia-Ochoa et al. proposed a compartmental structured model which describes the growth

of Xanthomonas campestris bacteria by involving the influence of the initial nitrogen

concentration (Garcia-Ochoa et al. 2004a). At first, they simplified the biomass pathway by

lumping it into three different groups of macromolecules: DNA, RNA, and proteins. It is

assumed that nitrogen is the limited substrate and other compounds that are necessary for

growth, such carbon source and phosphate, are unlimited in availability. The ammonium

metabolism is divided into non-forming bases amino acids synthesis and forming bases amino

acids synthesis (see Figure 7.2). Based on the stoichiometric equations for this metabolic

pathway, they proposed a model of differential equations. Thereby, the pseudo steady state is

applied on forming bases amino acids and RNAI and the reactions 𝑟𝑟1, 𝑟𝑟3, 𝑟𝑟4, and 𝑟𝑟5are

expressed by the second order power law and 𝑟𝑟2 by the first order power law.

214 7 Application

Figure 7.2: The simplified metabolic pathway for the components of biomass proposed by
(Garcia-Ochoa et al. 2004a)

METABOLICALLY STRUCTURED MODEL

Pons et al. introduced a metabolically structured model which comprised an unstructured part

in order to represent growth and a structured part to describe xanthan production, glucose

consumption, and oxygen consumption according to a reaction network as a simplified

scheme of the intracellular carbon metabolism (Pons et al. 1989).

Thereby, the growth is modeled by the logistic equation in Eq. 7-1. The structured part is

based on the metabolic network in Figure 7.3 which represents the xanthan synthesis and the

total catabolism of glucose, i.e. Entner-Doudoroff pathway and tricarboxylic acid cycle. The

stoichiometric equations are derived from this metabolic network and their analysis leads to

several assumptions.

Based on the model of Pons et al. and their corresponding assumptions, Garcia-Ochoa et al.

developed a metabolically structured model with an unstructured part for growth described by

Eq. 7-6 (Garcia-Ochoa et al. 1998). The stoichiometric relationships for total glucose

catabolism, maintenance energy, and oxidative phosphorylation have been taken from (Pons

et al. 1989) but the stoichiometry of xanthan production from glucose has been rearranged.

Additionally, the authors pointed out some simplifications due to their observations.

Furthermore, they studied the influence of temperature on the model parameters. Thereby,

they expressed some parameters by the root-square model already mentioned in Eq. 7-4 and

others were fitted to linear expressions.

7.2 Step 2: Experimental Data and Prior Knowledge 215

Figure 7.3: Coupling between xanthan biosynthetic pathway and glucose metabolism of

Xanthomonas campestris bacteria

CHEMICALLY STRUCTURED MODEL

Garcia-Ochoa et al. also combined the compartmental model with the metabolically structured

model to a chemically structured model (Garcia-Ochoa et al. 2004b, Garcia-Ochoa et al.

1996). This model considers the nitrogen metabolism for growth and the carbon metabolism

for xanthan production. Figure 7.4 shows the assumed simplified reaction scheme. The

coupling of the xanthan biosynthesis pathway and the glucose metabolism is displayed in

Figure 7.3. The stoichiometric equations for the nine reactions are the same as the ones for the

compartmental model and metabolically structured model as well as the kinetic equations and

the model assumptions.

The authors studied, in addition, the influence of initial nitrogen concentration and

temperature on the model parameters. They found no relationships between the initial

Glucose

Glucose

Glucose 6-P

6-Phosphogluconate

2-keto-3dexoy-6phosphogluconate

Glyceraldehyde 3-phosphate

1,3-diphosphoglycerate

3-Phosphoglycerate

Phosphoenolpyruvate

Pyruvate

Acetyl-CoA

Citrate

Cis-asoniate

Isocitrate

α-Ketoglutarate

Succinyl-CoA

Succinate

Fumarate

Malate

Oxaloacetate

Glucose 1-PUDP-Glucose

UDP-Glucoronic Acid Fructose 6-P

Mannose 6-P

Mannose 1-P

GDP-Mannose

Xanthan

ATP
UDP

2NAD(P)H,H+

UDP
UDP

GDP

GTP

NAD(P)H,H+

NAD(P)H,H+

ATP

ATP

NAD(P)H,H+CO2

NAD(P)H,H+CO2

NAD(P)H,H+

CO2

GTP

FADH
2

NADH,H+

En
tn

er
-D

ou
do

ro
ff
 P

at
hw

ay

Trycarborxylic
Acid Cycle

216 7 Application

nitrogen concentration and the model parameters and different relationships between the

temperature and the model parameters: some parameters have a maximum, some parameters

have a linear relationship, and the remaining do not change with temperature. The parameters

with a maximum are described by the root-square model.

 (N)

Non-forming bases
amino acids (NFA)

Forming bases
amino acids (FA)

Intracellular
Proteins (IP)

Extracellular
Proteins (EP)

RNA

DNA

r1

r2

Glucose (S)

Xanthan
(P)

CO2

r5

r6

r3

r4

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝐻𝐻+ + 0.5𝑂𝑂2
𝑟𝑟7→ 𝑁𝑁𝑁𝑁𝐷𝐷+ + 𝐻𝐻2𝑂𝑂

𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻2 + 0.5𝑂𝑂2
𝑟𝑟7→ 𝐹𝐹𝐹𝐹𝐷𝐷+ + 𝐻𝐻2𝑂𝑂

𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑃𝑃𝑃𝑃
𝑟𝑟8→ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐻𝐻2𝑂𝑂

𝐴𝐴𝑇𝑇𝑇𝑇 + 𝐻𝐻2𝑂𝑂
𝑟𝑟9→ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑃𝑃𝑃𝑃

NH4
+

Figure 7.4: Simplified metabolic pathways for xanthan and biomass assumed by (Garcia-

Ochoa et al. 2004b)

MODELING OF OXYGEN MASS TRANSFER COEFFICIENT AND

VISCOSITY

The introduced metabolically and chemically structured models as well as the unstructured

model from (Garcia-Ochoa et al. 1995) involve the evolution of oxygen dependent on the

oxygen mass transfer coefficient 𝑘𝐿𝑎. Garcia-Ochoa and Gomez. studied the influence of

stirrer speed (𝑅), superficial gas velocity (𝑉𝑠), and liquid effective viscosity �𝜇𝑒𝑓𝑓� on the

oxygen transfer rate and found a correlation between these variables and the oxygen mass

transfer coefficient (Garcia-Ochoa and Gomez 1998)

where the constant 𝐶 depends on the geometry of the vessel and stirrer employed. Several

approaches to model the viscosity 𝜇𝑒𝑓𝑓 have been proposed (see García-Ochoa et al. 2000,

𝑘𝐿𝑎 = 𝐶 ⋅ 𝑉𝑠
𝛼 ⋅ 𝑅𝛽 ⋅ 𝜇𝑒𝑓𝑓

𝜆 , Eq. 7-11

7.3 Step 3: Model Hypotheses 217

Marcotte et al. 2001, Speers and Tung 1986, Xuewu et al. 1996). Marcotte and others, for

example, suggested expressing the viscosity dependent on xanthan concentration 𝐴𝐴 by the

following three model equations (Marcotte et al. 2001)

and the temperature dependency was described by the Arrhenius model

where 𝑎𝐴 is the frequency factor, 𝐸𝐴 is the activation energy, and 𝑅𝐴 is the gas constant.

7.3 STEP 3: MODEL HYPOTHESES

The following table summarizes the hypotheses which should be represented partly by the

established models.

Table 7.1: Model hypotheses

H1 Bacteria growth is limited by nitrogen.

H2 High glucose concentrations inhibit growth. Growth is totally inhibited
if the glucose concentration exceeds 50 g/l.

H3 Xanthan production is partly growth associated.

H4 High nitrogen concentrations inhibit xanthan production. The xanthan
production is totally inhibited if the nitrogen concentration exceeds
0.3 g/l.

H5 Glucose and oxygen are used for maintenance processes.

H6 The viscosity correlates with the xanthan concentration.

H7 High viscosities inhibit growth. The growth is totally inhibited if the
viscosity exceeds 2 Pa s.

H8 Growth depends on temperature.

H9 Xanthan production depends on temperature.

𝜇𝑒𝑓𝑓 = 𝑎𝐴𝐴𝑏 Eq. 7-12

𝜇𝑒𝑓𝑓 = 𝑎 𝑒𝑥𝑝(𝑏𝐴𝐴) Eq. 7-13

𝜇𝑒𝑓𝑓 = 1 + 𝑎𝐴𝐴 + 𝑏𝐴𝐴2 Eq. 7-14

𝜇𝑒𝑓𝑓 = 𝑎𝐴 𝑒𝑥𝑝 �
𝐸𝐴

𝑅𝐴 ⋅ 𝐴𝐴
� Eq. 7-15

218 7 Application

H10 Xanthan production is limited by oxygen.

H11 Glucose is used for growth and xanthan production.

H12 Nitrogen is used for growth.

7.4 STEP 4 AND 5: PREPROCESSING AND

RELATIONSHIP ANALYSIS

Preprocessing of experimental data and the subsequent relationship analysis are the first steps

of the modeling process after hypotheses have been formulated and the corresponding

experiments have been completed (see Figure 6.24). The procedure is performed in this

section for pseudo experimental data of a fermentation process of Xanthomonas campestris

bacteria. Pseudo experimental data are data gained from simulations and not from the wet lab.

In this manner, it can be shown that the methods work and no side effects influence success or

failure. Thereby, the concentrations of glucose (𝑆), nitrogen (𝑁𝑁), xanthan (𝐴𝐴), and biomass

(𝑋) have been measured at several points in time. At first, the experimental data are

preprocessed in Matlab by smoothing splines to get the development of the concentrations at

each point in time and the corresponding derivatives with respect to time. Based on these

results, the relationships can be studied with the purpose of establishing a simple unstructured

model of the xanthan production.

The RA is performed by the following four steps.

Step 1: Relationship between growth rate 𝝁 and substrates

It is assumed that the increase of biomass can be described by the following differential

equation

Since all derivatives are approximated by smoothing splines in the preprocessing phase, the

growth rate can be calculated by rearranging Eq. 7-16

𝑑𝑋
𝑑𝑡

= 𝜇 ⋅ 𝑋. Eq. 7-16

𝜇 =
1
𝑋

⋅
𝑑𝑋
𝑑𝑡

=
𝑑 𝑙𝑛(𝑋)

𝑑𝑡
. Eq. 7-17

7.4 Step 4 and 5: Preprocessing and Relationship Analysis 219

Thereby, it has to be preferred to take the derivative of the logarithmic biomass concentration

evaluated by smoothing splines based on logarithmic measurements. In this manner,

numerical difficulties due to small values of 𝑋 can be avoided.

Figure 7.5: upper left: growth rate (𝝁) versus nitrogen concentration (𝑵), upper right: the

relationship between growth and nitrogen consumption, bottom: the relationship
between growth and product formation over the whole fermentation time

Furthermore, it assumed that nitrogen is the limited substrate because glucose is still available

when the bacteria stop growing and nitrogen is exhausted at this time (H1, Table 7.1). The

growth rate is plotted against the nitrogen concentration to identify a functional relationship

(see Figure 7.5 upper left). The plot shows a nearly linear relationship which can be described

either by

or by Monod kinetics with a much higher Monod constant than the initial nitrogen

concentration

The smoothed data are fitted to both functions. Both functions reach good fittings with

slightly better results for Monod kinetics so that the Monod kinetics is taken to describe the

growth dependent on the nitrogen concentration.

𝜇 = 𝑘 ⋅ 𝑁𝑁 Eq. 7-18

𝜇 =
𝜇𝑚𝑎𝑥 ⋅ 𝑁𝑁
𝐾𝑁 + 𝑁𝑁

. Eq. 7-19

220 7 Application

Step 2: Relationship between growth rate 𝝁 and nitrogen consumption rate 𝒒𝑵

It is assumed that there is a relationship between the growth rate and the consumption rate of

nitrogen (H12, Table 7.1). To detect this relationship, the derivative of 𝑋 is plotted against the

derivative of 𝑁𝑁 in the time of growth. This plot shows a linear correlation between the rates

(see Figure 7.5 upper right). Hence, the nitrogen consumption rate and growth rate differ from

each other only in a constant denoted by 𝑌𝑋𝑁 which is the yield of biomass from nitrogen. The

value of this coefficient is estimated to 6.0745 g biomass/g nitrogen.

Step 3: Production rate of xanthan

It is assumed that the production of xanthan can be described with the Luedeking-Piret

equation (H3, Table 7.1)

with a growth associated term 𝛼 𝑑𝑋
𝑑𝑡

 and a non-growth associated term 𝛽 𝑋. If the product

formation is totally growth associated, then 𝛽 = 0 and if it is totally independent from

bacterial growth, then 𝛼 = 0. The data shows that the production also continues when growth

stops so that production is not totally growth associated, i.e. 𝛽 ≠ 0. On the other hand, if the

production is totally non-growth associated, there will be a linear correlation between the

change of xanthan and biomass over the whole fermentation time; but Figure 7.5 (bottom)

shows clearly that no linear correlation exists, i.e. 𝛼 ≠ 0.

At first, the coefficient 𝛽 is estimated from the xanthan data of the stationary phase when

growth stops (𝑑𝑋 𝑑𝑡⁄ = 0) because then Eq. 7-20 simplifies to

When the assumption is true, xanthan has to increase linearly in the stationary phase, i.e.

𝑑𝐴𝐴 𝑑𝑡⁄ = 𝑐𝑜𝑛𝑠𝑡. To consider this fact, the measurements are interpolated additionally with

linear functions to avoid misadaption due to the curvature of the cubic smoothing splines.

Then Eq. 7-21 leads to the constant value 𝛽 = 0.2471.

Afterwards, the value of the parameter 𝛼 can be obtained from data of the exponential growth

phase by

𝑑𝐴𝐴
𝑑𝑡

= 𝛼
𝑑𝑋
𝑑𝑡

+ 𝛽 𝑋 Eq. 7-20

𝑑𝐴𝐴
𝑑𝑡

= 𝛽 𝑋 ⟺ 𝛽 =
1

𝑋𝑚𝑎𝑥
⋅

𝑑𝐴𝐴
𝑑𝑡

. Eq. 7-21

𝛼 =
𝑑𝐴𝐴
𝑑𝑡 − 𝛽𝑋

𝑑𝑋
𝑑𝑡

= 0.8023. Eq. 7-22

7.4 Step 4 and 5: Preprocessing and Relationship Analysis 221

Step 4: Glucose consumption rate

It is assumed that glucose is used for growth and xanthan production and described by the

following differential equation (H11, Table 7.1)

To estimate the coefficients 𝑌𝑋𝑆, yield of biomass from glucose, and 𝑌𝑃𝑆, yield of xanthan

from glucose, the differential equation is rearranged to

Hence, the new parameters 𝑁𝑁 and 𝐵 can be determined in the same manner as described in

step 3 for xanthan production due to the fact that Eq. 7-23 has been transformed to the

Luedeking-Piret equation. Afterwards, the found values for 𝑁𝑁 and 𝐵 can be transformed back

to the yield coefficients

Based these results, a simple unstructured model for the xanthan production of Xanthomonas

campestris bacteria can be established by means of the PNlib and the PNproBio in Dymola

(see Figure 7.6). Thereby, glucose, nitrogen, xanthan, and biomass are modeled by continuous

places, the growth is represented by the Monod wrapper of the PNproBio library (see

Section 6.4), and the xanthan production is modeled by the Luedeking-Piret wrapper. The

fermentation is performed in a batch-mode due to the fact that no additional feedings have

been recognized in the experimental data.

Figure 7.6: Simple unstructured model of the xanthan production of Xanthomonas campestris

bacteria

𝑑𝑆
𝑑𝑡

= −
1

𝑌𝑋𝑆

𝑑𝑋
𝑑𝑡

 −
1

𝑌𝑃𝑆

𝑑𝐴𝐴
𝑑𝑡

= −
1

𝑌𝑋𝑆
𝜇𝑋 −

1
𝑌𝑃𝑆

�𝛼
𝑑𝑋
𝑑𝑡

+ 𝛽𝑋�. Eq. 7-23

𝑑𝑆
𝑑𝑡

= − �
1

𝑌𝑋𝑆
+

1
𝑌𝑃𝑆

𝛼�
𝑑𝑋
𝑑𝑡

−
1

𝑌𝑃𝑆
𝛽𝑋 = −𝑁𝑁

𝑑𝑋
𝑑𝑡

− 𝐵𝑋. Eq. 7-24

𝑌𝑃𝑆 =
𝛽
𝐵

= 0.7734

𝑌𝑋𝑆 =
𝑌𝑃𝑆

𝑁𝑁𝑌𝑃𝑆 − 𝛼
= 0.1692.

Eq. 7-25

222 7 Application

The parameters are set to the found values and the model is simulated. The results show a

good agreement between the pseudo experimental data and simulation results. The error sum

could be possibly reduced by parameter estimation using the Nelder-Mead simplex method

with the found values as the starting point. A local method is applied due to the assumption

that the found values are in the neighborhood of the global minimum. The error sum could be

further reduced and nearly the same parameter values are found that are used for generating

the pseudo experimental data. The relative errors between original and optimized parameters

are negligible.

7.5 STEP 6 UND 8: PARAMETER ESTIMATION AND

SENSITIVITY ANALYSIS

An unstructured model of the xanthan production of Xanthomonas campestris bacteria has

been constructed by means of the PNlib and PNproBio. The model is depicted in Figure 7.7. It

describes the evolution of glucose (𝑆), nitrogen (𝑁𝑁), oxygen (𝑂𝑂2), xanthan (𝐴𝐴), and biomass

(𝑋) over time with the initial nitrogen concentration, the initial glucose concentration, the

fermentation operation mode, the gas flow rate, the stirrer speed, and the temperature as input

factors. The model has been established based on facts from literature summarized in

Section 7.2. Several equations have been found in different papers in this literature study

which can be now combined within a xHPNbio model.

The growth is modeled by Monod kinetics with nitrogen as a limited substrate (H1, Table 7.1)

combined with the term (1 − 𝑆 𝑆𝑚𝑎𝑥⁄) to express the inhibition phenomenon at high glucose

concentrations (H2, Table 7.1); thereby, 𝑆𝑚𝑎𝑥 = 50. Besides nitrogen, glucose and oxygen

are also consumed during growth. The growth is modeled by the wrapper 𝑅𝑥 (green box in

Figure 7.7).

The xanthan production is described by the Luedeking-Piret equation in Eq. 7-2 combined

with the term (1 − 𝑁𝑁 𝑁𝑁𝑚𝑎𝑥⁄) to represent the observed inhibition effect on xanthan

production at high nitrogen concentrations (H4, Table 7.1); thereby, 𝑁𝑁𝑚𝑎𝑥 = 0.3. This is

modeled by the wrapper 𝑅𝑝 (grey box in Figure 7.7). Furthermore, glucose and oxygen are

used for maintenance processes, (H5, Table 7.1) which are described by the wrappers 𝑅𝑚𝑠

and 𝑅𝑚𝑜 (olive-green boxes in Figure 7.7).

7.5 Step 6 und 8: Parameter Estimation and Sensitivity Analysis 223

The oxygen mass transfer is modeled by the continuous transition 𝐴𝐴𝑂𝑂 with the maximum

speed function 𝑘𝐿𝑎 ⋅ (𝑂𝑂2
∗ − 𝑂𝑂2) as previously mentioned in Eq. 7-7. Thereby, the oxygen

mass transfer coefficient 𝑘𝐿𝑎 is expressed by the equation Eq. 7-11 with 𝐶 = 3.08 ⋅ 10−3,

𝛼 = 0.43, 𝛽 = 1.75, and 𝜆 = −0.39 as suggested in (García-Ochoa et al. 1995), and 𝑂𝑂2
∗ =

0.0002. It is assumed that the viscosity correlates with xanthan concentration modeled by

Eq. 7-12 with 𝑎 = 0.08 and 𝑏 = 0.3 (H6, Table 7.1). The fermentation is performed as a

batch mode, i.e. glucose and nitrogen are added to the fermenter only at the beginning of the

experiment.

Figure 7.7: Unstructured model of xanthan production of Xanthomonas campestris bacteria

The input factors which influence the parameters, such as stirrer speed, temperature, and gas

flow, can be determined by selecting one of the input components (Constant, Step, Ramp,

Steps, or conditional Steps) and connecting them with the Input wrapper. In this manner the

stirrer speed, the temperature, and the gas flow rate can be accessed by Input.R, Input.T,

and Input.Vs, respectively. The stirrer speed, for example, is necessary to calculate the

oxygen mass transfer coefficient 𝑘𝐿𝑎 and influences the oxygen mass transfer in the

fermenter.

To check the performance of PE and SA methods, five pseudo experimental data sets are

generated by the unstructured model with different initial glucose (𝑆0) and nitrogen

concentrations (𝑁𝑁0) (see Table 7.2) while stirrer speed, temperature, and gas flow rate are

always the same. The stirrer speed begins with 3.3 rps and is increased in two steps to 9.2 rps,

the temperature is a constant 28°C, and the gas flow rate is a constant 0.001 m/s. The initial

224 7 Application

values of biomass, xanthan, and oxygen are 0.1 g/l, 0.1 g/l, and 0.00002 mol/l, respectively.

The data sets are listed in Table A6 - Table A10 (Appendix A4-1).

Table 7.2: Initial nitrogen and glucose concentrations for generating five pseudo
experimental data sets

Run 𝑵𝟎 𝑺𝟎
1 0.13 g/l 35 g/l
2 0.25 g/l 30 g/l
3 0.28 g/l 45 g/l
4 0.28 g/l 20 g/l
5 0.12 g/l 30 g/l

Table 7.3 summarizes the model parameters to be estimated based on the five data sets. The

objective function 𝑄𝑠𝑠 in Eq. 5-11 is used for the optimization problem with the weightings

to normalize the contribution of each residual. The weightings are also listed in the appendix

(see Table A11, Appendix A4-1).

Table 7.3: Model parameters of the unstructured model in Figure 7.7

Name Description Minimum
Value

Maximum
Value

YXN Yield of biomass from nitrogen 3 12
YXS Yield of biomass from glucose 0.01 1
YPS Yield of xanthan from glucose 0.3 1
YXO Yield of biomass from oxygen 1 300
mumax Maximum specific growth rate 0.01 5
Kn Monod constant for growth 0.1 10

alpha
Growth associated constant of
Luedeking-Piret equation for
xanthan production

0.1 10

beta
Non-growth associated constant
of Luedeking-Piret equation for
xanthan production

0.1 10

ms Maintenance coefficient of
glucose 0.01 1

mo Maintenance coefficient of
oxygen 0.00001 0.1

𝓌𝑖,𝑗
𝑘 = �

1
𝑚𝑎𝑥�𝓎�𝑖,𝑗

𝑘 , 𝑖𝑖 = 1, … , 𝑛𝑡�
�

2

, 𝑘 = 1, … , 𝑛𝑑 , 𝑖𝑖 = 1, … , 𝑛𝑡 , 𝑗 = 1, … , 𝑛𝑦 Eq. 7-26

7.5 Step 6 und 8: Parameter Estimation and Sensitivity Analysis 225

LOCAL SENSITIVITIES

At first, the sensitivities of the parameters are calculated locally at the original parameters by

evaluating the normalized sensitivity matrix in Eq. 3-43. This analysis yields a 275 × 10

matrix with 2750 elements that have to be compared. To facilitate this, the absolute matrix

elements are plotted in Figure 7.8 by representing the high sensitivities as black and low

sensitivities as white. The plot indicates that the glucose concentration (𝑆) is highly sensitive

to changes in the parameters 𝑌𝑋𝑁, 𝑌𝑋𝑆, 𝑌𝑃𝑆, 𝜇𝑚𝑎𝑥, 𝐾𝑁, 𝛽, and 𝑚𝑠 at almost all points in time

and in almost all data sets. The oxygen and nitrogen concentrations are less sensitive to

changes in all parameters. Additionally, the parameters 𝑌𝑋𝑂, 𝛼, and 𝑚𝑂 have less influence on

all observed concentrations and the parameter 𝑚𝑆 have a high influence only on the glucose

concentration and less on the others.

Figure 7.8: Plot of the absolute values of the normalized sensitivity matrix. Black fields

correspond to high sensitivities and white fields to low sensitivities.

PRINCIPAL COMPONENT ANALYSIS

Based on the normalized sensitivity matrix, a principal component analysis has been

performed which yields the following eigenvalues 𝜆 for the principal components 𝜓
Principal

Component 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7 𝜓8 𝜓9 𝜓10

𝜆 3.75E-04 1.26E-03 9.29E-02 1.87E-01 1.36E+00 2.37E+00 1.16E+01 1.95E+01 5.83E+01 1.02E+03

The eigenvectors reveal the contribution of each original parameter to the principal

components (see Figure 7.9). This analysis reveals that the objective function value is

negligibly sensitive to changes in parameter 𝑌𝑋𝑂, 𝛼, and 𝑚𝑂 because these parameters belong

only to the principal components with small 𝜆 values. On the other hand, the objective

226 7 Application

function is extremely sensitive to changes in parameter 𝑌𝑋𝑁, 𝑌𝑋𝑆, 𝜇𝑚𝑎𝑥, 𝐾𝑁, and 𝛽 because

these parameters contribute large parts to principal components with high 𝜆 values.

Figure 7.9: Contribution of the original model parameters to the principal components

GLOBAL SENSITIVITIES

However, these local sensitivities are only valid in a small neighborhood of the actual

parameter values. To reveal the effect of changes over the whole parameter range, global

sensitivity analysis methods have to be applied. Therefore, first-order sensitivity coefficients

and total-order sensitivity coefficients are calculated by the means of the eFAST method (see

Section 3.3.3) with 593 samples and 2 resamples for each parameter (𝑁𝑁 = 593, 𝑁𝑁𝑟 = 2).

Figure 7.10: eFAST sensitivity coefficients of the parameters of the unstructured model in

Figure 7.7. Right: first and total-order sensitivity coefficients, left: contribution
of each parameter to the variance of the objective function value according to
total-order sensitivity coefficients (others={𝒀𝑿𝑵, 𝒀𝑿𝑶, 𝜶}).

The eFAST method generates small but non-zero sensitivity coefficients for parameters to

which the model is completely independent (Marino et al. 2008). To reveal this effect a

7.5 Step 6 und 8: Parameter Estimation and Sensitivity Analysis 227

dummy parameter is added to the model which does not appear in the model equations nor

does it affect the model in any way so that the sensitivity coefficient has to be zero. The

dummy parameter of the unstructured model has a first-order sensitivity of 0.00006 and a

total-order sensitivity 0.0055 derived from aliasing and interference effects. It is assumed that

all parameters with a total-order sensitivity less than that of the dummy parameter are not

significantly different from zero. However, no parameter has a total-order sensitivity less than

that of the dummy parameter so it is assumed that all sensitivities are significantly different

from zero. The results of the SA are depicted in Figure 7.10 and reveal that the parameters 𝑌𝑃𝑆

and 𝛽 have a much higher sensitivity than the other parameters. These two parameters

contribute about 85% of the variance of the objective function value. The parameters 𝑌𝑋𝑁,

𝑌𝑋𝑂, and 𝛼 are negligibly sensitive to the objective function because they each contribute less

than 1% to the variance of the objective function value.

PARAMETER ESTIMATION

The PE is performed by all optimization algorithms introduced in Section 3.2 to compare the

performance and the achieved solutions. Thereby, the following four hybrid methods are

applied:

− Hybrid1: ES and Nelder-Mead simplex method (NMS),

− Hybrid2: ES and Hooke-Jeeves method (HJ),

− Hybrid3: CMAES and NMS, and

− Hybrid4: CMAES and HJ.

The method specific parameters are listed in Table A12 (Appendix A4-2). To improve the

optimization procedure, all parameters are scaled to the interval [0,1] by the defined

minimum and maximum values in Table 7.3. For the simulation, the parameters are re-scaled

by the equation

Furthermore, the objective function 𝑄𝑠𝑠 in Eq. 5-11 is used with the weightings in Eq. 7-26 to

normalize the contribution of each residual.

At first, all parameters are optimized regardless of their sensitivities. The results of the

applied methods are summarized in Figure 7.11 (left) and reveal the best results for the

𝓅𝑠𝑖𝑚 = 𝓅𝑙 + (𝓅𝑢 − 𝓅𝑙) ⋅ 𝓅𝑜𝑝𝑡. Eq. 7-27

228 7 Application

methods Hybrid2 and Hybrid4. Both methods reach estimators with objective function values

less than 10−6 while the other methods only achieve objective function values higher than

10−3.

Figure 7.11: left: PE results of the unstructured model in Figure 7.7; right: Relative error

(%) of the estimated parameters

The estimator delivered by ES and CMAES could always be improved by local methods.

Thereby, HJ seems to work much better than NMS. But the estimators found in the first phase

of the hybrid algorithms underlie random mechanisms so that the assumption was checked by

running HJ with the start values generated in the first phase of Hybrid1 and Hybrid3 and

running NMS with the start values generated in the first phase of Hybrid2 and Hybrid4. The

results verify the assumption and show that HJ always achieves good estimators with

objective function values less than 10−6 while NMS improve the estimators produced in the

first phase slightly. MNS always stopped at a non-optimum solution which is not even a

stationary point of the objective function. But HJ requires more than double computing time

to find the estimators as NMS. Hence, the HJ method should be used preferably even if it

needs many more function evaluations. Additionally, it is advisable to take CMAES for the

first phase because this method achieves similar results to ES but in less than the half

computing time. An advantage of both - ES and CMAES - is that they can be easily

parallelized so that the problem can be handled by parallel sessions. In this way, models with

more parameters as shown within this study can be parameterized. Further studies aim at the

parallelization of the hybrid optimization methods (see Chapter 8). Furthermore, the DIRECT

method completely fails in achieving acceptable parameter estimators in an appropriate time,

which was also observed by Moles et al. who performed a PE for a pathway model with 36

parameters (Moles et al. 2003).

The relative errors of the parameter estimates are displayed in Figure 7.11 (right) and show

highest variations (more than 100%) for the parameters 𝜇𝑚𝑎𝑥 and 𝐾𝑁. Only the methods

7.6 Step 9: Process Optimization 229

Hybrid2 and Hybrid4 reach estimators with a relative error less than 0.1%. Further studies

indicated that the minimum of this optimization problem lies in a narrow valley so that it

could be assumed that some of the applied algorithms are stuck due to the flat shape of the

objective function in that region.

FIXED PARAMETER ESTIMATION

In agreement with the results of the global sensitivity analysis, the parameters 𝑌𝑋𝑁, 𝑌𝑋𝑂, and 𝛼

seem to have less influence on the objective function value and should be fixed to reduce the

dimension of the search space and improve the optimization procedure. The fixed PE has been

performed with same settings as the previous PE which are listed in Table A12 (Appendix

A4-2). The results show that all hybrid algorithms converge to the right solution and the

objective function values are much better compared to those before fixing less sensitive

parameters. Additionally, fewer function evaluations and, thus, less computing time was

needed to achieve these solutions. However, the results of ES and CMAES could not be

improved by fixing less sensitive parameters. They still converge to the wrong solution,

perhaps due to the location of the minimum in a narrow valley. Furthermore, the DIRECT

method achieves a much better solution as before but the solution still has the worst objective

function value and the computing time that is needed to reach this solution is also the highest

of the applied methods.

7.6 STEP 9: PROCESS OPTIMIZATION

Besides the unstructured model, a metabolically structured model has been constructed by

means of the PNlib and PNproBio to optimize the xanthan yield of the fermentation process

(see Figure 7.12). Thereby, the growth of the Xanthomonas campestris bacteria is modeled

unstructured by the continuous transition 𝐴𝐴𝑥 with 𝜇𝑚𝑎𝑥 ⋅ 𝑁𝑁 ⋅ 𝑋 as maximum speed function

combined with two additional terms to express the mentioned inhibition effects of high

glucose concentrations (1 − 𝑆 𝑆𝑚𝑎𝑥 ⁄) and high viscosities �1 − 𝜇𝑒𝑓𝑓 𝜇𝑒𝑓𝑓,𝑚𝑎𝑥⁄ �

230 7 Application

(H1, H2, H7, Table 7.1). Nitrogen, glucose, and oxygen are consumed to produce biomass

and, hence, the places 𝑁𝑁, 𝑆, and 𝑂𝑂2 are the inputs of the transition 𝐴𝐴𝑥 with the reciprocal of

the yield coefficients as arc weights (1 𝑌𝑋𝑁⁄ , 1 𝑌𝑋𝑆⁄ , 1 𝑌𝑋𝑂⁄). The xanthan production is

modeled structured by the transitions 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, and 𝐴𝐴4. The reaction rate of the xanthan

production is expanded by the term (1 − 𝑁𝑁 𝑁𝑁𝑚𝑎𝑥⁄) to describe the inhibition effect of high

nitrogen concentrations on xanthan production (H4, H10,. Table 7.1).

Figure 7.12: Metabolically structured model of xanthan production of Xanthomonas

campestris bacteria

Some of the model parameters are modeled temperature dependent by the equations

mentioned in Section 7.2. Additionally, the parameter 𝜇𝑚𝑎𝑥 in Eq. 7-28 depends on the

temperature which is modeled by the root-square model as proposed in (Garcia-Ochoa et al.

2000) (H8, H10, Table 7.1). The transition 𝐴𝐴𝑂 represents the oxygen mass transfer using the

oxygen mass transfer coefficient 𝑘𝐿𝑎 of equation Eq. 7-11 with 𝐶 = 3.08 ⋅ 10−3, 𝛼 = 0.43,

𝛽 = 1.75, and 𝜆 = −0.39 as suggested in (García-Ochoa et al. 1995) and 𝑂𝑂2
∗ = 0.0002.

Thereby, it is assumed that viscosity correlates with xanthan concentration modeled by

Eq. 7-12 with 𝑎 = 0.08 and 𝑏 = 0.3 (H7, Table 7.1). The red fermenter wrapper models the

operation mode of the fermentation, i.e. when and with which concentration glucose and

𝑟𝑟𝑋 = 𝜇𝑚𝑎𝑥 ⋅ 𝑁𝑁 ⋅ 𝑋 ⋅ �1 −
𝑆

𝑆𝑚𝑎𝑥
� ⋅ �1 −

𝜇𝑒𝑓𝑓
𝜇𝑒𝑓𝑓,𝑚𝑎𝑥

� Eq. 7-28

7.6 Step 9: Process Optimization 231

nitrogen are added to the fermenter. The input factors which influence the parameters (stirrer

speed, temperature, and gas flow) can be determined by selecting one of the input components

(Constant, Step, Ramp, Steps, and conditional Steps) and connecting them with the Input

wrapper. In this manner, the stirrer speed, temperature, and gas flow can be accessed by

Input.R, Input.T, and Input.Vs, respectively. All components of the metabolically

structured model are explained in detail in Table A15 and the parameters are listed in Table

A16 (Appendix A4-3). Thereby, the values are taken from (Garcia-Ochoa et al. 1998) and

(García-Ochoa et al. 1995).

THE OPTIMIZATION PROBLEM

Based on this parameterized model, the xanthan yield should be maximized by varying the

process parameters summarized in the following table between their minimum and maximum

values.

Table 7.4: Process parameters to optimize of the metabolically structured model in
Figure 7.12

Process
Parameter Description Minimum

Value
Maximum

Value
𝑁𝑁0 Initial nitrogen concentration 0.01 0.3
𝑆0 Initial glucose concentration 10 50

𝑁𝑁𝑎𝑑𝑑 Nitrogen addition 0.01 1
𝑆𝑎𝑑𝑑 Glucose addition 5 70

𝑓𝑡 Feeding point in time 0 100
𝑡𝑒𝑚𝑝0 Initial temperature 25 34

𝑡𝑡 Time of temperature increase 0 100
𝑡𝑒𝑚𝑝𝑁𝑁𝑒𝑖𝑖𝑔ℎ𝑡 Increase of temperature 0 10

Hence, the optimization problem formalized in Eq. 5-21 - Eq. 5-23 is solved by regarding two

different optimization problems. The first optimization problem, denoted by OP1, only

considers the yield of xanthan 𝐴𝐴𝑓(𝓏) = 𝐴𝐴�𝓏, 𝑡𝑓
𝑓𝑖𝑥� at the end of the fermentation (𝑡𝑓

𝑓𝑖𝑥 =

100 ℎ) and has the objective function

while the objective function of the second optimization problem, denoted by OP2, considers

also the time 𝑡𝑓 when the maximum xanthan concentration 𝐴𝐴𝑓�𝓏, 𝑡𝑓� is reached due to the fact

that fermentation time correlates with costs

𝑄1 = −𝐴𝐴𝑓(𝓏, 100) → 𝑚𝑖𝑖𝑛

𝓏 = (𝑁𝑁0, 𝑆0, 𝑁𝑁𝑎𝑑𝑑 , 𝑆𝑎𝑑𝑑 , 𝑓𝑡, 𝑡𝑒𝑚𝑝0, 𝑡𝑡, 𝑡𝑒𝑚𝑝𝑁𝑁𝑒𝑖𝑖𝑔ℎ𝑡)
Eq. 7-29

232 7 Application

These two optimization problems are solved by the optimization algorithms introduced in

Section 3.2 with the settings of Table A13 (Appendix A4-2).

RESULTS OF OP1 AND OP2

The results for OP1 are displayed in Figure 7.13 and show that the achieved xanthan yields

range between 225 and 230 g after 100 h fermentation time. Thereby, the best solution was

found by ES but the required time is high compared to the hybrid methods.

Figure 7.13: OP1: Results of PO for the metabolically structured model in Figure 7.12 with

the settings of Table A13 (Appendix A4-2) and 𝒕𝒇 = 𝟏𝟎𝟎 𝒉

The DIRECT method reached the worst solution in the highest computing time. All hybrid

methods achieve good solutions in a moderate time. Both local optimization methods work

well in the second phase of the hybrid algorithms in contrast to the unfixed PE of Section 7.5.

The second optimization problem OP2 additionally includes the point in time when the

maximum xanthan yield is reached. The fermentation is stopped at this time. The results are

displayed in Figure 7.14. Similar to OP1, OP2 reaches relatively equal values for the initial

and feeding concentrations but here also the feeding point in time and the initial temperature

is equal for all applied methods. Only the amount of the temperature increase and the time for

the increase differ from each other. Additionally, the lower bound for the nitrogen addition

and the upper bound for the glucose addition are reached. Furthermore, the maximum xanthan

yield is plotted against the required fermentation time (see Figure 7.14 right). This plot

𝑄2 = −
𝐴𝐴𝑓�𝓏, 𝑡𝑓�

𝑡𝑓
→ 𝑚𝑖𝑖𝑛

𝓏 = (𝑁𝑁0, 𝑆0, 𝑁𝑁𝑎𝑑𝑑 , 𝑆𝑎𝑑𝑑, 𝑓𝑡, 𝑡𝑒𝑚𝑝0, 𝑡𝑡, 𝑡𝑒𝑚𝑝𝑁𝑁𝑒𝑖𝑖𝑔ℎ𝑡).

Eq. 7-30

7.6 Step 9: Process Optimization 233

indicates that no found solution dominates another solution, i.e. if the maximum xanthan yield

is smaller compared to another solution, also the required fermentation time to achieve it is

smaller and if the maximum xanthan yield is higher compared to another solution, the

required time to achieve it is also higher.

Figure 7.14: OP2: Results of PO for the metabolically structured model in Figure 7.12 with

the settings of Table A13 (Appendix A4-2); left: average xanthan yields per hour;
right: xanthan yield vs. fermentation time

MODIFICATIONS OF THE BOUNDS FOR GLUCOSE AND NITROGEN

ADDITION

To detect if even higher (average) xanthan yields can be reached, the lower bound of the

nitrogen addition is set to 0 g/l, denoted by Bound B and the original bounds of Table 7.4 are

denoted by Bound A. The corresponding optimization problems are denoted hereafter by

OP1A, OP1B, OP2A, and OP2B. Afterwards, OP1 and OP2 are solved by setting the upper

bound of the glucose addition to 1000 g/l and the lower bound of the nitrogen addition to

0 g/l, denoted by Bound C. The corresponding optimization problems are denoted following

by OP1C and OP2C. The results are displayed in Figure 7.15 and show a negligible effect of

setting the nitrogen addition to zero and a relative high effect of the increase of the glucose

addition. The xanthan yield can be enhanced about 50 % and the average xanthan yield per

hour is approximately 30 % improved.

The increase of the upper bound for the glucose addition causes a totally different growth

curve (see Figure 7.16). In the case of OP1A and OP1B the biomass increases slightly over

the whole fermentation and the same is true for xanthan production. The glucose is added at a

point in time when it is still available and it is not exhausted at the end of the fermentation.

However, biomass and xanthan production of OP2A and OP2B stop at the time when the

glucose is exhausted. In the case of OP1C and OP2C, the bacteria only grow in the first 22-28

234 7 Application

hours. In this phase nearly no xanthan is produced due to suppression by the high initial

nitrogen concentration. After the addition of glucose, the xanthan production is enhanced and

growth is suppressed by the high glucose concentration in the fermenter. Hence, the process

optimization achieves the same two-phase fermentation approach as suggested in (Vuyst et al.

1987) and (Lo et al. 1997) mentioned in Section 7.2. In the first phase the bacterial growth is

improved by using a low C/N ratio and in the second phase the xanthan production is

enhanced by the high glucose concentration.

Figure 7.15: Left: xanthan yield after 100 h fermentation (OP1), right: average xanthan yield

per hour (OP2) for the original bounds in Table 7.4 (Bound A), the lower bound
of the nitrogen addition set to 0 g/l (Bound B), and the lower bound of the
nitrogen addition set to 0 g/l and the upper bound of the glucose addition set to
1000 g/l (Bound C).

Additionally, the suggested point in time for changing over from growth to xanthan

production can be verified by this PO. De Vuyst found that the changeover time is critical and

suggested a time period of 25-30 hours after inoculation. OP1C yields a changeover time of

21-28 hours which depends on the applied optimization method and OP2C reaches

changeover times of about 21 hours. Furthermore, Amanullah et al. found that the xanthan

production can only be enhanced by glucose addition if the nitrogen is exhausted when the

glucose is fed (Amanullah et al. 1998). This is also verified by this PO. Nitrogen is exhausted

in all cases when glucose is added and nearly no nitrogen is added.

Moreover, all methods achieve times for the temperature shift which are nearly exactly the

same as the feeding time. This supports the approach of Shu and Yang mentioned in

Section 7.2.1 (Shu and Yang 1991). They suggested a two-step fermentation with a

temperature increase from 27°C to 32°C at the end of the exponential growth phase due to the

fact that growth favors a lower temperature as the xanthan production. The methods reached

starting temperatures in the range of 28.0°C to 30.3°C which are increased by 3.3°C to 5.8°C

after 21 to 28 hours. The Hybrid1 method, for example, yields an initial temperature of

28.8°C which is shifted to 33.9°C at a time period of 21.4 hours. This time is also the end of

7.6 Step 9: Process Optimization 235

the exponential growth due to the high glucose feeding at this time. This feeding totally

suppresses growth and initiates the stationary growth phase and also the xanthan production

phase.

Figure 7.16: Simulation results of the optimized process parameters found by the hybrid 1

method for OP1 and OP2 with the bounds A, B, and C

MODIFICATION OF THE FEEDING NUMBER

The metabolically structured model in Figure 7.12 has been further modified to reach even

higher (average) xanthan yields. Therefore, it is now possible that five times an amount of

nitrogen and glucose is added to the fermenter. The modified model has 20 process

parameters that have to be optimized to achieve maximum (average) xanthan yields. The

process parameters are summarized in Table 7.5 together with their minimum and maximum

values.

Table 7.5: Process parameters of the modified metabolically structured model in Figure 7.12

Factor Description Minimum
Value

Maximum
Value

𝑁𝑁0 Initial nitrogen concentration 0.01 0.3
𝑆0 Initial glucose concentration 10 50

𝑆𝑎𝑑𝑑(𝑖𝑖)1 Nitrogen concentration of feeding at time
𝑡𝑖𝑖 = 𝑡𝑖𝑖−1 + 𝑑𝑓𝑡(𝑖𝑖) 0 1

𝑆𝑎𝑑𝑑(𝑖𝑖)2 Glucose concentration of feeding at time
𝑡𝑖𝑖 = 𝑡𝑖𝑖−1 + 𝑑𝑓𝑡(𝑖𝑖) 0 70

𝑑𝑓𝑡(𝑖𝑖) Time from fermentation start to first
feeding at 𝑡𝑖𝑖 = 𝑡𝑖𝑖−1 + 𝑑𝑓𝑡(𝑖𝑖) (𝑡0 = 0) 0.1 100

236 7 Application

𝑡𝑒𝑚𝑝0 Initial temperature 25 34
𝑡𝑡 Time of temperature increase 0 100

𝑡𝑒𝑚𝑝𝑁𝑁𝑒𝑖𝑖𝑔ℎ𝑡 Increase of temperature 0 10

Thereby, the time between two subsequent feedings is optimized and not the feeding times to

guarantee that 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ 𝑡4 ≤ 𝑡5. The maximum fermentation time is set to 𝑡𝑓 = 100 ℎ

so that if from a 𝑡𝑖 on the feeding times are greater than 100 hours, these feedings are not

considered. In this manner, it is realized that the optimization procedure can also find the best

number of feedings. The same objective functions as for the original model defined in

Eq. 7-29 and Eq. 7-30 are applied with

𝓏 = (𝑁𝑁0, 𝑆0, 𝑆𝑎𝑑𝑑11, 𝑆𝑎𝑑𝑑12, 𝑆𝑎𝑑𝑑21, 𝑆𝑎𝑑𝑑22, 𝑆𝑎𝑑𝑑31,

𝑆𝑎𝑑𝑑32, 𝑆𝑎𝑑𝑑41, 𝑆𝑎𝑑𝑑42, 𝑆𝑎𝑑𝑑51, 𝑆𝑎𝑑𝑑52, 𝑑𝑓𝑡1,

𝑑𝑓𝑡2, 𝑑𝑓𝑡3, 𝑑𝑓𝑡4, 𝑑𝑓𝑡5, 𝑡𝑒𝑚𝑝0, 𝑡𝑡, 𝑡𝑒𝑚𝑝𝑁𝑁𝑒𝑖𝑖𝑔ℎ𝑡)

and the optimization problem corresponding to Eq. 7-29 is denoted by MOP1 and the

optimization problem corresponding to Eq. 7-30 is denoted by MOP2. The same parameter

settings for the optimization methods are used as listed in Table A13 (Appendix A4-2).

However, some has been adapted to take into consideration that the modified optimization

problem has more than twice as many process parameters (see Table A14).

RESULTS OF MOP1 AND MOP2

The best solutions for MOP1 and MOP2 are achieved by ES, Hybrid1, and Hybrid2; thereby,

both hybrid algorithms have ES as a global optimizer. The solution found by DIRECT is

better than those of CMAES, Hybrid3, and Hybrid4 but the (average) xanthan yield less

compared to the best solution and, in addition, the required computing time is much more

higher. In comparison to the best results of OP1C and OP2C, the PO yielded a 35 % higher

xanthan yield and a 60 % higher average xanthan yield per hour.

A more precise view of the found solutions reveals that CMAES, Hybrid3, and Hybrid4 reach

solutions by which not all five feedings are used. The feedings of MOP1 which are carried out

after the maximum fermentation time of 100 hours have no effect on the fermentation.

Similarly, the feedings of MOP2 which are carried out after the achieved fermentation time

have no effect on the fermentation process.

7.6 Step 9: Process Optimization 237

It is also shown that the best working method, ES, achieves feeding times that are close

together. Additionally, the nitrogen additions are close to zero and all glucose additions reach

the upper limit of 70 g/l as in the original model. This leads to the suggestion that it is better

to feed a higher glucose concentration once and not add nitrogen.

The best solution of MOP1 reaches similar curve shapes as the OP1A and OP1B and the best

solution of MOP2 causes the two-step fermentation with a growth and a xanthan production

phase similar to OP1C and OP2C. The worst solution of MOP2 found by CMAES achieves a

solution by which the glucose concentration is exhausted at about 70 h and new glucose is not

fed till time 91 and all other feeding times are higher than the maximum fermentation time.

This solution is not acceptable because the xanthan production stops for that time period due

to glucose exhaustion. Similarly, the Hybrid3 solution of MOP1 is not feasible because of the

low glucose feeding and the corresponding low xanthan production rate.

MODIFICATION OF THE BOUND FOR THE GLUCOSE ADDITION

Because the best solutions of MOP1 and MOP2 achieve glucose additions which reach the

upper bound, this upper bound is increased from 70 g/l to 1000 g/l, denoted by Bound C and

the optimization problems are denoted by MOP1C and MOP2C, to yield possibly even more

xanthan. The results show that best solutions are achieved by ES, Hybrid1, and Hybrid2 for

MOP1 higher xanthan yields than that of the other methods and by ES and Hybrid2 for

MOP2C higher average xanthan yields per hour. Compared to the results before, the xanthan

yield is increased by 32 % and the average xanthan yield per hour by 12 %. The simulation

results of the solution found by ES again show the two-step fermentation due to the fact that

the feeding times are so close together that the sum of the glucose additions could be added at

the same point in time. The nitrogen additions are close to zero and can be neglected.

Additionally, MOP1C and MOP2C terminate with nearly the same results so that the

maximum xanthan yield is always observed after the maximum fermentation time. The

glucose addition of MOP2C is chosen such that the glucose is totally exhausted after 100

hours and, hence, the xanthan production stops at this point in time. CMAES again achieves

the worst solution for both problems due to too small and too late additions of glucose,

respectively.

238 7 Application

MODIFICATION OF THE BOUNDS FOR THE FEEDING TIMES AND THE

INITIAL NITROGEN CONCENTRATION

To show that only one feeding is necessary, the lower bounds of the time between two

feedings are set to zero. Additionally, the upper bound of the initial nitrogen concentration is

increased to 10 g/l because the best solutions have always reached it. These expanded bounds

are denoted by Bound D and the corresponding optimization problems by MOP1D and

MOP2D. Due to the fact that ES always reached good process parameters in comparison to

the other methods, the following PO studies are only performed using this method.

The results verify the assumption. The time between two feedings reached by both problems,

MOP1D and MOP2D, is less than 22 seconds. The first feeding is supposed to take place at

time 15.97 and 15.93 for MOP1D and MOP2D, respectively. Thereby, the nitrogen feeding

concentration is always close to zero so that it can be assumed that no additional nitrogen has

to be added to the fermenter.

The simulation results show clearly the division of the fermentation process in two phases

(see Figure 7.17). The first phase is the growth phase with a high nitrogen concentration of

0.47 and 0.59 g/l and a low glucose concentration of 18.32 and 22.46 g/l for MOP1D and

MOP2D, respectively. Higher nitrogen concentrations than 0.3 g/l totally suppress the

xanthan production according to the model assumptions. This is reflected by nearly no

xanthan production in the first fermentation phase also due to the low glucose concentration.

The biomass increases in this phase up to an amount of 11.84 and 14.68 g, respectively.

Figure 7.17: Simulation results of the modified metabolically structured model with process

parameters found by optimization MOP1D (left) and MOP2D (right) with ES

The second phase is initiated by the first glucose addition. The others follow only seconds

after so that all feedings can be combined to one which is added to the fermenter at time 15.97

and 15.93, respectively. At this time, the growth is totally suppressed by the high glucose

7.6 Step 9: Process Optimization 239

concentration but no inhibition of xanthan by nitrogen can be observed because the

concentration of nitrogen is nearly zero. This phase is the xanthan production phase with

nearly no growth but high xanthan production up to an amount of 606 and 607 g, respectively.

The maximum xanthan yield in the case of MOP2D was also achieved at the maximum

fermentation time of 100 hours; so there is no difference between optimizing MOP1D or

MOP2D. In addition, the time of the temperature shift is nearly exact the same as that for the

feeding. The temperature is then increased from 29.4°C and 29.1°C to 33.8°C and 33.9°C for

MOP1D and MOP2D, respectively.

OXYGEN REGULATION

The slight slope of the xanthan curve at the beginning of the second phase is caused by the

low oxygen content in the fermenter at this time (see Figure 7.18). At time 22.5 the oxygen

content is increased due to an increase of the stirrer speed. This causes an increase in the slope

of the xanthan curve. Hence, the stirrer speed has to be increased earlier to avoid an oxygen

shortage in the fermenter.

Figure 7.18: Simulation results of oxygen compared to stirrer speed (Bound D)

If the speed is increased at the beginning of the second phase, the xanthan yield can be further

improved. It would be even better if the oxygen content was maintained at a constant level by

a closed loop control of the stirrer speed, i.e. if the oxygen concentration in the fermenter falls

below a determined value, the stirrer speed is increased until the oxygen remains above this

limit.

240 7 Application

Therefore, a new model component has been constructed with the aid of a discrete when-

equation (see Section 3.1.2). If the oxygen concentration falls below 0.00015 mol/l, the stirrer

speed is increased until the oxygen concentration remains above this limit up to the maximum

speed of 20.3 rps.

The model is simulated with this new oxygen regulation by stirrer speed and the parameters

found by MOP1D. It reaches a xanthan yield of 629.66 g in 52 hours. At this time the glucose

is exhausted and the xanthan production stops. This shows that oxygen has a deep impact on

xanthan production and should be controlled by a closed loop.

It can be assumed that this regulation with the proper process parameters can achieve even

higher xanthan yields so that this regulated model is again optimized by ES. The results are

displayed in Figure 7.19 and once more show the division in the two phases. Thereby, the

simulation results achieved without oxygen regulation are plotted by dashed lines to highlight

the high influence of oxygen regulation. A maximum xanthan yield of 2257.86 g is reached

which is 3.5 times higher than the yield without regulation. The regulation has mainly

influenced growth while the effect on xanthan production is minor. If the oxygen is not

regulated, it is very low in the growth phase and causes a reduced biomass accumulation. The

regulation insures that the oxygen concentration is maintained about 0.00015 g/l until the

maximum stirrer speed is reached. In this manner the growth is improved, i.e. in less time

more biomass is produced. The oxygen in the xanthan production phase differs slightly from

that without regulation. However, more bacteria produce more xanthan which explains the

high xanthan yield.

Figure 7.19: Simulation results with oxygen regulation by stirrer speed. Dashed lines indicate

the results of MOP1D (see Figure 7.17)

7.7 Step 7: Deterministic and Stochastic Hybrid Simulation 241

7.7 STEP 7: DETERMINISTIC AND STOCHASTIC

HYBRID SIMULATION

In addition to the unstructured and the metabolically structured model, a chemically structured

model has been constructed on the one hand with the aid of a stochastic Petri net (Figure 7.20)

and on the other with the aid of a continuous Petri net (the stochastic transitions are replaced

by continuous ones). Both models consist of a structured part for xanthan production from

glucose which is modeled in the same manner as in the metabolically structured model in

Figure 7.12 as well as a structured part for growth. In the case of the continuous model, the

tokens directly reflect the concentrations of the biological compounds and in the case of the

stochastic model, the tokens correspond to specific levels of concentrations, which has been

already mentioned in Section 5.5.

Figure 7.20: Chemically structured model of xanthan production and growth of

Xanthomonas campestris bacteria

These concentration levels are achieved by defining a global maximum concentration 𝑀 and a

local highest level 𝑁𝑁𝑖 different for each place so that 𝑁𝑁𝑖 + 1 is the amount of levels. Then, the

tokens 𝒯𝑖 can be converted to level concentrations ℒ𝑖 by

242 7 Application

The stochastic Petri net is constructed in Dymola by means of the PNlib and afterwards, the

stochastic hybrid simulation (SHS) and further calculations are performed in Matlab/Simulink

by the AMMod-tool. A place wrapper (green margin) can be found in the Stochastic sub-

library of the PNproBio library to get the level concentrations instead of the token numbers as

outputs in Matlab/Simulink. The deterministic hybrid simulation (DHS) of the continuous

Petri net model can be performed directly in Dymola or with the AMMod-tool.

As demonstrated exemplarily in Section 5.5, there is a relationship between the rate of a

reaction which corresponds to the maximum speed function of the continuous transition and

the hazard function of the stochastic transition so that both can be easily transformed into each

other. The SHS is performed by simulating the stochastic model 50 times and calculating the

mean from the results for each compound at each point in time. The results are displayed in

Figure 7.21 and show a good agreement between SHS of the stochastic Petri net model and

DHS of the continuous Petri net model. Hence, the stochastic model can be approximated by

the continuous model but the continuous model can only represent the averaged behavior.

Figure 7.21: Comparison of SHS of the stochastic model and DHS of the corresponding

continuous model (see Figure 7.20)

ℒ𝑖𝑖 = 𝒯𝑖𝑖 ⋅
𝑀
𝑁𝑁𝑖𝑖

. Eq. 7-31

243

8 DISCUSSION AND OUTLOOK

An environment has been developed which comprises mathematical methods, concepts, and

tools to enable the processing of experimental data to usable new insights about biological

systems. Therefore, a general, universally usable modeling process for biological systems

has been developed as well as a mathematical concept – xHPN (extended Hybrid Petri Nets)

– which is properly adapted to the demands of biological processes. The definition of this new

modeling formalism was necessary due to serious problems according to lacking unity,

accuracy, and completeness of the current Petri net formalisms in literature.

The new xHPN concept has been transferred to the object-oriented modeling language

Modelica. The developed Modelica library, called PNlib (Petri Net library), in combination

with an appropriate Modelica-tool enables graphical hierarchical modeling, hybrid simulation,

and animation of xHPNs. Thereby, an additional Modelica library, called PNproBio (Petri

Nets for process modeling of Biological systems), provides wrapped xHPNs which offers on

the one hand an easy-to-use-model at the top level with an intuitive and familiar adapted

biological view and on the other the flexibility and generality of the xHPN concept. In

addition to the Modelica libraries, the AMMod (Analysis of Modelica Models) tool provides

several mathematical methods for data preprocessing, relationship analysis, parameter

estimation, sensitivity analysis, deterministic and stochastic hybrid simulation, and process

optimization. The development of this new environment was necessary because no current

tool gets along without drawbacks and interprets the hybrid Petri net formalism as needed for

modeling biological systems in this work.

The application of the developed mathematical methods and concepts as well as the tools

PNlib, PNproBio, and AMMod has been shown exemplarily by the xanthan production of

Xanthomonas campestris bacteria. Additionally, it has given information about which method

works best for which modeling step. Thereby, the focus was on showing the usage, the power,

and the permit of the new environment rather than on yielding new insights about the studied

organism. All investigations are based on pseudo experimental data and only one selected

case, the xanthan production of Xanthomonas campestris bacteria, has been considered. The

aim of further research is, hence, to verify the results by experimental data gained from wet

lab fermentations of Xanthomonas campestris bacteria. Besides, the tools could be applied for

244 8 Discussion and Outlook

other biological processes; the modeling process of the protein production of animal cells has

just begun and will be enhanced in the future.

Figure 8.1: Further development possibilities beyond this work

During the work, it became increasingly clear that the mathematical modeling concept xHPN,

especially developed to adress the demands of biological processes, is so powerful but also so

universal and generic that it is an ideal all-round-tool for modeling and simulation of nearly

all kinds of processes such as business processes, production processes, logistic processes,

work flows, traffic flows, data flows, multi-processor systems, communication protocols, and

functional principals. Hence, the abbreviation xHPN is chosen generally to emphasize that it

is not restricted to biological applications. This developed formalism and the PNlib could be

used for modeling and simulation of these mentioned processes and, in addition, the

mathematical concept as well as the library could be extended by fuzzy logic (e.g. (Chen et al.

1990)) and the color concept (e.g. (Jensen 1987)) to further enhance the range of application

fields. In the future, it is planned to establish a model-based process consulting for small and

8 Discussion and Outlook 245

medium enterprises at the University of Applied Sciences Bielefeld based on the methods

developed in this work.

In addition, a further aim is to provide all the tools as open source. This demands a further

development of the open source Modelica-tool OpenModelica to get the PNlib to work with

it because some Modelica features are not supported so far. The University of Applied

Sciences Bielefeld is already closely involved in the further development of the

OpenModelica-Tool (Braun 2010, Braun et al. 2010, Braun et al. 2011, Ochel et al. 2011,

Krems et al. 2010).

Additionally, the mathematical methods required for the modeling process have to be

transferred from the commercial language Matlab to an open source alternative like C++ or

Python. Then, a new connection between OpenModelica and the open source tool for the

analysis methods has to be established and a user-friendly GUI for the tools could be

developed.

Moreover, the graphical modeling of Petri nets has to be improved because the input of arc

weights is inconvenient due to the fact that arcs cannot have properties in Modelica. For this

purpose the PNlib could be connected to VANESA, an open source tool for visualization and

analysis of networks in systems biology applications developed at the faculty of technology at

the Bielefeld University (Janowski 2008). The graphical modeling of Petri nets is performed

in VANESA with an easy-to-use interface and, thereafter, the constructed Petri net is

translated to the Modelica language and compiled and simulated with a Modelica-tool. The

simulation results are then sent back to VANESA for display and animation of the token

development. Beyond that, VANESA offers the possibility to load networks from several

databases and convert them to nets. These nets can then be transformed to Petri nets.

Furthermore, VANESA contains various qualitative methods from graph theory which are

also usable on Petri nets and, in addition, some Petri net specific analysis methods have been

already integrated (Brinkrolf 2011). The connection of PNlib and VANESA has already

commenced (Proß et al. 2012a, Proß et al. 2012b).

Moreover, the functionality of AMMod could also be further expanded by methods for

parameter estimation, sensitivity analysis, and process optimization. In addition, methods for

new analysis technics like the design of experiments, model based experimental design,

model reduction, and uncertainty analysis could be developed and implemented. Especially

the process optimization procedure offers a good basis for further development. Till now, it

246 8 Discussion and Outlook

achieves an open-loop control strategy, i.e. the strategy is given based on the model and no

feedback from the real system is included. This feedback could be also considered by

realizing a closed-loop control, particularly the so-called model predictive control (MPC),

to further improve the biological process. Therefore, the model is used to calculate the process

states of the real system in the future depending on current measurements. Based on these

predictions and an expert system in the background, the process parameters can be adapted

appropriately. With additional methods from artificial intelligence, a self-learning system

could be established. The vision is that this MPC of fermentation processes proceeds fully

automatically as it is depicted in Figure 8.2. Thereby, the process data is measured by specific

sensors and the process parameters are properly adapted by actuators depending on the control

data gained from mathematical methods and the process model.

Figure 8.2: The vision: A fully automated model predictive control of fermentation processes

8 Discussion and Outlook 247

Furthermore, the computing time of mostly all mathematical methods used in the modeling

process has to be reduced to make them applicable on large models. A possibility to do this is

parallelization. Thereby, the algorithm is divided into separate parts which can be executed

in parallel by a simultaneous computer or a computer cluster. Especially ES and CMAES can

be easily parallelized by simultaneous evaluation of the individuals of one generation. In the

same manner, the simulations required for local and global sensitivity analysis could be

performed in parallel.

In conclusion, this work presents a new powerful and universally applicable modeling

environment that can be used for nearly all kinds of biological processes. In addition, the

developed methods and tools are also applicable for many kinds of processes from other

application fields, e.g. business processes, production processes, and logistic processes. The

xHPN formalism and the corresponding processes have been defined precisely and are so

powerful that most formalisms are included regardless of the modeling approach (qualitative

vs. quantitative, continuous vs. discrete, deterministic vs. stochastic). Furthermore, the

wrapping technique offers on the one hand the possibility to provide biologists an intuitive

and familiar adapted biological view of the model and on the other the flexibility and

generality of the xHPN formalism for the hybrid simulation. Moreover, the developed

mathematical methods provide a means to estimate the model parameters from the given

experimental data when direct experimental determination is not possible. In addition, these

methods enable the optimization of underlying processes in order to achieve an open-loop

control.

248

APPENDIX

A1 ALGORITHMS

Algorithm A1 (Hooke-Jeeves method)
Input: start value 𝓍0, objective function 𝑄(𝓍), step size control parameter 𝜌 ∈ (0,1), minimum

step size 𝜀 > 0 , abort criteria 𝒜

Start: Set 𝛿 = 𝜌 ⋅ 𝓍0, 𝑥 = 𝓍0, 𝑄𝓍 = 𝑄(𝓍0) and ∆= 𝜌

Iteration:

1. Exploratory move: Evaluate (𝑧, 𝑄𝑧) = 𝑒𝑥𝑝𝑙𝑜𝑟𝑟𝑎𝑡𝑜𝑟𝑟𝑦𝑀𝑜𝑣𝑒(𝓍, 𝑄𝓍 , 𝛿)

2. Pattern search: If 𝑄𝑧 < 𝑄𝓍, set 𝜃 = 𝓍, 𝓍 = 𝑧, 𝑧 = 2 ⋅ 𝑧 − 𝜃, 𝑄𝓍 = 𝑄𝑧,

calculate 𝑄𝑧 = 𝑄(𝑧) and evaluate (𝓏, 𝑄𝓏) = 𝑒𝑥𝑝𝑙𝑜𝑟𝑟𝑎𝑡𝑜𝑟𝑟𝑦𝑀𝑜𝑣𝑒(𝑧, 𝑄𝑧, 𝛿)

If 𝑄𝓏 > 𝑄𝓍, go to step 1; otherwise, for 𝑙 = 1,2, … , 𝑛 if 𝑎𝑏𝑠(𝓏𝑖 − 𝓍𝑖) > 0.5 ⋅ 𝑎𝑏𝑠(𝛿𝑖), go

to step 2.

3. Reduce step size (𝑄𝑧 > 𝑄𝓍): If ∆≥ 𝜀, set ∆= ∆ ⋅ 𝜌, 𝛿 = 𝛿 ⋅ 𝜌 and go to step 1;

otherwise, stop.

Stop: If at least one of the abort criteria 𝒶 ∈ 𝒜 is fulfilled or the iteration stops.

Procedure exploratoryMove:

Input: 𝓍, 𝑄𝓍 , 𝛿

Output:𝑦, 𝑄𝑦

set 𝑦 = 𝓍 and 𝑄𝑦 = 𝑄𝓍

for 𝑖𝑖 = 1, 2, … , 𝑛 do

Set 𝑚 = 𝓍 + 𝛿𝑖𝑒𝑖, where 𝑒𝑖 is the 𝑖𝑖th unit vector, and evaluate 𝑄𝑚 = 𝑄(𝑚).

If 𝑄𝑚 < 𝑄𝓍, set 𝑦 = 𝑚 and 𝑄𝑦 = 𝑄𝑚.

Otherwise, set 𝑚 = 𝓍 − 𝛿𝑖𝑒𝑖, where 𝑒𝑖 is the 𝑖𝑖th unit vector and evaluate 𝑄𝑚 = 𝑄(𝑚).

If 𝑄𝑚 < 𝑄𝓍, set 𝑦 = 𝑚 and 𝑄𝑦 = 𝑄𝑚.

end

249

Algorithm A2 (Nelder-Mead simplex method)
Input: start value 𝓍0, objective function Q(𝓍), reflection parameter ρ = 1, expansion

parameter χ = 2, contraction parameter γ = 1/2, shrinkage parameter σ = 1/2, abort

criteria 𝒜

Start: Generate an initial simplex around 𝓍0 by adding 5% of each component 𝓍𝑙
0, 𝑙 =

1,2, … , 𝑛 to 𝓍0. These 𝑛 vectors and 𝓍0 are then the 𝑛 + 1 vertices of the initial

simplex. (It uses 0.00025 as component 𝑙 if 𝓍𝑙
0 = 0.)

Iteration:

1. Order: Order the 𝑛 + 1 vertices from the lowest objective function value 𝑄1 = 𝑄(𝓍1) to

the highest one 𝑄𝑛+1 = 𝑄(𝓍𝑛+1) such that

𝑄1 ≤ 𝑄2 ≤ ⋯ ≤ 𝑄𝑛+1

2. Reflect: Compute the reflection point 𝑟𝑟

𝑟𝑟 = (1 + 𝜌)𝑚 − 𝜌𝓍𝑛+1 = 2𝑚 − 𝓍𝑛+1,

 where

𝑚 =
1
𝑛

� 𝓍𝑖

𝑛

𝑙=1

 and evaluate 𝑄𝑟 = 𝑄(𝑟𝑟).

 If 𝑄1 ≤ 𝑄𝑟 < 𝑄𝑛, accept 𝑟𝑟 and terminate the iteration.

3. Expand: If 𝑄𝑟 < 𝑄1, calculate expansion point 𝑠

𝑠 = 𝑚 + 𝜌𝜒(𝑚 − 𝓍𝑛+1) = 𝑚 + 2(𝑚 − 𝓍𝑛+1)

and evaluate 𝑄(𝑠) = 𝑄𝑠.

a. If 𝑄𝑠 < 𝑄𝑟, accept 𝑠 and terminate the iteration.

b. Otherwise, accept 𝑟𝑟 and terminate the iteration.

4. Contract: If 𝑄𝑟 ≥ 𝑄𝑛, perform a contraction between 𝑚 and the better of 𝓍𝑛+1 and 𝑟𝑟.

a. Outside: If 𝑄𝑟 < 𝑄𝑛+1, calculate

𝑐 = 𝑚 + 𝛾(𝑟𝑟 − 𝑚) = 𝑚 +
𝑟𝑟 − 𝑚

2

and evaluate 𝑄𝑐 = 𝑄(𝑐). If 𝑄𝑐 < 𝑄𝑟, accept 𝑐 and terminate the iteration;

otherwise, go to step 5 (perform a shrink).

b. Inside: If 𝑄𝑟 ≥ 𝑄𝑛+1, calculate

𝑐𝑐 = 𝑚 + 𝛾(𝑥𝑛+1 − 𝑚) = 𝑚 +
𝓍𝑛+1 − 𝑚

2

and evaluate 𝑄𝑐𝑐 = 𝑄(𝑐𝑐). If 𝑄𝑐𝑐 < 𝑄𝑛+1, accept 𝑐𝑐 and terminate the iteration;

otherwise, go to step 5 (perform a shrink).

5. Perform a shrink step: Calculate the 𝑛 points

𝑣𝑙 = 𝓍1 + 𝜎(𝓍𝑙 − 𝓍1) = 𝓍1 +
𝓍𝑙 − 𝓍1

2
, 𝑙 = 2, 3, … , 𝑛 + 1

250

and evaluate 𝑄(𝑣𝑙), 𝑙 = 2, 3, … , 𝑛 + 1. The simplex at the next iteration is

𝓍1, 𝑣2, … , 𝑣𝑛+1.

Stop: If at least one of the abort criteria 𝒶 ∈ 𝒜 is fulfilled.

Algorithm A3 (DIRECT method)
Input: objective function 𝑄(𝓍), abort criteria 𝒜, global/local search weight parameter 𝜀 > 0

Start: Normalize the search space to be the unit hypercube and evaluate the function value

𝑄(𝑐1) at its midpoint 𝑐1. Set 𝑄𝑚𝑖𝑛 = 𝑄(𝑐1).

Iteration:

1. Identify the set 𝑆 of potentially optimal rectangles.

2. Select any rectangle 𝑗 ∈ 𝑆.

3. Perform the procedure for dividing rectangles. Update 𝑄𝑚𝑖𝑛.

4. Set 𝑆 = 𝑆 ∖ {𝑗}. If 𝑆 ≠ ∅ go to step 3.

5. Go to step 1.

Stop: If at least one of the abort criteria 𝒶 ∈ 𝒜 is fulfilled.

Procedure for dividing rectangles:

1. Identify the set 𝐼 of dimensions with the maximum side length. Let 𝛿 be equal to one-

third of this maximum side length.

2. Evaluate the objective function at the points 𝑐 ± 𝛿𝑒𝑖 ∀𝑖𝑖 ∈ 𝐼, where 𝑐 is the midpoint of

the rectangle and 𝑒𝑖 is the 𝑖𝑖th unit vector.

3. Divide the rectangles into thirds along the dimensions in 𝐼, starting with the lowest

value of 𝑤𝑖 = min�𝑄(𝑐 + 𝛿𝑒𝑖), 𝑄(𝑐 − 𝛿𝑒𝑖)� and continuing to the dimension with the

highst 𝑤𝑖.

Algorithm A4 (Evolution strategy)
Set 𝑔 = 0

Initialize 𝑁𝑁(0) = �𝑎1(0), 𝑎2(0), … , 𝑎𝜇(0)� ∈ 𝐼𝜇

where 𝑎𝑘 = (𝓍𝑘 , 𝑠𝑘)

with 𝑠𝑘 = �𝜎𝑖, 𝑚𝑗, ∀𝑖𝑖 = 1, 2, … , 𝑛, ∀𝑗 = 1, 2, … , 𝑛(𝑛 − 1) 2⁄ � or 𝑠𝑘 = (𝜎𝑖, ∀𝑖𝑖 = 1, 2, … , 𝑛)

Evaluate 𝑁𝑁(0): �Φ�𝑎1(0)�, Φ�𝑎2(0)�, … , Φ �𝑎𝜇(0)��

where Φ�𝑎𝑘(0)� = 𝑄�𝓍𝑘(0)�

while not 𝜄�𝑁𝑁(𝑔)� do

 Recombine strategy parameters: 𝑠𝑘
′ (𝑔) = 𝑟𝑟𝑠

′�𝑁𝑁(𝑔)�, 𝑘 = 1, 2, … , 𝜆

 Recombine objective parameters: 𝓍𝑘
′ (𝑔) = 𝑟𝑟𝑝

′�𝑁𝑁(𝑔)�, 𝑘 = 1, 2, … , 𝜆

 Mutate strategy parameters: 𝑠𝑘
′′(𝑔) = 𝑚𝑠

′ �𝑠𝑘
′ (𝑔)�, 𝑘 = 1, 2, … , 𝜆

251

 Mutate objective parameters: 𝓍𝑘
′′(𝑔) = 𝑚𝑝

′ �𝓍𝑘
′ (𝑔), 𝑠𝑘

′′(𝑔)�, 𝑘 = 1, 2, … , 𝜆

 Evaluate 𝐴𝐴′′(𝑔) = (𝑎𝑘
′′(𝑔), 𝑘 = 1, 2, … , 𝜆), where 𝑎𝑘

′′(𝑔) = �𝓍𝑘
′′(𝑔), 𝑠𝑘

′′(𝑔)�:

 �Φ�𝑎1
′′(𝑔)�, Φ�𝑎2

′′(𝑔)�, … , Φ�𝑎𝜆
′′(𝑔)��, where Φ�𝑎𝑘

′′(𝑔)� = 𝑄�𝓍𝑘
′′(𝑔)�

Select: 𝑁𝑁(𝑔 + 1) = if (𝜇, 𝜆)-selection then 𝑠(𝜇,𝜆)�𝑁𝑁′′(𝑔)� else 𝑠(𝜇+𝜆)�𝑁𝑁(𝑔) ∪ 𝑁𝑁′′(𝑔)�

Set 𝑔 = 𝑔 + 1

end while

Algorithm A5 (Covariance matrix adaption evolution strategy)
Input: objective function 𝑄(𝓍), abort criteria 𝒜, start distribution mean 𝑚0 ∈ 𝑋 ⊆ ℝ𝑛, and start

step size 𝜎0 ∈ ℝ+

Start: Set parameters 𝜆, 𝜇, 𝑤𝑘 (𝑘 = 1, 2, … , 𝜇), 𝑐𝜎, 𝑐1, and 𝑐𝜇 to their default values according

to Table A1.

 Set 𝑚 = 𝑚0, 𝜎 = 𝜎0, 𝑞𝜎 = 0, 𝑞𝑐 = 0, 𝐶 = 𝐼, and 𝑔 = 0.

Iteration:

1. Mutation to generate new offspring:

Perform an eigendecomposition of the covariance matrix 𝐶 = 𝐵𝑁𝑁2𝐵, where the

columns of 𝐵 are an orthonormal basis of eigenvectors and the diagonal elements of

the diagonal matrix 𝑁𝑁 are the square roots of the corresponding eigenvalues.

Evaluate 𝓍𝑘 = 𝑚 + 𝑧𝑘, where 𝑧𝑘 = 𝜎𝐵𝑁𝑁𝒩(0, 𝐼).

2. Selection of the 𝜇 best individuals such as 𝑄(𝓍1:𝜆) ≤ 𝑄(𝓍2:𝜆) ≤ ⋯ ≤ 𝑄�𝓍𝜇:𝜆�.

3. Recombination of the 𝜇 best individuals

Set 𝑚𝑜𝑙𝑑 = 𝑚 and 𝑚 = ∑ 𝑤𝑘𝓍𝑘:𝜆
𝜇
𝑘=1 .

4. Step size control:
Calculate evolution path 𝑞𝜎 = (1 − 𝑐𝜎)𝑞𝜎 + �𝑐𝜎(2 − 𝑐𝜎)𝜇𝑒𝑓𝑓 ⋅ 𝐶−1

2 ⋅ �𝑚−𝑚𝑜𝑙𝑑
𝜎

�.

Set 𝜎𝑜𝑙𝑑 = 𝜎 and 𝜎 = 𝜎𝑜𝑙𝑑 exp �𝑐𝜎
𝑑𝜎

� ‖𝑞𝜎‖
𝐸(‖𝑁(0,𝐼)‖) − 1��,

where 𝐸(‖𝑁𝑁(0, 𝐼)‖) = √𝑛 �1 − 1
4𝑛

+ 1
21𝑛2�.

5. Covariance matrix adaptation:

Calculate evolution path 𝑞𝑐 = (1 − 𝑐𝑐)𝑞𝑐 + ℎ𝜎�𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓 ⋅ �𝑚−𝑚𝑜𝑙𝑑
𝜎𝑜𝑙𝑑

�.

Set

𝐶 = �1 − 𝑐1 − 𝑐𝜇�𝐶 + 𝑐1(𝑞𝑐𝑞𝑐
𝑡 + 𝛿(ℎ𝜎)𝐶) + 𝑐𝜇 � 𝑤𝑘 �

𝓍𝑘:𝜆 − 𝑚𝑜𝑙𝑑

𝜎𝑜𝑙𝑑
� �

𝓍𝑘:𝜆 − 𝑚𝑜𝑙𝑑

𝜎𝑜𝑙𝑑
�

𝑡
,

𝜇

𝑘=1

where

ℎ𝜎 = �1 if
‖𝑞𝜎‖

�1 − (1 − 𝑐𝜎)2(𝑔+1)
< (1.4 +

2
𝑛 + 1

𝐸(‖𝑁𝑁(0, 𝐼)‖)

0 otherwise

252

𝛿(ℎ𝜎) = (1 − ℎ𝜎)𝑐𝑐(2 − 𝑐𝑐)

Stop: If at least one of the abort criteria 𝒶 ∈ 𝒜 is fulfilled.

The default values for the exogenous strategy parameters of the algorithm are given in the

following table.

Table A1: Default exogenous strategy parameters (Hansen 2009)

Parameter Value

𝜆 4 + ⌊3 𝑙𝑛(𝑛)⌋

𝜇 ⌊𝜆/2⌋

𝑤𝑘
𝑙𝑛(𝜆/2 + 0.5) − 𝑙𝑛(𝑘)

∑ (𝑙𝑛(𝜆/2 + 0.5) − 𝑙𝑛(𝑗))𝜇
𝑗=1

𝑘 = 1, 2, … , 𝜇

𝑐𝜎
𝜇𝑒𝑓𝑓 + 2

𝑛 + 𝜇𝑒𝑓𝑓 + 5

𝑑𝜎 1 + 2 𝑚𝑎𝑥 �0, �
𝜇𝑒𝑓𝑓 − 1

𝑛 + 1
− 1� + 𝑐𝜎

𝑐𝑐
4 + 𝜇𝑒𝑓𝑓/𝑛

𝑛 + 4 + 2𝜇𝑒𝑓𝑓/𝑛

𝑐1
2

(𝑛 + 1.3)2 + 𝜇𝑒𝑓𝑓

𝑐𝜇 𝑚𝑖𝑖𝑛 �1 − 𝑐1,
2𝜇𝑒𝑓𝑓 − 4 + 2

𝜇𝑒𝑓𝑓

(𝑛 + 2)2 + 𝜇𝑒𝑓𝑓
�

Algorithm A6 (Hybrid algorithm)
Input: objective function 𝑄(𝓍), abort criteria 𝒜, method specific parameters

Start: Set 𝑔 = 0 and initialize 𝑁𝑁(0) = �𝑎1(0), 𝑎2(0), … , 𝑎𝜇(0)� ∈ 𝐼𝜇 where 𝑎𝑘 = (𝓍𝑘 , 𝑠𝑘)

 with 𝑠𝑘 = �𝜎𝑖, 𝑚𝑗, ∀𝑖𝑖 = 1, 2, … , 𝑛, ∀𝑗 = 1, 2, … , 𝑛(𝑛 − 1) 2⁄ �

 or 𝑠𝑘 = (𝜎𝑖, ∀𝑖𝑖 = 1, 2, … , 𝑛,).

 Evaluate 𝑁𝑁(0): �Φ�𝑎1(0)�, Φ�𝑎2(0)�, … , Φ �𝑎𝜇(0)�� where Φ�𝑎𝑘(0)� = 𝑄�𝓍𝑘(0)�

 and 𝓍𝑚𝑖𝑛(0) with 𝑄�𝓍𝑚𝑖𝑛(0)� ≤ 𝑄�𝓍𝑘(0)� ∀𝑘 = 1, 2, … , 𝜇.

Diversification:

253

while not 𝑆1 or 𝑆2 or 𝑆3 do

 Recombine strategy parameters: 𝑠𝑘
′ (𝑔) = 𝑟𝑟𝑠

′�𝑁𝑁(𝑔)�, 𝑘 = 1, 2, … , 𝜆

 Recombine objective parameters: 𝑥𝑘
′ (𝑔) = 𝑟𝑟𝑝

′�𝑁𝑁(𝑔)�, 𝑘 = 1, 2, … , 𝜆

 Mutate strategy parameters: 𝑠𝑘
′′(𝑔) = 𝑚𝑠

′ �𝑠𝑘
′ (𝑔)�, 𝑘 = 1, 2, … , 𝜆

 Mutate objective parameters: 𝓍𝑘
′′(𝑔) = 𝑚𝑝

′ �𝓍𝑘
′ (𝑔), 𝑠𝑘

′′(𝑔)�, 𝑘 = 1, 2, … , 𝜆

 Evaluate 𝑁𝑁′′(𝑡) = (𝑎𝑘
′′(𝑔), 𝑘 = 1, 2, … , 𝜆), where 𝑎𝑘

′′ = �𝓍𝑘
′′(𝑔), 𝑠𝑘

′′(𝑔)�:

 �Φ�𝑎1
′′(𝑔)�, Φ�𝑎2

′′(𝑔)�, … , Φ�𝑎𝜆
′′(𝑔)��, where Φ�𝑎𝑘

′′(𝑔)� = 𝑄�𝓍𝑘
′′(𝑔)�

 Select: 𝑁𝑁(𝑔 + 1) = if (𝜇, 𝜆)-selection then 𝑠(𝜇,𝜆)�𝑁𝑁′′(𝑔)� else 𝑠(𝜇+𝜆)�𝑁𝑁(𝑔) ∪ 𝑁𝑁′′(𝑔)�

 Evaluate 𝓍𝑚𝑖𝑛(𝑔 + 1) with 𝑄�𝓍𝑚𝑖𝑛(𝑔 + 1)� ≤ 𝑄�𝓍𝑘(𝑔 + 1)� ∀𝑘 = 1, 2, … , 𝜇.

 Set 𝑔 = 𝑔 + 1

end while
Intensification:

 Perform A1 Algorithms

Algorithm A1 or Algorithm A2 with the start value 𝓍0 = 𝓍𝑚𝑖𝑛(𝑔 + 1).

In the same manner CMAES of Algorithm A5 can be used in the diversification phase.

Algorithm A7 (Gillespie’s direct method)
1. Set the initial numbers of molecules and set 𝑡 = 0.

2. Calculate the hazard function ℎ𝑗 for all 𝑗.

3. Choose the reaction 𝑅𝑘 randomly with the probabilities ℎ𝑘 ∑ ℎ𝑗𝑗⁄

4. Generate the time 𝜏~𝐸𝑥𝑝�∑ ℎ𝑗𝑗 � when reaction 𝑅𝑘 occurs.

5. Update the number of molecules affected by reaction 𝑅𝑘.

6. If 𝑡 = 𝐴𝐴𝑚𝑎𝑥, stop; otherwise, set 𝑡 = 𝑡 + 𝜏 and go to step 2.

Algorithm A8 (First reaction method)
1. Set the initial numbers of molecules and set 𝑡 = 0.

2. Calculate the hazard function ℎ𝑗 for all 𝑗.

3. Generate a putative time 𝜏𝑗~𝐸𝑥𝑝�ℎ𝑗� for all 𝑗.

4. Let 𝑅𝑘 the reaction whose putative time 𝜏𝑘 is the smallest.

5. Update the number of molecules affected by reaction 𝑅𝑘.

6. If 𝑡 = 𝐴𝐴𝑚𝑎𝑥, stop; otherwise, set 𝑡 = 𝑡 + 𝜏𝑘 and go to step 2.

25
4

A
2

 C
O

N
N

EC
TO

R
 V

A
R

IA
B

LE
S

 O
F

TH
E

P
N

LI
B

T
ab

le
 A

2:
 V

ar
ia

bl
es

 o
f t

he
 P

N
lib

 c
on

ne
ct

or
s.

O
ra

ng
e

va
ri

ab
le

s a
re

 o
nl

y
pa

rt
 o

f d
is

cr
et

e
co

m
m

un
ic

at
io

ns
 w

hi
le

 b
lu

e
va

ri
ab

le
s a

re
 o

nl
y

pa
rt

 o
f

co
nt

in
uo

us
 c

om
m

un
ic

at
io

ns

Pl

ac
eO

ut

T
ra

ns
iti

on
In

T

ra
ns

iti
on

O
ut

Pl

ac
eI

n
IN

PU
T

IN

PU
T

IN

PU
T

IN

PU
T

B

oo
l

ac
tiv

e
R

ea
l

t
R

ea
l

t
B

oo
l

ac
tiv

e
A

re
 th

e
ou

tp
ut

 tr
an

si
tio

ns
 a

ct
iv

e?

M
ar

ki
ng

s o
f i

np
ut

 p
la

ce
s

M
ar

ki
ng

s o
f o

ut
pu

t p
la

ce
s

A
re

 th
e

in
pu

t t
ra

ns
iti

on
s a

ct
iv

e?

B
oo

l
fir

e
In

te
ge

r
tin

t
In

te
ge

r
tin

t
B

oo
l

fir
e

D
o

th
e

ou
tp

ut
 tr

an
si

tio
ns

 fi
re

?
In

te
ge

r m
ar

ki
ng

s o
f i

np
ut

 p
la

ce
s

In
te

ge
r m

ar
ki

ng
s o

f o
ut

pu
t p

la
ce

s
D

o
th

e
in

pu
t t

ra
ns

iti
on

s f
ire

?
R

ea
l

ar
cW

ei
gh

t
R

ea
l

m
in

T
ok

en
s

R
ea

l
m

ax
T

ok
en

s
R

ea
l

ar
cW

ei
gh

t
W

ei
gh

ts
 o

f o
ut

pu
t a

rc
s

M
in

im
um

 c
ap

ac
ite

s o
f i

np
ut

 p
la

ce
s

M
ax

im
um

 c
ap

ac
iti

es
 o

f o
ut

pu
t p

la
ce

s
W

ei
gh

ts
 o

f i
np

ut
 a

rc
s

In
te

ge
r

ar
cW

ei
gh

tin
t

In
te

ge
r

m
in

T
ok

en
si

nt

In
te

ge
r

m
ax

T
ok

en
si

nt

In
te

ge
r

ar
cW

ei
gh

tI
nt

In

te
ge

r w
ei

gh
ts

 o
f o

ut
pu

t a
rc

s
In

te
ge

r m
in

im
um

 c
ap

ac
ite

s o
f i

np
ut

pl

ac
es

In

te
ge

r m
ax

im
um

 c
ap

ac
ite

s o
f i

np
ut

pl

ac
es

In

te
ge

r w
ei

gh
ts

 o
f i

np
ut

 a
rc

s

B
oo

l
di

sT
ra

ns
iti

on

B
oo

l
en

ab
le

B

oo
l

en
ab

le

B
oo

l
di

sT
ra

ns
iti

on

Ty
pe

s o
f o

ut
pu

t t
ra

ns
iti

on
s

(d
is

cr
et

e/
st

oc
ha

st
ic

 o
r c

on
tin

uo
us

)
Is

 th
e

tra
ns

iti
on

 e
na

bl
ed

 b
y

in
pu

t p
la

ce
s?

Is

 th
e

tra
ns

iti
on

 e
na

bl
ed

 b
y

ou
tp

ut

pl
ac

es
?

Ty
pe

s o
f i

np
ut

 tr
an

si
tio

ns

(d
is

cr
et

e/
st

oc
ha

st
ic

 o
r c

on
tin

uo
us

)
R

ea
l

in
st

Sp
ee

d
B

oo
l

to
ke

nI
nO

ut

B
oo

l
di

sP
la

ce

B
oo

l
en

ab
le

dB
yI

nP
la

ce
s

In
st

an
ta

ne
ou

s s
pe

ed
s o

f c
on

tin
uo

us

ou
tp

ut
 tr

an
si

tio
ns

D

o
th

e
in

pu
t p

la
ce

s h
av

e
a

di
sc

re
te

 to
ke

n
ch

an
ge

?
Ty

pe
s o

f o
ut

pu
t p

la
ce

s (
di

sc
re

te
 o

r
co

nt
in

uo
us

)
A

re
 th

e
in

pu
t t

ra
ns

iti
on

s e
na

bl
ed

 b
y

al
l

th
ei

r i
np

ut
 p

la
ce

s?

R
ea

l
pr

el
im

Sp
ee

d
In

te
ge

r
ar

cT
yp

e
B

oo
l

em
pt

ie
d

R
ea

l
in

st
Sp

ee
d

Pr
el

im
in

ar
y

sp
ee

ds
 o

f c
on

tin
uo

us
 o

ut
pu

t
tra

ns
iti

on
s

Ty
pe

s o
f i

np
ut

 a
rc

s (
no

rm
al

, t
es

t,
in

hi
bi

tio
n,

 o
r r

ea
d)

A

re
 th

e
co

nt
in

uo
us

 o
ut

pu
t p

la
ce

s
em

pt
ie

d?

In
st

an
ta

ne
ou

s s
pe

ed
s o

f c
on

tin
uo

us
 in

pu
t

tra
ns

iti
on

s
R

ea
l

m
ax

Sp
ee

d
B

oo
l

di
sP

la
ce

R

ea
l

de
cr

ea
sin

gF
ac

to
r

R
ea

l
pr

el
im

Sp
ee

d

25
5

M
ax

im
um

 sp
ee

ds
 o

f c
on

tin
uo

us
 o

ut
pu

t
tra

ns
iti

on
s

Ty
pe

s o
f i

np
ut

 p
la

ce
s (

di
sc

re
te

 o
r

co
nt

in
uo

us
)

Fa
ct

or
s o

f c
on

tin
uo

us
 o

ut
pu

t p
la

ce
s f

or

de
cr

ea
si

ng
 th

e
sp

ee
d

Pr
el

im
in

ar
y

sp
ee

ds
 o

f c
on

tin
uo

us
 in

pu
t

tra
ns

iti
on

s

R
ea

l
te

st
V

al
ue

R

ea
l

sp
ee

dS
um

R

ea
l

m
ax

Sp
ee

d
Te

st
 v

al
ue

s o
f t

es
t o

r i
nh

ib
ito

r a
rc

s
O

ut
pu

t s
pe

ed
s o

f c
on

tin
uo

us
 o

ut
pu

t p
la

ce
s

M
ax

im
um

 sp
ee

ds
 o

f c
on

tin
uo

us
 in

pu
t

tra
ns

iti
on

s
In

te
ge

r
te

st
V

al
ue

in
t

In
te

ge
r t

es
t v

al
ue

s o
f t

es
t o

r i
nh

ib
ito

r a
rc

s
In

te
ge

r
no

rm
al

A
rc

D

ou
bl

e
ar

c:
 te

st
 a

nd
 n

or
m

al
 a

rc
 o

r
in

hi
bi

to
r a

nd
 n

or
m

al
 a

rc

B
oo

l
fe

d
A

re
 th

e
co

nt
in

uo
us

 in
pu

t p
la

ce
s f

ed
?

R
ea

l
de

cr
ea

sin
gF

ac
to

r
Fa

ct
or

s o
f c

on
tin

uo
us

 in
pu

t p
la

ce
s f

or

de
cr

ea
si

ng
 th

e
sp

ee
d

R
ea

l
sp

ee
dS

um

In
pu

t s
pe

ed
s o

f c
on

tin
uo

us
 in

pu
t p

la
ce

s
O

U
T

PU
T

O

U
T

PU
T

O

U
T

PU
T

O

U
T

PU
T

R

ea
l

t
B

oo
l

ac
tiv

e
B

oo
l

ac
tiv

e
R

ea
l

t
M

ar
ki

ng
 o

f t
he

 p
la

ce

Is
 th

e
tra

ns
iti

on
 a

ct
iv

e?

Is
 th

e
tra

ns
iti

on
 a

ct
iv

e?

M
ar

ki
ng

 o
f t

he
 p

la
ce

In

te
ge

r
tin

t
B

oo
l

fir
e

B
oo

l
fir

e
In

te
ge

r
tin

t
In

te
ge

r m
ar

ki
ng

 o
f t

he
 p

la
ce

D

oe
s t

he
 tr

an
si

tio
n

fir
e?

D

oe
s t

he
 tr

an
si

tio
n

fir
e?

In

te
ge

r m
ar

ki
ng

 o
f t

he
 p

la
ce

R

ea
l

m
in

T
ok

en
s

R
ea

l
ar

cW
ei

gh
t

R
ea

l
ar

cW
ei

gh
t

R
ea

l
m

ax
T

ok
en

s
M

in
im

um
 c

ap
ac

ity
 o

f t
he

 p
la

ce

W
ei

gh
ts

 o
f i

np
ut

 a
rc

s
W

ei
gh

ts
 o

f o
ut

pu
t a

rc
s

M
ax

im
um

 c
ap

ac
ity

 o
f t

he
 p

la
ce

In

te
ge

r
m

in
T

ok
en

si
nt

In

te
ge

r
ar

cW
ei

gh
tin

t
In

te
ge

r
ar

cW
ei

gh
tin

t
In

te
ge

r
m

ax
T

ok
en

si
nt

In

te
ge

r m
in

im
um

 c
ap

ac
ity

 o
f t

he
 p

la
ce

In

te
ge

r w
ei

gh
ts

 o
f i

np
ut

 a
rc

s
In

te
ge

r w
ei

gh
ts

 o
f o

ut
pu

t a
rc

s
In

te
ge

r m
ax

im
um

 c
ap

ac
ity

 o
f t

he
 p

la
ce

B

oo
l

en
ab

le

B
oo

l
di

sT
ra

ns
iti

on

B
oo

l
di

sT
ra

ns
iti

on

B
oo

l
en

ab
le

W

hi
ch

 o
f t

he
 o

ut
pu

t t
ra

ns
iti

on
s a

re

en
ab

le
d

by
 th

e
pl

ac
e?

Ty

pe
 o

f t
he

 tr
an

si
tio

n
(d

is
cr

et
e/

st
oc

ha
st

ic

or
 c

on
tin

uo
us

)
Ty

pe
 o

f t
he

 tr
an

si
tio

n
(d

is
cr

et
e/

st
oc

ha
st

ic

or
 c

on
tin

uo
us

)
W

hi
ch

 o
f t

he
 in

pu
t t

ra
ns

iti
on

s a
re

 e
na

bl
ed

by

 th
e

pl
ac

e?

B
oo

l
to

ke
nI

nO
ut

R

ea
l

in
st

Sp
ee

d
B

oo
l

en
ab

le
dB

yI
nP

la
ce

s
B

oo
l

di
sP

la
ce

D

oe
s t

he
 p

la
ce

 h
av

e
a

di
sc

re
te

 to
ke

n
ch

an
ge

?
In

st
an

ta
ne

ou
s s

pe
ed

 o
f a

 c
on

tin
uo

us

tra
ns

iti
on

Is

 th
e

tra
ns

iti
on

 e
na

bl
ed

 b
y

al
l i

np
ut

pl

ac
es

?
Ty

pe
 o

f t
he

 p
la

ce
 (d

is
cr

et
e

or
 c

on
tin

uo
us

)

In
te

ge
r

ar
cT

yp
e

R
ea

l
pr

el
im

Sp
ee

d
R

ea
l

in
st

Sp
ee

d
B

oo
l

em
pt

ie
d

Ty
pe

s o
f o

ut
pu

t a
rc

s (
no

rm
al

, t
es

t,
in

hi
bi

tio
n,

 o
r r

ea
d)

Pr

el
im

in
ar

y
sp

ee
d

of
 a

 c
on

tin
uo

us

tra
ns

iti
on

In

st
an

ta
ne

ou
s s

pe
ed

 o
f a

 c
on

tin
uo

us

tra
ns

iti
on

Is

 th
e

co
nt

in
uo

us
 p

la
ce

 e
m

pt
ie

d
by

 o
ut

pu
t

tra
ns

iti
on

s?

B
oo

l
di

sP
la

ce

R
ea

l
m

ax
Sp

ee
d

R
ea

l
pr

el
im

Sp
ee

d
R

ea
l

de
cr

ea
sin

gF
ac

to
r

25
6

Ty
pe

 o
f t

he
 p

la
ce

 (d
is

cr
et

e
or

co

nt
in

uo
us

)
M

ax
im

um
 sp

ee
d

of
 a

 c
on

tin
uo

us

tra
ns

iti
on

Pr

el
im

in
ar

y
sp

ee
d

of
 a

 c
on

tin
uo

us

tra
ns

iti
on

Fa

ct
or

 fo
r d

ec
re

as
in

g
th

e
sp

ee
d

of

co
nt

in
uo

us
 in

pu
t t

ra
ns

iti
on

s
R

ea
l

te
st

V
al

ue

R

ea
l

m
ax

Sp
ee

d
R

ea
l

sp
ee

dS
um

Te

st
 v

al
ue

s o
f t

es
t o

r i
nh

ib
ito

r a
rc

s
M

ax
im

um
 sp

ee
d

of
 a

 c
on

tin
uo

us

tra
ns

iti
on

O

ut
pu

t s
pe

ed
 o

f a
 c

on
tin

uo
us

 p
la

ce

In
te

ge
r

te
st

V
al

ue
in

t

In

te
ge

r t
es

t v
al

ue
s o

f t
es

t o
r i

nh
ib

ito
r

ar
cs

In

te
ge

r
no

rm
al

A
rc

D

ou
bl

e
ar

c:
 te

st
 a

nd
 n

or
m

al
 a

rc
 o

r
in

hi
bi

to
r a

nd
 n

or
m

al
 a

rc

B
oo

l
fe

d
Is

 th
e

co
nt

in
uo

us
 p

la
ce

 fe
d

by
 in

pu
t

tra
ns

iti
on

s?

R
ea

l
de

cr
ea

si
ng

Fa
ct

or

Fa
ct

or
 fo

r d
ec

re
as

in
g

th
e

sp
ee

d
of

co

nt
in

uo
us

 o
ut

pu
t t

ra
ns

iti
on

s
R

ea
l

sp
ee

dS
um

In

pu
t s

pe
ed

 o
f a

 c
on

tin
uo

us
 p

la
ce

257

A3 SUPPLEMENTS TO THE AMMOD-TOOL

A3-1 PRA

Curve Fitting ToolboxTM of Matlab (MathWorks 2011) has the ability to smooth the

experimental data as described in Section 5.1. This can be done by the prompt

[cfun,gof,output] = fit(t,ymsd,'smoothingspline')

called from within a Matlab procedure, whereby the vector 𝑡 comprises the time points and

𝑦𝑚𝑠𝑑 the corresponding measurements. The approximated data and the corresponding

derivative can then be obtained by the prompts

y = feval(cfun,t);

dydt = differentiate(cfun,t);

Another possibility is to perform the fitting through a GUI opened by the prompt cftool.

After preprocessing the data with smoothing splines, functional relationships between the

considered biological compounds and their reaction rates can be analyzed. Thereby, the

smoothed reaction rates are derived from the first derivations of the smoothing splines. The

RA can also be performed with Curve Fitting ToolboxTM in Matlab by comparing two data

vectors obtained from smoothing with each other. Thereby, the entries of these vectors have

to refer to the same points in time. One vector is chosen to be the X Data and the other is

assigned to the Y Data. Afterwards, the relationship between these two data vectors is

analyzed by creating a fit. Several equation types are available to find a function which

describes the relationship; custom equations can be defined, too.

A3-2 PESA

To use the PESA-option on the main menu of the AMMod-tool, the experimental data have to

be prepared in an Excel map. One sheet of this Excel map has to contain the initial conditions

of the experiments; the structure is shown in Table A3. The example comprises data of five

fermentation experiments with changing initial nitrogen (𝑁𝑁0) and glucose (𝑆0)

concentrations. The first column sheet determines the Excel sheet with the experimental data

258

which correspond to the initial conditions 𝑁𝑁0 and 𝑆0 and the second column weight defines

the sheet with the weights of each data point. If the word “no” is entered in the weight

column, all data points are weighted equally. The columns after these two columns comprise

the initial conditions.

Table A3: Excel sheet with the initial conditions of experiments

sheet weight N0 S0
data1 W1 0.13 35
data2 W2 0.25 30
data3 W3 0.28 45
data4 W4 0.28 20
data5 W5 0.12 30

The sheets with the experimental data have to be structured as shown in Table A4. The first

column comprises the points in time when the studied substances have been measured. The

following columns contain the measured values of these substances: glucose (𝑆), oxygen

(𝑂𝑂2), xanthan (𝐴𝐴), nitrogen (𝑁𝑁), and biomass (𝑋).

Table A4: Excel sheet with an experimental data set

time S O2 P N X
0.00 35.00 2.00E-04 0.10 0.13 0.10
5.50 34.45 1.87E-04 0.28 0.12 0.13
15.00 33.06 1.77E-04 0.75 0.11 0.22
30.00 29.10 1.91E-04 2.11 0.07 0.44
40.00 25.02 1.88E-04 3.61 0.04 0.64
50.00 20.33 1.86E-04 5.53 0.02 0.79
60.00 15.65 1.85E-04 7.67 0.00 0.86
70.00 11.10 1.84E-04 9.88 0.00 0.88
80.00 6.61 1.84E-04 12.10 0.00 0.89
90.00 2.13 1.84E-04 14.32 0.00 0.89
100.00 0.00 1.83E-04 15.38 0.00 0.89

The weights are entered in a separate sheet in the form of a matrix shown in Table A5. In this

example, the weights are the reciprocal of the quadratic maximum amount of each substance.

Table A5: Excel sheet with a weight matrix which comprises a weight for each data point

8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26

259

8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26
8.16E-04 2.50E+07 4.23E-03 59.17 1.26

It should be noted that all mentioned sheets have to be provided within one Excel map.

Settings that have to be made on the PESA GUI:

− Simulink Model: Select the Simulink model which corresponds to the Modelica model

whose parameters should be estimated or for which a sensitivity analysis should be

performed.

− Dymola Block: Name of the Dymola block in the Simulink model.

− Input File: Select the text file that contains the inputs of the Modelica model.

− Data File: Select the Excel file with the experimental data structured as mentioned above.

− Initial Sheet: Select the name of the Excel sheet with the initial conditions.

− Method: Select an optimization algorithm of those introduced in Section 3.2:

• Hooke-Jeeves

• Nelder-Mead

• DIRECT

• ES

• CMAES

• Hybrid

or a sensitivity analysis method from those introduced in Section 3.3:

• Local

• FAST

• eFAST

− Method Parameters: When a PE or SA method is chosen, the respective method-specific

parameters appear and can be set.

− Abort Criteria: When a PE or SA method is chosen, the respective method-specific abort

criteria appear and can be set.

− Objective Function: One of the objective functions in Eq. 5-11 to Eq. 5-14 can be

chosen.

− Model Parameters: If the settings above have been made, the parameters of the model

can be loaded to the GUI by clicking load parameters. Afterwards, the parameters which

should be optimized can be selected. Additionally, a minimum and a maximum value can

260

be determined for each parameter. Local PE and SA methods require a start value which

can be also entered into the GUI. All these values can also be loaded from an Excel file by

clicking load start, load min, and load max, respectively. Then an Excel file has to be

chosen from a dialog, the selected Excel file appears, and the respective values can be

marked. Thereby, the first column has to contain the parameter names and the second the

respective values. Afterwards, the selection is confirmed by clicking OK and the values

appear in the GUI.

− scale: If the scale option is chosen, the parameters are scaled for the optimization to the

interval [0,1] by the defined minimum and maximum values. For the simulation, the

parameters are then re-scaled by the equation

− START: Starts the PE or SA method.

− STOP: Stops the PE or SA method when the current iteration is finished.

A4 SUPPLEMENTS TO THE APPLICATION

A4-1 PSEUDO EXPERIMENTAL DATA

Table A6: Data set 1 of the unstructured model in Figure 7.7

time S O2 P N X
0.00 35.00000 0.00020 0.10000 0.13000 0.10000
5.50 34.44110 0.00019 0.29307 0.12458 0.13294
15.00 33.01345 0.00018 0.78760 0.11079 0.21665
30.00 28.91399 0.00019 2.24482 0.07318 0.44510
40.00 24.62684 0.00019 3.89286 0.04041 0.64410
50.00 19.57404 0.00019 6.08707 0.01514 0.79756
60.00 14.40804 0.00018 8.60533 0.00388 0.86592
70.00 9.31151 0.00018 11.23984 0.00074 0.88501
80.00 4.25147 0.00018 13.90244 0.00011 0.88882
90.00 0.00000 0.00018 16.14781 0.00002 0.88938
100.00 0.00000 0.00018 16.14781 0.00002 0.88938

𝑝𝑠𝑖𝑚 = 𝑝𝑙 + (𝑝𝑢 − 𝑝𝑙) ⋅ 𝑝𝑜𝑝𝑡. Eq. A1

261

Table A7: Data set 2 of the unstructured model in Figure 7.7

time S O2 P N X
0.00 30.00000 0.00020 0.10000 0.25000 0.10000
5.50 28.99639 0.00017 0.34012 0.23461 0.19347
10.00 27.51758 0.00015 0.69549 0.21201 0.33071
12.00 26.56968 0.00014 0.92532 0.19763 0.41803
15.00 24.70132 0.00011 1.38626 0.16971 0.58761
18.00 22.21479 0.00008 2.02528 0.13390 0.80507
20.00 20.22229 0.00006 2.56898 0.10688 0.96916
25.00 14.61558 0.00016 4.35065 0.04420 1.34984
30.00 9.25877 0.00017 6.56417 0.01142 1.54887
40.00 0.00000 0.00017 11.24895 0.00034 1.61618
50.00 0.00000 0.00017 11.24895 0.00034 1.61618

Table A8: Data set 3 of the unstructured model in Figure 7.7

time S O2 P N X
0.00 45.00000 0.00020 0.10000 0.28000 0.10000
5.50 44.53396 0.00019 0.28194 0.27660 0.12065
15.00 43.43544 0.00018 0.69702 0.26785 0.17378
30.00 40.19073 0.00019 1.83474 0.23731 0.35927
40.00 35.50434 0.00018 3.33845 0.18575 0.67236
50.00 26.27887 0.00017 6.26821 0.08257 1.29897
60.00 14.64387 0.00017 11.02104 0.00849 1.74890
70.00 4.20827 0.00017 16.38084 0.00022 1.79912
80.00 0.00000 0.00017 18.60166 0.00004 1.80022
90.00 0.00000 0.00017 18.60166 0.00004 1.80022
100.00 0.00000 0.00017 18.60166 0.00004 1.80022

Table A9: Data set 4 of the unstructured model in Figure 7.7

time S O2 P N X
0.00 20.00000 0.00020 0.10000 0.28000 0.10000
5.50 18.29181 0.00015 0.40994 0.24855 0.29097
10.00 14.94226 0.00008 1.04803 0.18850 0.65569
12.00 12.60940 0.00004 1.52990 0.14865 0.89766
15.00 8.35287 0.00000 2.54730 0.08328 1.29469
18.00 4.10522 0.00000 3.87824 0.03478 1.58922
20.00 1.56199 0.00000 4.87668 0.01643 1.70063
25.00 0.00000 0.00016 5.57023 0.00943 1.74317
30.00 0.00000 0.00017 5.57023 0.00943 1.74317
40.00 0.00000 0.00017 5.57023 0.00943 1.74317
50.00 0.00000 0.00017 5.57023 0.00943 1.74317

262

Table A10: Data set 5 of the unstructured model in Figure 7.7

time S O2 P N X
0.00 30.00000 0.00020 0.10000 0.12000 0.10000
5.50 29.37397 0.00019 0.30067 0.11310 0.14193
15.00 27.66680 0.00017 0.85827 0.09482 0.25293
30.00 22.70978 0.00019 2.61081 0.04881 0.53232
40.00 18.11011 0.00019 4.49995 0.02007 0.70690
50.00 13.28085 0.00019 6.77984 0.00560 0.79472
60.00 8.51452 0.00019 9.21539 0.00117 0.82168
70.00 3.79404 0.00019 11.69204 0.00019 0.82759
80.00 0.00000 0.00018 13.69445 0.00004 0.82852
90.00 0.00000 0.00018 13.69445 0.00004 0.82852
100.00 0.00000 0.00018 13.69445 0.00004 0.82852

Table A11: Weightings of data points for PE of the unstructured model in Figure 7.7

Data Set S O2 P N X
1 0.00082 25000000 0.00384 59.17160 1.26423
2 0.00111 25000000 0.00790 16.00000 0.38284
3 0.00049 25000000 0.00289 12.75510 0.30857
4 0.00250 25000000 0.03223 12.75510 0.32909
5 0.00111 25000000 0.00533 69.44444 1.45677

A4-2 METHOD-SPECIFIC PARAMETERS

Table A12: Settings of the PE methods for the unstructured model in Figure 7.7

Method Parameters

ES 𝜆 = 35, 𝜇 = 5, 𝜀𝐸𝑆 = 10−6, 𝑔𝑚𝑎𝑥 =
1000

CMAES 𝜀𝐶𝑀𝐴𝐸𝑆 = 10−8, 𝑔𝑚𝑎𝑥 = 1500

Hybrid1
(ES+Nelder-Mead simplex method)

𝜆 = 35, 𝜇 = 5, 𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 1000,
𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 3000, 𝜀𝐸𝑆 = 10−8,
𝜌𝐻 = 0.01

Hybrid2
(ES+Hooke-Jeeves method)

𝜆 = 35, 𝜇 = 5, 𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 1000,
𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 1000, 𝜀𝐸𝑆 = 10−8,
𝜌𝐻 = 0.01, 𝜌𝐻𝐽 = 0.7, 𝜀𝐻𝐽 = 10−6

Hybrid3
(CMAES+Nelder-Mead simplex method)

𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 1500, 𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 3000,
𝜀𝐶𝑀𝐴𝐸𝑆 = 10−8, 𝜌𝐻 = 0.001

Hybrid4
(CMAES+Hooke-Jeeves method)

𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 1500, 𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 1000,
𝜀𝐶𝑀𝐴𝐸𝑆 = 10−8, 𝜌𝐻 = 0.001, 𝜌𝐻𝐽 = 0.7,
𝜀𝐻𝐽 = 10−6

263

DIRECT 𝜀𝐷 = 0.0001, 𝑔𝑚𝑎𝑥 = 250

Table A13: Settings of the PO methods for the metabolically structured model in Figure 7.12

Method Parameters

ES 𝜆 = 28, 𝜇 = 4, 𝜀𝐸𝑆 = 10−5, 𝑔𝑚𝑎𝑥 =
500

CMAES 𝜀𝐶𝑀𝐴𝐸𝑆 = 10−5, 𝑔𝑚𝑎𝑥 = 500

Hybrid1
(ES+Nelder-Mead simplex method)

𝜆 = 28, 𝜇 = 4, 𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 500,
𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 2000, 𝜀𝐸𝑆 = 10−5,
𝜌𝐻 = 0.01

Hybrid2
(ES+Hooke-Jeeves method)

𝜆 = 28, 𝜇 = 4, 𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 500,
𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 500, 𝜀𝐸𝑆 = 10−5, 𝜌𝐻 =
0.01, 𝜌𝐻𝐽 = 0.7, 𝜀𝐻𝐽 = 10−6

Hybrid3
(CMAES+Nelder-Mead simplex method)

𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 500, 𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 2000,
𝜀𝐶𝑀𝐴𝐸𝑆 = 10−5, 𝜌𝐻 = 0.001

Hybrid4
(CMAES+Hooke-Jeeves method)

𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 500, 𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 500,
𝜀𝐶𝑀𝐴𝐸𝑆 = 10−5, 𝜌𝐻 = 0.001, 𝜌𝐻𝐽 = 0.7,
𝜀𝐻𝐽 = 10−6

DIRECT 𝜀𝐷 = 10−4, 𝑔𝑚𝑎𝑥 = 250

Table A14: Adapted settings of the PO methods for the modified metabolically structured
model in Figure 7.12

Method Parameters

ES 𝜆 = 35, 𝜇 = 5 , 𝑔𝑚𝑎𝑥 = 1000

CMAES 𝑔𝑚𝑎𝑥 = 2000

Hybrid1
(ES+Nelder-Mead simplex method)

𝜆 = 35, 𝜇 = 5, 𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 100,
𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 3000

Hybrid2
(ES+Hooke-Jeeves method)

𝜆 = 35, 𝜇 = 5, 𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 1000

Hybrid3
(CMAES+Nelder-Mead simplex method)

𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 2000, 𝑔𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 = 3000,
𝜌𝐻 = 0.0001

Hybrid4
(CMAES+Hooke-Jeeves method)

𝑔𝑚𝑎𝑥,𝑔𝑙𝑜𝑏𝑎𝑙 = 1000, , 𝜌𝐻 = 0.0001

DIRECT -

264

A4-3 COMPONENTS AND PARAMETERS OF THE MODELS

Table A15:Components of the metabolically structured model in Figure 7.12

Name Type Description Properties

𝑁𝑁 Continuous
place

Nitrogen
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 𝑁𝑁0
(Initial nitrogen concentration)

𝑋 Continuous
place

Biomass
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 0.1
(Initial biomass concentration)

𝑆 Continuous
place

Glucose
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 𝑆0
(Initial glucose concentration)

𝑁𝑁𝐴𝐴𝐴𝐴 Continuous
place

ATP
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 1
(Initial ATP concentration)

𝐴𝐴 Continuous
place

Xanthan
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 0.1
(Initial xanthan concentration)

𝐶𝑂𝑂2 Continuous
place

CO2
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 0
(Initial CO2 concentration)

𝐶𝑜𝑓 Continuous
place

Cofactor
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 1
(Initial cofactor concentration)

𝑂𝑂2 Continuous
place

O2
concentration

𝑠𝑡𝑎𝑟𝑟𝑡𝑀𝑎𝑟𝑟𝑘𝑠 = 𝑂𝑂2∗
(Initial oxygen concentration)

𝐴𝐴𝑋 Continuous
transition

Biomass
production
from nitrogen,
glucose, and
oxygen
according to
Eq. 7-28

inputs: 𝑁𝑁, 𝑆, 𝑂𝑂2
outputs: 𝑋
maximum speed:

𝑟𝑟𝑥 = 𝜇𝑚𝑎𝑥 ⋅ 𝑋 ⋅ 𝑁𝑁 ⋅ �1 −
𝑆

𝑆𝑚𝑎𝑥
� ⋅ �1 −

𝜇𝑒𝑓𝑓

𝜇𝑒𝑓𝑓,𝑚𝑎𝑥
�

input arc weights:

�
1

𝑌𝑋𝑁
,

1
𝑌𝑋𝑆

,
1

𝑌𝑋𝑂
�

output arc weights:
(1)

𝐴𝐴1 Continuous
transition

Xanthan
production
from glucose

inputs: 𝑆, 𝑁𝑁𝐴𝐴𝐴𝐴, 𝑂𝑂2
outputs: 𝐴𝐴, 𝐶𝑜𝑓, 𝐶𝑂𝑂2
maximum speed:

𝑟𝑟1 = �
1 + 4𝑌𝐴𝑇𝑃𝐶𝑜𝑓

3.58 + 4𝑌𝐴𝑇𝑃𝑃
� 𝑟𝑟4 �1 −

𝑁𝑁

𝑁𝑁𝑚𝑎𝑥
�

input arc weights:
(5.49 ⋅ 180, 10.89, 0.3)
output arc weights:
(923.2, 3.58, 0.6)

𝐴𝐴2 Continuous
transition

Glucose
catabolism

inputs: 𝑆
outputs: 𝑁𝑁𝐴𝐴𝐴𝐴, 𝐶𝑜𝑓, 𝐶𝑂𝑂2
maximum speed:

𝑟𝑟2 =
1

12
�1 − 3.58 �

1 + 4𝑌𝐴𝑇𝑃𝐶𝑜𝑓

3.58 + 4𝑌𝐴𝑇𝑃𝑃
�� 𝑟𝑟4

input arc weights:
(180)
output arc weights:
(3, 12, 6)

265

𝐴𝐴3 Continuous
transition

Maintenance
energy

inputs: 𝑁𝑁𝐴𝐴𝐴𝐴
outputs: -
maximum speed:
𝑟𝑟3 = (𝑌𝐴𝑇𝑃𝑃 − 10.89)𝑟𝑟1
input arc weights:
(1)
output arc weights:
-

𝐴𝐴4 Continuous
transition

Oxidative
phosphory-
lation

Inputs: 𝐶𝑜𝑓, 𝑂𝑂2
Outputs: 𝑁𝑁𝐴𝐴𝐴𝐴
maximum speed:
𝑟𝑟4 = 𝑘4 ⋅ 𝑂𝑂2 ⋅ 𝑋
input arc weights:
(1, 1)
output arc weights:
�𝑌𝐴𝑇𝑃𝐶𝑜𝑓�
𝑌𝐴𝑇𝑃𝐶𝑜𝑓 = 𝑘4

′ ⋅ 𝑂𝑂2

𝐴𝐴𝑂𝑂 Continuous
transition

Oxygen mass
transfer

Inputs: -
Outputs: 𝑂𝑂2
maximum speed:
𝑟𝑟𝑂𝑇𝑅 = 𝑘𝐿𝑎 ⋅ (𝑂𝑂2

∗ − 𝑂𝑂2)
input arc weights:
-
output arc weights:
(1)
𝑘𝐿𝑎 = 3.08 ⋅ 10−3 ⋅ 𝑉𝑠

0.43 ⋅ 𝑅1.75 ⋅ 𝜇𝑒𝑓𝑓
−0.39

𝐹𝐹𝑒𝑟𝑟𝑚𝑒𝑛𝑡𝑒𝑟𝑟 Fermenter
wrapper

Mode of
fermentation
Section 6.2

Inputs: -
Outputs: 𝑁𝑁, 𝑆
Parameters:
𝑚𝑜𝑑𝑒 = repeated batch fixed feeding number
𝑉𝑠𝑡𝑎𝑟𝑟𝑡 = 4 (start volume)
𝐶𝑎𝑑𝑑 = {𝑁𝑁𝑎𝑑𝑑, 𝑆𝑎𝑑𝑑} (substrate concentration
in volume addition)
𝑛 = 1 (number of feedings)
𝑓𝑒𝑒𝑑𝑖𝑖𝑛𝑔𝐴𝐴𝑖𝑖𝑚𝑒𝑠 = {𝑓𝑡} (feeding point in time)
𝑉𝑎𝑑𝑑 = 1 (volume addition)

𝐼𝑛𝑝𝑢𝑡𝑠 Inputs
wrapper

Wrapper for
the input
factors stirrer
speed (R),
temperature
(T), and gas
flow (Vs)

𝑅 Steps
wrapper

Speed of the
stirrer

Parameters:
𝑜𝑓𝑓𝑠𝑒𝑡 = 3.3 (initial stirrer speed)
𝑛𝑆𝑡𝑒𝑝𝑠 = 2 (number of steps)
𝑡𝑖𝑖𝑚𝑒𝐴𝐴𝑜𝑖𝑖𝑛𝑡𝑠 = {22.5, 25} (times when the stirrer
speed is increased)
ℎ𝑒𝑖𝑖𝑔ℎ𝑡𝑠 = {4.2, 1.7} (increase of stirrer speed)

266

𝐴𝐴 Step
wrapper

Temperature
of the
fermenter

Parameters:
𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑡𝑒𝑚𝑝0 (initial temperature)
𝑠𝑡𝑎𝑟𝑟𝑡𝐴𝐴𝑖𝑖𝑚𝑒 = 𝑡𝑡 (time when the temperature is
increased)
ℎ𝑒𝑖𝑖𝑔ℎ𝑡 = 𝑡𝑒𝑚𝑝𝑁𝑁𝑒𝑖𝑖𝑔ℎ𝑡 (increase of temperature)

𝑉𝑠 Constant
wrapper

Gas flow Parameters:
𝑘 = 0.001 (constant gas flow rate)

Table A16:Parameters of the metabolically structured model in Figure 7.12

Parameter Description Value

𝑌𝑋𝑁 Yield of biomass from
nitrogen 6.073

𝑌𝑋𝑆 Yield of biomass from
glucose

𝑌𝑋𝑆(𝐴𝐴) = 𝑎𝑋𝑆 + 𝑏𝑋𝑆𝐴𝐴
𝑎𝑋𝑆 = 0.34, 𝑏𝑋𝑆 = −0.0061

𝑌𝑋𝑂

Yield of biomass from
oxygen

𝑌𝑋𝑂(𝐴𝐴) = �𝐶1,𝑋𝑂�𝐴𝐴 − 𝐴𝐴𝑚𝑖𝑛,𝑋𝑂�

⋅ �1 − exp �𝐶2,𝑋𝑂�𝐴𝐴 − 𝐴𝐴𝑚𝑎𝑥,𝑋𝑂����
2

𝐶1,𝑋𝑂 =0.571, 𝐶2,𝑋𝑂 =-0.205, 𝐴𝐴𝑚𝑖𝑛,𝑋𝑂 =
24.35, 𝐴𝐴𝑚𝑎𝑥,𝑋𝑂 = 37.16

𝑌𝐴𝑇𝑃𝑃 Consumption of ATP for
Xanthan 34

𝑘4

Rate constant of maximum
speed for transition 𝐴𝐴4

𝑘4(𝐴𝐴) = �𝐶1,4�𝐴𝐴 − 𝐴𝐴𝑚𝑖𝑛,4�

⋅ �1 − exp �𝐶2,4�𝐴𝐴 − 𝐴𝐴𝑚𝑎𝑥,4����
2

𝐶1,4 =0.94, 𝐶24 =1.399, 𝐴𝐴𝑚𝑖𝑛,4 =19.45,
𝐴𝐴𝑚𝑎𝑥,4 =34.25

𝑘4
′

Constant for yield of ATP
from cofactors �𝑌𝐴𝑇𝑃𝐶𝑜𝑓�

𝑘4
′ (𝐴𝐴) = 𝑎4 + 𝑏4𝐴𝐴

𝑎4 = −2913, 𝑏4 = 2048

𝜇𝑚𝑎𝑥

Rate constant for growth
(𝐴𝐴𝑋)

𝜇𝑚𝑎𝑥(𝐴𝐴) = �𝐶1,𝑋(𝐴𝐴 − 𝐴𝐴𝑚𝑖𝑖𝑛,𝑋)

⋅ �1 − exp �𝐶2,𝑋(𝐴𝐴 − 𝐴𝐴𝑚𝑎𝑥,𝑋)���
2

𝐶1,𝑋 = 0.0491, 𝐶2,𝑋 = −0.245, 𝐴𝐴𝑚𝑖𝑛,𝑋 =
25, 𝐴𝐴𝑚𝑎𝑥,𝑋 = 37.09

𝑂𝑂2
∗ Saturated oxygen

concentration 0.0002

𝑎 Constant for viscosity
(Eq. 7-12) 0.08

𝑏 Constant for viscosity
(Eq. 7-12) 0.3

𝑆𝑚𝑎𝑥 Glucose inhibition
constant of growth 50

𝑁𝑁𝑚𝑎𝑥 Nitrogen inhibition
constant of xanthan
production

0.3

𝜇𝑒𝑓𝑓,𝑚𝑎𝑥 Viscosity inhibition
constant of growth 2

267

LIST OF FIGURES

Figure 1.1: The structure of this work .. 6
Figure 2.1: Different results of a hybrid Petri net simulated with the Cell Illustrator (left)

and the PNlib in Dymola (right). A discrete transition connected to a
continuous place fires continuously if the Cell Illustrator is used while it fires
discretely if the PNlib is used. ... 12

Figure 2.2: Different results of a continuous Petri net simulated by Snoopy (left) and the
PNlib in Dymola (right). Snoopy interprets a continuous Petri net as a
graphical representation of a system of ODEs while the PNlib preserves the
Petri net properties by transforming the discrete concept to a continuous one
(seeSection 4.4). .. 13

Figure 2.3: Relationships between the different formalisms .. 18
Figure 3.1: Discrete-time variable 𝑥 and continuous-time variable 𝑦...................................... 33
Figure 3.2: The function pre(x) obtains the value of the discrete-time variable x

immediately before the event occurs ... 33

Figure 3.3: The function edge(x) detects an event when the variable x switches from
false to true (left) and the function change(x) detects an event when
the variable x switches from false to true or from true to false
(right) ... 34

Figure 3.4: A bouncing ball (Example 3.13) .. 35
Figure 3.5: Necessary steps from a Modelica model to executable simulation code

(Fritzson 2004) .. 38
Figure 3.6: Solution process of hybrid DAEs (cp. Braun et al. 2010) 39
Figure 3.7: Six-hump camel back function with six minima in the bounded region; two

of them are global minima; left: surface plot, right: contour plot 43
Figure 3.8: The general structure of evolutionary algorithms (Beyer 2001) 47
Figure 3.9: The classes of pipeline hybrids; left: preprocessor, middle: primary, and

right: staged pipelining (Yen et al. 1998) .. 57
Figure 3.10: General scheme of a global SA (Saltelli et al. 1999) ... 58

Figure 3.11: An approximated region defined by 𝑄�(𝑥) ≤ 𝜀 .. 64

Figure 3.12: The approximated region for the matrix 𝑁𝑁 with 𝑄�(𝑥) = 1 66
Figure 3.13: Implementation of the FAST-method without random phase-shift 72
Figure 3.14: Recommended region for choosing the values of the frequency 𝜔𝜔𝑖 and the

resampling size 𝑁𝑁𝑟 by a given sample size 𝑁𝑁 (Saltelli et al. 1999) 74
Figure 4.1: Graphical representation of a place (left) and a transition (right).......................... 76
Figure 4.2: Tokens can be graphically represented by dots (left) or by numbers (right) in

the places ... 77
Figure 4.3: Input and output places, and input and output transitions 77
Figure 4.4: General conflicts of discrete places (Example 4.1) ... 78
Figure 4.5: Petri net (Example 4.2) .. 82

268

Figure 4.6: Petri net of Figure 4.5 after firing 𝐴𝐴1 and 𝐴𝐴2 (Example 4.2) 83
Figure 4.7: Petri net with a general conflict (Example 4.3) ... 84
Figure 4.8: Petri net with general conflicts (Example 4.4) .. 84
Figure 4.9: Capacitive Petri net with a general output conflict (Example 4.5) 91
Figure 4.10: Extended Petri nets with test arcs (top) and inhibitor arcs (bottom)

(Example 4.6). 𝐴𝐴1 and 𝐴𝐴4 are active and 𝐴𝐴2 and 𝐴𝐴3 are not active. 93
Figure 4.11: Modeling of different biological reactions with extended Petri nets; top: the

reaction is inhibited by the inhibitor 𝐼, it can only proceed when 𝐼 is less than
a specific bound, middle: the reaction is activated by the activator 𝑁𝑁, it can
only proceed, when 𝑁𝑁 is greater than a specific bound, bottom: the reaction is
catalyzed by the enzyme 𝐸, the information about the amount of 𝐸 is needed
to determine how many substrates molecules can be converted to product
molecules (Example 4.7). .. 94

Figure 4.12: Biochemical reaction (Example 4.8) ... 96
Figure 4.13: Self-modified Petri net (Example 4.8) ... 96
Figure 4.14: Functional Petri net (Example 4.9) .. 98
Figure 4.15: Conditional Petri net (Example 4.10) .. 99
Figure 4.16: Conditional Petri net with an actual conflict (Example 4.11)............................ 100
Figure 4.17: Timed Petri net (left) and the token evolution (right) (Example 4.12) 101
Figure 4.18: A timed Petri net of the biochemical reaction in Figure 4.12

(Example 4.13) .. 102
Figure 4.19: Timed Petri nets without actual conflict (left) and with actual conflict

(right) (Example 4.14) ... 103
Figure 4.20: Stochastic Petri net (left) and one possible token evolution (right)

(Example 4.15) .. 105
Figure 4.21: A Stochastic Petri net model of protein synthesis (IG = inactive gene, AG =

active gene, P = protein, T1 = activation, T2 = inactivation, T3 = synthesis,
and T4 = degradation) (Example 4.16) ... 105

Figure 4.22: Connection between (discrete) timed Petri nets and continuous Petri nets 108
Figure 4.23: Continuous Petri net without actual conflicts (left) and the corresponding

mark evolution (right) (Example 4.17 ... 109
Figure 4.24: Continuous Petri nets without actual conflict (left) and with actual conflict

(right) (Example 4.18) ... 112
Figure 4.25: Feasible solutions of the actual conflicts of the right Petri net in Figure 4.24 .. 113
Figure 4.26: Continuous capacitive Petri net without actual conflicts (left) and the mark

evolution (right) (Example 4.19) ... 117
Figure 4.27: Continuous capacitive Petri net with a weakly active transition

(Example 4.20) .. 117
Figure 4.28: Continuous capacitive Petri nets without actual input conflict (left) and

with actual input conflict (right) (Example 4.21) .. 121
Figure 4.29: Continuous capacitive Petri net with actual input and output conflict

(Example 4.22) .. 123
Figure 4.30: Continuous extended Petri nets with a test arc (left) and with an inhibitor

arc (right) and the corresponding mark evolutions (Example 4.23)...................... 126
Figure 4.31: Continuous functional Petri net of the biochemical reaction in Figure 4.12

(Example 4.24) .. 128

269

Figure 4.32: Basic concepts of hybrid Petri nets; top: influence of a discrete part on a
continuous part (left) and of a continuous part on a discrete part (right);
bottom: conversion of a discrete marking to a continuous marking (left) and
of a continuous marking to a discrete marking (right) .. 131

Figure 4.33: Hybrid Petri net model of protein synthesis (IG = inactive gene, AG =
active gene, P = protein, T1 = activation, T2 = inactivation, T3 = synthesis,
and T4 = degradation) (Example 4.25) ... 132

Figure 4.34: Hybrid Petri nets with a type-3-conflict of a discrete place (left) and of a
continuous place (right) (Example 4.26) ... 134

Figure 4.35: Hybrid Petri net with a type-4-conflict (Example 4.27) 134
Figure 4.36: Extended hybrid Petri nets with a type-3-conflict of a discrete place (left)

and of a continuous place (right), whereby the top Petri net has a type-3-
output-conflict and the bottom Petri net has a type-3-input-conflict
(Example 4.28) .. 141

Figure 4.37: Extended hybrid Petri net with a type-4-conflict (Example 4.29) 141
Figure 5.1: The modeling process: From a biological phenomenon to a verified model

which can predict system behavior and forms the basis for process
optimization to establish an open-loop control ... 145

Figure 5.2: The modeling circle (based on (Reiß 2002)) ... 146
Figure 5.3: Different types of cell representation (Chmiel and Briechle 2008, Dunn

2003) .. 149
Figure 5.4: Petri net extensions: From a basic Petri net to an extended hybrid Petri net

for biological applications ... 150
Figure 5.5: Distance between measurements and model output .. 155
Figure 5.6: The simulation-optimization method for parameter estimation 156
Figure 6.1: Structure of the PNlib .. 166
Figure 6.2: Icons of the PNlib: discrete place (circle), continuous place (double circle),

discrete transition (black box), stochastic transition (black box with white
triangle), continuous transition (white box), test arc (dashed arc), inhibitor arc
(arc with circle ending), and read arc (arc with square ending) 167

Figure 6.3: Discrete procedure: what is calculated in which component and at which
time if the involved transition is discrete or stochastic. Dashed lines indicate
processes that use the predecessor value of the respective variable...................... 168

Figure 6.4: Continuous procedure: what is calculated in which component and at which
time if the involved transition is continuous. Dashed lines indicate processes
that use the predecessor value of the respective variable. 170

Figure 6.5: Connectors of the PNlib which enable the Petri net components to interact
with each other .. 172

Figure 6.6: The connector variable t for the token number is output of places and input
of transitions (left) and the connector variable fire for the firability is
output of transitions and input of places (right) .. 173

Figure 6.7: Indices of connectors are updated automatically by using the
connectorSizing annotation for the dimension parameter (Example 6.1) 174

Figure 6.8: The input of parameter vectors (Example 6.2) .. 177
Figure 6.9: The input of arc weights (Example 6.3) .. 181
Figure 6.10: The input of maximum speeds which depend on markings (top) and time

(bottom) (Example 6.4) ... 181

270

Figure 6.11: Modeling of normal (top left), test (bottom left), inhibitor (top right), and
read arcs (bottom right) with the PNlib ... 185

Figure 6.12: The component model of a test arc .. 186
Figure 6.13: A Petri net with test and inhibitor arcs (Example 6.5)....................................... 186
Figure 6.14: The main window of Dymola with two modes: Modeling (top) and

Simulation (bottom) .. 187
Figure 6.15: A Modelica model displayed in the diagram layer (top) and in the Modelica

text layer (bottom) ... 188
Figure 6.16: Animation of an xHPN model ... 190

Figure 6.17: IntegerOutput (left) and RealOutput (right) connectors to access
the marking of the places in Matlab/Simulink .. 192

Figure 6.18: By the Simulink interface DymolaBlock, a connection between Dymola
and Matlab/Simulink can be established ... 193

Figure 6.19: General procedure of a Matlab algorithm which performs several
simulations with different parameter settings and uses the results for further
calculations .. 193

Figure 6.20: Wrapping process of the Monod kinetics .. 195
Figure 6.21: Wrapper for process activation; the reaction 𝑅1 proceeds first when the

marking of 𝐼 becomes less than 10 .. 196
Figure 6.22: Modeling a fermentation process with the wrappers of the Fermenter sub-

library: (a) an example of a fermentation model, (b) the fermenter wrapper,
and (c) the fermenter place wrapper .. 197

Figure 6.23: Possible operation modes of a fermenter: (a) batch, (b) repeated batch, (c)
fed-batch, and (d) continuous mode .. 198

Figure 6.24: The modeling process of Figure 5.1 with the assignment of the modeling
steps to the developed tools. Orange-marked steps are performed with
AMMod in Matlab/Simulink and green-marked steps are performed with the
Modelica-tool Dymola and PNlib/PNproBio .. 200

Figure 7.1: Factors that influence Xanthomonas campestris cell growth and xanthan
production during the fermentation process .. 205

Figure 7.2: The simplified metabolic pathway for the components of biomass proposed
by (Garcia-Ochoa et al. 2004a) ... 214

Figure 7.3: Coupling between xanthan biosynthetic pathway and glucose metabolism of
Xanthomonas campestris bacteria ... 215

Figure 7.4: Simplified metabolic pathways for xanthan and biomass assumed by
(Garcia-Ochoa et al. 2004b) .. 216

Figure 7.5: upper left: growth rate (𝜇) versus nitrogen concentration (𝑁𝑁), upper right:
the relationship between growth and nitrogen consumption, bottom: the
relationship between growth and product formation over the whole
fermentation time .. 219

Figure 7.6: Simple unstructured model of the xanthan production of Xanthomonas
campestris bacteria .. 221

Figure 7.7: Unstructured model of xanthan production of Xanthomonas campestris
bacteria .. 223

Figure 7.8: Plot of the absolute values of the normalized sensitivity matrix. Black fields
correspond to high sensitivities and white fields to low sensitivities. 225

271

Figure 7.9: Contribution of the original model parameters to the principal components 226
Figure 7.10: eFAST sensitivity coefficients of the parameters of the unstructured model

in Figure 7.7. Right: first and total-order sensitivity coefficients, left:
contribution of each parameter to the variance of the objective function value
according to total-order sensitivity coefficients (others=𝑌𝑋𝑁, 𝑌𝑋𝑂 , 𝛼). 226

Figure 7.11: left: PE results of the unstructured model in Figure 7.7; right: Relative error
(%) of the estimated parameters .. 228

Figure 7.12: Metabolically structured model of xanthan production of Xanthomonas
campestris bacteria .. 230

Figure 7.13: OP1: Results of PO for the metabolically structured model in Figure 7.12
with the settings of Table A13 (Appendix A4-2) and 𝑡𝑓 = 100 ℎ 232

Figure 7.14: OP2: Results of PO for the metabolically structured model in Figure 7.12
with the settings of Table A13 (Appendix A4-2); left: average xanthan yields
per hour; right: xanthan yield vs. fermentation time ... 233

Figure 7.15: Left: xanthan yield after 100 h fermentation (OP1), right: average xanthan
yield per hour (OP2) for the original bounds in Table 7.4 (Bound A), the
lower bound of the nitrogen addition set to 0 g/l (Bound B), and the lower
bound of the nitrogen addition set to 0 g/l and the upper bound of the glucose
addition set to 1000 g/l (Bound C). ... 234

Figure 7.16: Simulation results of the optimized process parameters found by the hybrid
1 method for OP1 and OP2 with the bounds A, B, and C 235

Figure 7.17: Simulation results of the modified metabolically structured model with
process parameters found by optimization MOP1D (left) and MOP2D (right)
with ES .. 238

Figure 7.18: Simulation results of oxygen compared to stirrer speed (Bound D) 239
Figure 7.19: Simulation results with oxygen regulation by stirrer speed. Dashed lines

indicate the results of MOP1D (see Figure 7.17) .. 240
Figure 7.20: Chemically structured model of xanthan production and growth of

Xanthomonas campestris bacteria ... 241
Figure 7.21: Comparison of SHS of the stochastic model and DHS of the corresponding

continuous model (see Figure 7.20) .. 242
Figure 8.1: Further development possibilities beyond this work ... 244
Figure 8.2: The vision: A fully automated model predictive control of fermentation

processes .. 246

272

LIST OF TABLES

Table 2.1: Overview of tools for modeling by hybrid Petri nets .. 14
Table 3.1: Built-in functions related to arrays .. 21
Table 3.2: Built-in functions related to events ... 34
Table 5.1: Examples for modeling biological reactions with the xHPNbio formalism 152
Table 6.1: Parameters of discrete (d) and continuous (c) places .. 175
Table 6.2: Parameters and modification possibilities of discrete (d), stochastic (s), and

continuous (c) transitions .. 180
Table 6.3: Parameters of test and inhibitor arcs ... 185
Table 6.4: Functions for loading and changing parameters in Matlab procedures

(Dassault Systèmes AB 2011) ... 192
Table 6.5: Comparison of the other Petri nets tools mention in Chapter 2 and the new

Petri net simulation environment (PNlib, PNproBio, AMMod) 202
Table 7.1: Model hypotheses ... 217
Table 7.2: Initial nitrogen and glucose concentrations for generating five pseudo

experimental data sets ... 224
Table 7.3: Model parameters of the unstructured model in Figure 7.7 224
Table 7.4: Process parameters to optimize of the metabolically structured model in

Figure 7.12 .. 231
Table 7.5: Process parameters of the modified metabolically structured model in

Figure 7.12 .. 235

273

LIST OF ABBREVIATIONS

A

AG Active Gene
AMMod Analysis of Modelica Models
ANOVA ANalysis Of VAriance

B

BLT Block Lower Triangular form
Bound A,B, C, D Bounds of process parameters

C

c continuous
C1 Speed calculation
C2 Marks calculation
C3 Activation
C4 Enabling
C5 Firability
C6 Preliminary speed calculation
C7 Decreasing factor calculation
C8 Instantaneous speed calculation
C/N ratio Carbon to Nitrogen ratio

CMAES Covariance Matrix Adaption Evolution
Strategy

Cof Cofactors

D

d discrete
D1 Activation
D2 Output Enabling
D3 Input Enabling
D4 Firability
D5 Token/marks recalculation
DAE Differential Algebraic Equation
DAEs Differential Algebraic Equation system

274

DASSL Differential Algebraic System Solver

dft1 Time from fermentation start to first feeding
at 𝑡1 = 𝑑𝑓𝑡1

dft2 Time from first feeding at 𝑡1 to second
feeding at 𝑡2 = 𝑡1 + 𝑑𝑓𝑡2

dft3 Time from second feeding at 𝑡2 to third
feeding at 𝑡3 = 𝑡2 + 𝑑𝑓𝑡3

dft4 Time from third feeding at 𝑡3 to fourth
feeding at 𝑡4 = 𝑡3 + 𝑑𝑓𝑡4

dft5 Time from fourth feeding at 𝑡4 to fifth
feeding at 𝑡5 = 𝑡4 + 𝑑𝑓𝑡5

DHS Deterministic Hybrid Simulation
DIRECT DIviding RECTangles

E

eFAST extended Fourier Amplitude Sensitivity Test
EP Extracellular Proteins
ES Evolution Strategy

F

FA Forming Bases Amino Acids
FAST Fourier Amplitude Sensitivity Test
ft feeding time

G

GUI Graphical User Interface

H

HDMR High Dimensional Model Representation
HJ Hooke-Jeeves method
HFPNe Hybrid Functional Petri Net with extensions

hybrid DAEs hybrid Differential Algebraic Equation
system

Hybrid1 ES+Nelder-Mead simplex method
Hybrid2 ES+Hooke-Jeeves method
Hybrid3 CMAES+Nelder-Mead simplex method
Hybrid4 CMAES+Hooke-Jeeves method

I

275

IG Inactive Gene
IP Intracellular Proteins

M

ma maximum, absolute objective function
MM Mathematical Modeling
MOP1 Modified Optimization Problem 1

MOP1C Modified Optimization Problem 1 with
Bound C

MOP1D Modified Optimization Problem 1 with
Bound D

MOP2 Modified Optimization Problem 2

MOP2C Modified Optimization Problem 2 with
Bound C

MOP2D Modified Optimization Problem 2 with
Bound D

MP Model Prediction
MPC Model Predictive Control
MR Model Reduction
ms maximum, squared objective function

N

N Nitrogen concentration
N0 Initial nitrogen concentration
Nadd Nitrogen addition
NFA Non-Forming Bases Amino Acids
NLP Non-Linear Programming Problem
NMS Nelder-Mead Simplex method

O

OAT one-at-a-time
O2 Oxygen concentration
O20 Initial oxygen concentration
ODE Ordinary Differential Equation
OP1 Optimization Problem 1
OP1A Optimization Problem 1 with Bound A
OP1B Optimization Problem 1 with Bound B
OP1C Optimization Problem 1 with Bound C
OP2 Optimization Problem 2
OP2A Optimization Problem 2 with Bound A

276

OP2B Optimization Problem 2 with Bound B
OP2C Optimization Problem 2 with Bound C

P

P Xanthan concentration (Product)
Protein

PC Continuous Place
PD Discrete Place
PE Parameter Estimation

PESA Parameter Estimation and Sensitivity
Analysis

PNlib Petri Net library

PNproBio Petri Nets for process modeling of
Biological systems

PO Process Optimization

POSA Process Optimization and Sensitivity
Analysis

PRA Preprocessing and Relationship Analysis

R

RA Relationship Analysis

S

S Glucose concentration
Carbon source concentration

s stochastic
S0 Initial glucose concentration
SA Sensitivity Analysis
SaaS Software as a Service of Cell Illustrator
Sadd Glucose addition

Sadd11 Nitrogen concentration of feeding at time
𝑡1 = 𝑑𝑓𝑡1

Sadd12 Glucose concentration of feeding at time
𝑡1 = 𝑑𝑓𝑡1

Sadd21 Nitrogen concentration of feeding at time
𝑡2 = 𝑡1 + 𝑑𝑓𝑡2

Sadd22 Glucose concentration of feeding at time
𝑡2 = 𝑡1 + 𝑑𝑓𝑡2

Sadd31 Nitrogen concentration of feeding at time
𝑡3 = 𝑡2 + 𝑑𝑓𝑡3

Sadd32 Glucose concentration of feeding at time

277

𝑡3 = 𝑡2 + 𝑑𝑓𝑡3

Sadd41 Nitrogen concentration of feeding at time
𝑡4 = 𝑡3 + 𝑑𝑓𝑡4

Sadd42 Glucose concentration of feeding at time
𝑡4 = 𝑡3 + 𝑑𝑓𝑡4

Sadd51 Nitrogen concentration of feeding at time
𝑡5 = 𝑡4 + 𝑑𝑓𝑡4

Sadd52 Glucose concentration of feeding at time
𝑡5 = 𝑡4 + 𝑑𝑓𝑡4

sa sum, absolute objective function

SECG Simulation Engine Code Generator of Cell
Illustrator

SHS Stochastic Hybrid Simulation
SPN Stochastic Petri Net
ss sum, squared objective function

T

TC Continuous Transition
TD Discrete Transition
temp0 Initial temperature
tempHeight Increase of temperature
TS Stochastic Transition
tt time of temperature increase

X

X Biomass concentration
Cell concentration

xHPN extended Hybrid Petri Net

xHPNbio extended Hybrid Petri Nets for biological
Applications

Y

YXN Yield of biomass from nitrogen
YXS Yield of biomass from carbon
YXO Yield of biomass from oxygen
YPS Yield of xanthan from carbon
YATPP Utilized amount of ATP per xanthan unit
YATPCof Yield of ATP from cofactors

278

LIST OF REFERENCES

A
Alla H, David R (1998) Continuous and hybrid Petri nets, Journal of Circuits, Systems, and

Computers, 8:159- 188

Amanullah A, Satti S, Nienow AW (1998) Enhancing xanthan fermentations by different modes of
glucose feeding. Biotechnology progress 14(2):265–269

Amengual A (2009) A specification of hybrid Petri net semantics for HISim simulator. International
Computer Science Institute & Universitat de les Illes Balears

B
Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary

programming, genetic algorithms. Oxford University Press, USA

Bäck T, Schwefel H (1993) An overview of evolutionary algorithms for parameter optimization.
Evolutionary computation 1(1):1–23

Backhaus K, Erichson B, Plinke W, Weiber R (2003) Multivariate Analysemethoden. Eine
anwendugsorientierte Einführung. Springer Verlag, Berlin et al.

Bard Y (1974) Nonlinear parameter estimation. Academic Press, New York

Bell M, Pike MC (1966) Remark on algorithm 178 [E4] direct search. Communications of the ACM
9(9):684–685

Beyer H (1995) Toward a theory of evolution strategies: On the benefits of sex. Evolutionary
Computation 3(1):81–111

Beyer H (2001) The theory of evolution strategies. Springer Verlag, Berlin et al.

Beyer H, Schwefel H (2002) Evolution strategies–A comprehensive introduction. Natural computing
1(1):3–52

Brinkrolf C (2011) Realisierung einer neuen Petri-Netz-Simulations- und Analyse-Umgebung in der
Systembiologie. Master thesis, Bielefeld University

Blanch HW, Clark DS (1997) Biochemical Engineering. Marcel Dekker, New York

Braun W (2010) Weiterentwicklung der Ereignisbehandlung im OpenModelica Compiler zur
Simulation hybrider Modelle. Diploma thesis, University of Applied Sciences Bielefeld

Braun W, Bachmann B, Proß S (2010) Synchronous Events in the OpenModelica Compiler with a
Petri Net Library Application. Proceedings of 3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools: 63–70

Braun W, Ochel L, Bachmann B (2011) Symbolically Derived Jacobians Using Automatic
Differentiation - Enhancement of the OpenModelica Compiler. Proceedings of 8th International
Modelica Conference:495-501

BTU Cottbus (2011) Charlie Website. A Tool for the Analysis of Place/Transition Nets.
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie (called 7.8.2012)

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie

279

C
Calder M, Vyshemirsky V, Gilbert D, Orton R (2006) Analysis of signalling pathways using

continuous time Markov chains. Transactions on Computational Systems Biology VI 4220:44–67

Chan K, Saltelli A, Tarantola S (1997) Sensitivity analysis of model output: variance-based methods
make the difference. Proceedings of 29th conference on Winter simulation:261-268

Chelouah R, Siarry P (2003) Genetic and Nelder-Mead algorithms hybridized for a more accurate
global optimization of continuous multiminima functions. European Journal of Operational
Research 148(2):335–348

Chen M, Hofestädt R (2003) Quantitative Petri net model of gene regulated metabolic networks in the
cell. In Silico Biology 3(3):347–365

Chen S, Ke J, Chang J (1990) Knowledge representation using fuzzy Petri nets. Knowledge and Data
Engineering, IEEE Transactions on 2(3):311–319

Chmiel H, Briechle S (2008) Bioprozesstechnik: Einführung in die Bioverfahrenstechnik. Spektrum
Akademischer Verlag, Heidelberg

Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH (1973) Study of the sensitivity of
coupled reaction systems to uncertainties in rate coefficients. I Theory. The Journal of Chemical
Physics 59:3873–3876

Cukier RI, Levine HB, Shuler KE (1978) Nonlinear sensitivity analysis of multiparameter model
systems. Journal of Computational Physics 26(1):1–42

Cukier RI, Schaibly JH, Shuler KE (1975) Study of the sensitivity of coupled reaction systems to
uncertainties in rate coefficients. III. Analysis of the approximations. The Journal of Chemical
Physics 63:1140–1149

D

Dassault Systèmes AB (2011) Dymola-Dynamic Modeling Laboratory-User Manual Volume 2, Lund,
Sweden

David R, Alla H (1987) Continuous petri nets. Proceedings of 8th European Workshop on Application
and Theory of Petri nets:275-294

David R, Alla H (2001) On Hybrid Petri Nets. Discrete Event Dynamic Systems: Theory and
Applications(11): 9–40

David R, Alla H (2005) Discrete, continuous, and hybrid Petri nets. Springer Verlag, Berlin
Heidelberg

Dixon LC, Szegö GP (1978) The global optimization problem: an introduction. Towards Global
Optimization 2:1–15

Doi A, Fujita S, Matsuno H, Nagasaki M, Miyano S (2004) Constructing biological pathway models
with hybrid functional Petri nets. In Silico Biology 4(3):271–291

Drath R (2002) Description of hybrid systems by modified petri nets. Modelling, Analysis and Design
of Hybrid Systems, LNCIS 279:15-36

Dubois E, Alla H, David R (1994) Continuous Petri net with maximal speeds depending on time.
Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and
Automation Technology:32–39

Dunn I (2003) Biological reaction engineering: dynamic modelling fundamentals with simulation
examples. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

F

Fabricius SM (2001) Extensions to the Petri Net Library in Modelica. ETH Zurich, Switzerland

280

Finkel D (2003) DIRECT optimization algorithm user guide. Center for Research in Scientific
Computation, North Carolina State University

Fritzson PA (2004) Principles of object-oriented modeling and simulation with Modelica 2.1. Wiley-
IEEE Press

Funahashi H, Yoshida T, Taguchi H (1987) Effect of glucose concentrations on xanthan gum
production by xanthomonas campestris. Journal of fermentation technology 65(5):603–606

G

Garcia-Ochoa F, Gomez E (1998) Mass transfer coefficient in stirred tank reactors for xanthan gum
solutions. Biochemical engineering journal 1(1):1–10

García-Ochoa F, Santos V, Alcon A (1995) Xanthan gum production: an unstructured kinetic model.
Enzyme and Microbial Technology 17(3):206–217

Garcia-Ochoa F, Santos V, Alcon A (1996) Simulation of xanthan gum production by a chemically
structured kinetic model. Mathematics and Computers in Simulation 42(2-3):187–195

Garcia-Ochoa F, Santos V, Alcon A (1998) Metabolic structured kinetic model for xanthan
production. Enzyme and Microbial Technology 23(1-2):75–82

Garcia-Ochoa F, Santos V, Alcon A (2004a) Structured kinetic model for Xanthomonas campestris
growth. Enzyme and Microbial Technology 34(6):583–594

Garcia-Ochoa F, Santos V, Alcon A (2004b) Chemical structured kinetic model for xanthan
production. Enzyme and Microbial Technology 35(4):284–292

Garcia-Ochoa F, Santos V, Casas JA, Gomez E (2000) Xanthan gum: production, recovery, and
properties. Biotechnology Advances 18(7):549–579

Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many
species and many channels. The journal of physical chemistry A 104(9):1876–1889

Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. The journal of
physical chemistry 81(25):2340–2361

Goss P, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using
stochastic Petri nets. Proceedings of the National Academy of Sciences of the United States of
America 95(12):6750-6755

H

Hansen N (2006) The CMA evolution strategy: a comparing review. Towards a new evolutionary
computation:75–102

Hansen N (2009) Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed.
Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers:2389-2395

Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions.
Parallel Problem Solving from Nature-PPSN VIII. Springer Verlag Berlin Heidelberg

Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies.
Evolutionary computation 9(2):159–195

Hanzalek Z (2003) Continuous Petri nets and polytopes. IEEE International Conference on Systems,
Man and Cybernetics:1513-1520

Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. Proceedings of
8th International Conference on Formal Methods for Computational Systems Biology:215–264

Herajy M, Heiner M (2010) Hybrid Petri Nets for Modelling of Hybrid Biochemical Interactions.
Proceedings of 17th German Workshop on Algorithms and Tools for Petri Nets:66–79

281

Hofestädt R (1994) A Petri net application to model metabolic processes. Systems Analysis Modelling
Simulation 16(2):113–122

Hofestädt R, Thelen S (1998) Quantitative modeling of biochemical networks. In Silico Biology
1(1):39–53

Hooke R, Jeeves T (1961) Direct Search Solution of Numerical and Statistical Problems. Journal of
the ACM 8(2):212–229

J

Janowski S (2008) An integrative bioinformatics solution to visualize and examine biological
networks. Master Thesis, Bielefeld University

Jensen K (1987) Coloured petri nets. Petri nets: central models and their properties: 248–299, Springer
Verlag, Berlin Heidelberg

Johnsson C, Årzén K-E (1999) Grafchart and grafcet: A comparison between two graphical languages
aimed for sequential control applications, Preprints 14th World Congress of IFAC(A): 19-24

Jones D, Perttunen C, Stuckman B (1993) Lipschitzian optimization without the Lipschitz constant.
Journal of Optimization Theory and Applications 79(1):157–181

Júlvez J, Mahulea C (2012) SimHPN: A MATLAB toolbox for simulation, analysis and design with
hybrid Petri nets. Nonlinear Analysis: Hybrid Systems 6(2):806-817

K

Koda M, Mcrae GJ, Seinfeld JH (1979) Automatic sensitivity analysis of kinetic mechanisms.
International Journal of Chemical Kinetics 11(4):427–444

Kolda T, Lewis R, Torczon V (2003) Optimization by Direct Search: New Perspectives on Some
Classical and Modern Methods. Optimization 45(3):385–482

Krems M, Bachmann B, Braun W (2010) Enhancement of the OpenModelica Compiler – Analytical
calculation of the Jacobian matrix. OpenModelica Annual Workshop

L

Lagarias J, Reeds J, Wright M, Wright P (1999) Convergence properties of the Nelder-Mead simplex
method in low dimensions. SIAM Journal on Optimization 9(1):112–147

Le Bail J, Alla H, David R (1991) Hybrid petri nets. Proceedings of the European Control Conference:
1472-1477

Leela JK, Sharma G (2000) Studies on xanthan production from Xanthomonas campestris. Bioprocess
Engineering 23(6):687–689

Lo Y, Yang S, Min D (1997) Effects of yeast extract and glucose on xanthan production and cell
growth in batch culture of Xanthomonas campestris. Applied microbiology and biotechnology
47(6):689–694

Luong JH, Mulchandani A (1988) Kinetics of biopolymer synthesis: a revisit. Enzyme and Microbial
Technology 10(6):326–332

M

Marcotte M, Taherian Hoshahili A, Ramaswamy HS (2001) Rheological properties of selected
hydrocolloids as a function of concentration and temperature. Food Research International
34(8):695–703

Marino S, Hogue I, Ray C, Kirschner D (2008) A methodology for performing global uncertainty and
sensitivity analysis in systems biology. Journal of Theoretical Biology 254(1):178–196

MathWorks (2011) Curve Fitting Toolbox™ User’s Guide

282

Matsuno H, Doi A, Nagasaki M, Miyano S (2000) Hybrid Petri net representation of gene regulatory
network. Pacific Symposium on Biocomputing 5:341-352

Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S (2003) Biopathways representation
and simulation on hybrid functional Petri net. In Silico Biology 3(3):389–404

McKinnon K (1999) Convergence of the Nelder-Mead simplex method to a nonstationary point.
SIAM Journal on Optimization 9(1):148–158

Modelica Association (2010) Modelica - A Unified Object-Oriented Language for Physical Systems
Modeling Language Specification Version 3.2

Modelica Association (2011) www.modelica.org (called 7.8.2012)

Moles CG, Mendes P, Banga JR (2003) Parameter Estimation in Biochemical Pathways: A
Comparison of Global Optimization Methods. Genome Research 13(11):2467–2474

Moraine RA, Rogovin P (1966) Kinetics of polysaccharide B 1459 fermentation. Biotechnology and
Bioengineering 8(4):511–524

Moraine RA, Rogovin P (1973) Kinetics of the xanthan fermentation. Biotechnology and
Bioengineering 15(2):225–237

Mosterman PJ, Otter M, Elmqvist H (1998) Modeling Petri nets as local constraint equations for
hybrid systems using Modelica. Proceedings of SCS Summer Simulation Conference:314–319

Mulchandani A, Luong JH, Leduy A (1988) Batch kinetics of microbial polysaccharide biosynthesis.
Biotechnology and Bioengineering 32(5):639–646

N

Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E, Miyano S (2010) Cell Illustrator 4.0: A
computational platform for systems biology. In Silico Biology 10(1):5–26

Nagasaki M, Doi A, Matsuno H, Miyano S (2004) A Versatile Petri Net Based Architecture for
Modeling and Simulation of Complex Biological Processes. Genome Informatics 15(1), 180-197

Nelder J, Mead R (1965) A simplex method for function minimization. The computer journal
7(4):308-313

Nocedal J, Wright SJ (1999) Numerical optimization. Springer-Verlag, New York Berlin Heidelberg

O

Ochel L, Bachmann B, Braun W (2011) Symbolic Calculation of partial derivatives for linearization of
non-linear Modelica models in OpenModelica. OpenModelica Annual Workshop

Olsson H, Otter M, Mattsson S, Elmqvist H (2008) Balanced Models in Modelica 3.0 for Increased
Model Quality. Proceedings of 6th International Modelica Conference:21-33

Otter M, Årzén KE, Dressler I (2005) StateGraph-a Modelica library for hierarchical state machines.
Proceedings of 4th International Modelica Conference:569-578

P

Petri CA (1962) Kommunikation mit Automaten. Dissertation, Rheinisch-Westfälisches Institut für
Instrumentelle Mathematik, Bonn

Petri Net World (2012) http://www.informatik.uni-hamburg.de/TGI/PetriNets/ (called 7.8.2012)

Petzold LR (1982) Description of DASSL: a differential/algebraic system solver. Proceedings of 10th
international mathematics and computers simulation congress on systems simulation and scientific
computation:65-68

http://www.modelica.org/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

283

Pinches A, Pallent L (1986) Rate and yield relationships in the production of xanthan gum by batch
fermentations using complex and chemically defined growth media. Biotechnology and
Bioengineering 28(10):1484–1496

Pons A, Dussap CG, Gros JB (1989) Modelling Xanthomonas campestris batch fermentations in a
bubble column. Biotechnology and Bioengineering 33(4):394–405

Proß S, Bachmann B (2009) A Petri Net Library for Modeling Hybrid Systems in OpenModelica.
Proceedings of 7th International Modelica Conference:454-462

Proß S, Bachmann B (2011a) An Advanced Environment for Hybrid Modeling and Parameter
Identification of Biological Systems. Proceedings of 8th International Modelica Conference:557-
571

Proß S, Bachmann B (2011b) An Advanced Environment for Hybrid Modeling of Biological Systems
Based on Modelica. Journal of Integrative Bioinformatics(8):1–34

Proß S, Bachmann B (2012a) Hybrid Modelling and Process Optimization of Biological Systems,
Proceedings of the MATHMOD Conference, Wien, Austria

Proß S, Bachmann B (2012b) PNlib – An Advanced Petri Library for Hybrid Process Modelling,
Modelica Conference, Munich, Germany

Proß S, Bachmann B, Hofestädt R, Niehaus K, Ueckerdt R, Vorhölter FJ, Lutter P (2009) Modeling a
Bacterium's Life: A Petri-Net Library in Modelica. Proceedings of 7th International Modelica
Conference:463-472

Proß S, Janowski SJ, Bachmann B, Hofestädt R (2012a) A New Object-Oriented Petri Net Simulation
Environment Based on Modelica, Winter Simulation Conference, Berlin, Germany

Proß S, Janowski SJ, Bachmann B, Kaltschmidt C, Kaltschmidt B (2012b) PNlib - A Modelica
Library for Simulation of Biological Systems based on Extended Hybrid Petri Nets, 3rd
International Workshop on Biological Processes & Petri Nets, Hamburg, Germany

Q

Quinlan A (1986) Kinetics of Secondary Metabolite Synthesis in Batch Culture When Two Different
Substrates Limit Cell Growth and Metabolite Production: Xanthan Synthesis by Xanthomonas
campestrisa. Annals of the New York Academy of Sciences 469(1):259–269

R

Rechenberg I (1971) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. PhD thesis

Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representations in metabolic pathways.
Proceedings of 1st International Conference on Intelligent Systems for Molecular Biology: 328-
336

Reinsch C (1967) Smoothing by spline functions. Numerische Mathematik 10(3):177–183

Reiß T (2002) Systeme des Lebens – Systembiologie. Bundesministerium für Bildung und Forschung.
Bonn, Germany

Rohr C, Marwan W, Heiner M (2010) Snoopy—a unifying Petri net framework to investigate
biomolecular networks. Bioinformatics 26(7):974

Roseiro JC, Esgalhado ME, Amaral Collaco MT, Emery AN (1992) Medium development for xanthan
production. Process biochemistry 27(3):167–175

S

Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to
assessing scientific models. John Wiley & Sons Inc

284

Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008)
Global sensitivity analysis. The primer. John Wiley

Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley New York

Saltelli A, Tarantola S, Chan K (1999) A quantitative model-independent method for global sensitivity
analysis of model output. Technometrics 41(1):39–56

Schaibly JH, Shuler KE (1973) Study of the sensitivity of coupled reaction systems to uncertainties in
rate coefficients. II Applications. The Journal of Chemical Physics 59:3879–3888

Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information.
Nucleic acids research 30(1):47

Schwefel H (1975) Evolutionsstrategie und numerische Optimierung. PhD thesis

Schwefel H (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie.
Birkhäuser Verlag, Basel Stuttgart

Schwefel H (1987) Collective phenomena in evolutionary systems. Preprints of the 31st Annual
Meeting of the International Society for General System Research 2:1025-1033

Schwefel H (1995) Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series.
Wiley, New York

Scowen R (1993) Extended BNF-a generic base standard. Software Engineering Standards
Symposium

Sessego F, Giua A, Seatzu C (2008) HYPENS: A Matlab Tool for Timed Discrete, Continuous and
Hybrid Petri Nets. PETRI NETS 2008, LNCS 5062:419-428

Shu C, Yang S (1991) Kinetics and modeling of temperature effects on batch xanthan gum
fermentation. Biotechnology and Bioengineering 37(6):567–574

Shubert B (1972) A sequential method seeking the global maximum of a function. SIAM Journal on
Numerical Analysis 9(3):379–388

Sieber V, Wittmann E, Buchholz S (2006) Polysaccharide. Angewandte Mikrobiologie:397–408,
Springer Verlag, Berlin Heidelberg New York

Simonoff J (1996) Smoothing methods in statistics. Springer Verlag, New York

Sobol I (1993) Sensitivity analysis for non-linear mathematical models. Mathematical Modelling and
Computational Experiment 1(1):407–414

Souw P, Demain A (1979) Nutritional studies on xanthan production by Xanthomonas campestris
NRRL B1459. Applied and Environmental Microbiology 37(6):1186

Speers RA, Tung MA (1986) Concentration and temperature dependence of flow behavior of xanthan
gum dispersions. Journal of Food Science 51(1):96–98

T

Tait MI, Sutherland IW, Clarke-Sturman AJ (1986) Effect of growth conditions on the production,
composition and viscosity of Xanthomonas campestris exopolysaccharide. Microbiology
132(6):1483-1492

Tarjan R (1972) Depth-first Search and Linear Graph Algorithms, SIAM Journal on Computing
1(2):146–160

Torczon V (1997) On the convergence of pattern search algorithms. SIAM Journal on Optimization
7(1):1–25

U

Ueckerdt R (1978) Optimale lineare Modelle für das dynamische Verhalten mechanischer Systeme mit
endlicher Anzahl von Freiheitsgraden. PhD thesis

285

University of Tokyo (2010) Cell IlustratorTM: User Guide

V

Vajda S, Valko P, Turanyi T (1985) Principal component analysis of kinetic models. International
journal of chemical kinetics 17(1):55–81

Valk R (1978) Self-modifying nets, a natural extension of Petri nets. Automata, Languages and
Programming 62:464–476

Vorhölter F, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T,
Rückert C, Schmid J (2008) The genome of Xanthomonas campestris pv. campestris B100 and its
use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of
biotechnology 134(1-2):33–45

Vuyst L, Loo J, Vandamme E (1987) Two step fermentation process for improved xanthan production
by Xanthomonas campestris NRRL B 1459. Journal of Chemical Technology & Biotechnology
39(4):263–273

W

Weiss R, Ollis D (1980) Extracellular microbial polysaccharides. I. Substrate, biomass, and product
kinetic equations for batch xanthan gum fermentation. Biotechnology and Bioengineering
22(4):859–873

Weyl H (1938) Mean motion. American Journal of Mathematics 60(4):889–896

Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. Journal of
biotechnology 94(1): 37–63

Wilkinson DJ (2006) Stochastic modelling for systems biology. Chapman & Hall/CRC

X

Xuewu Z, Xin L, Dexiang G, Wei Z, Tong X, Yonghong M (1996) Rheological models for xanthan
gum. Journal of food engineering 27(2):203–209

Y

Yen J, Liao J, Lee B, Randolph D (1998) A hybrid approach to modeling metabolic systems using a
genetic algorithm and simplex method. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 28(2):173–191

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 Related Works
	2.1 Petri Net Approaches for Modeling Biological Processes
	2.2 Petri Net Tools
	Cell Illustrator
	Snoopy

	2.3 Petri Nets in Modelica

	3 Basics
	3.1 The Modelica Language
	3.1.1 Variables
	3.1.2 Equations
	Normal equations
	Declaration equations
	Modification equations
	Initial equations

	3.1.3 Algorithms
	3.1.4 Specialized Classes
	Model
	Block
	Function
	Connector
	Package

	3.1.5 Balanced Models
	3.1.6 Discrete Event and Hybrid Modeling
	3.1.7 Mathematical Representation of Modelica Models

	3.2 Optimization Methods
	3.2.1 Local Optimization Methods
	Hooke-Jeeves Method
	Nelder-Mead Simplex Method

	3.2.2 Global Optimization Methods
	DIRECT Method
	Evolution Strategy
	Fitness Evaluation and Individual Representation
	Recombination
	Mutation
	Selection

	Covariance Matrix Adaptation Evolution Strategy

	3.2.3 Hybrid Optimization Methods

	3.3 Sensitivity Analysis Methods
	3.3.1 Local approach
	3.3.2 Global approach: Fourier Amplitude Sensitivity Test
	Frequency Selection
	Fourier Expansion
	FAST Sampling
	Search Curve
	Working Equations

	3.3.3 Extended Fourier Amplitude Sensitivity Test

	4 Petri Nets
	4.1 Basic Concepts
	4.2 Abbreviations and Extensions of the Basic Concepts
	4.2.1 Capacitive Petri Nets
	4.2.2 Extended Petri Nets
	4.2.3 Extended Capacitive Petri Nets
	4.2.4 Self-modified Petri Nets
	4.2.5 Functional Petri Nets

	4.3 Non-autonomous Petri Nets
	4.3.1 Conditional Petri Nets
	4.3.2 Timed Petri Nets
	4.3.3 Stochastic Petri Nets
	4.3.4 Conditional Timed Petri Nets

	4.4 Continuous Petri Nets
	4.4.1 Continuous Capacitive Petri Nets
	4.4.2 Continuous Extended Petri Nets
	4.4.3 Continuous Extended Capacitive Petri Nets
	4.4.4 Continuous Functional Petri Nets
	4.4.5 Conditional Continuous Petri Nets

	4.5 Hybrid Petri Nets
	4.5.1 Variation of Transitions
	4.5.2 Arc Weight and Maximum Speed Functions Depending on Marking/Time
	4.5.3 Capacities and Extensions
	4.5.4 Extended Hybrid Petri Nets

	5 Modeling Process of Biological Systems
	5.1 Preprocessing and Relationship Analysis
	5.2 Mathematical Modeling: xHPN for Biological Applications
	5.3 Parameter Estimation
	5.4 Sensitivity Analysis
	5.5 Deterministic and Stochastic Hybrid Simulation
	5.6 Model Prediction
	5.7 Process Optimization

	6 The Petri Net Library
	6.1 Implementation of the Petri Net Elements
	6.1.1 Connectors
	6.1.2 Places
	Output and Input Enabling Processes (D2, D3, C4)
	Token/Marks Recalculation Process and Calculation of Input and Output Speeds (D5, C1, C2)
	Decreasing Factor Calculation (C7)

	6.1.3 Transitions
	Activation Process (D1, C3)
	Firability (D4, C5)
	Preliminary and Instantaneous Speed Calculation (C6, C8)

	6.1.4 Arcs

	6.2 Modeling, Simulation, and Animation with Dymola
	6.3 Connection between Dymola and Matlab/Simulink
	6.4 Petri Net Library for Process Modeling of Biological Systems
	6.5 Tool for the Analysis of Modelica Models
	6.6 Comparison to other Petri net Tools

	7 Application
	7.1 Step 1: Biological Phenomena
	7.2 Step 2: Experimental Data and Prior Knowledge
	7.2.1 Influence Factors on Growth and Xanthan Production
	Carbon Source
	Nitrogen Source
	C/N Ratio
	Viscosity
	Operation Mode
	Temperature

	7.2.2 Modeling of Growth and Xanthan Production
	Unstructured Models
	Structured Models
	Compartmental Model
	Metabolically Structured Model
	Chemically Structured Model
	Modeling of Oxygen Mass Transfer Coefficient and Viscosity

	7.3 Step 3: Model Hypotheses
	7.4 Step 4 and 5: Preprocessing and Relationship Analysis
	7.5 Step 6 und 8: Parameter Estimation and Sensitivity Analysis
	Local Sensitivities
	Principal Component Analysis
	Global Sensitivities
	Parameter Estimation
	Fixed Parameter Estimation

	7.6 Step 9: Process Optimization
	The Optimization Problem
	Results of OP1 and OP2
	Modifications of the Bounds for Glucose and Nitrogen Addition
	Modification of the Feeding Number
	Results of MOP1 and MOP2
	Modification of the Bound for the Glucose Addition
	Modification of the Bounds for the Feeding Times and the Initial Nitrogen Concentration
	Oxygen Regulation

	7.7 Step 7: Deterministic and Stochastic Hybrid Simulation

	8 Discussion and Outlook
	Appendix
	A1 Algorithms
	A2 Connector Variables of the PNlib
	A3 Supplements to the AMMod-Tool
	A3-1 PRA
	A3-2 PESA

	A4 Supplements to the Application
	A4-1 Pseudo Experimental Data
	A4-2 Method-specific Parameters
	A4-3 Components and Parameters of the Models

	List of Figures
	List of Tables
	List of Abbreviations
	List of References
	Leere Seite

